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The perturbative quantum chromodynamics (pQCD) has been extreme-
ly successful in the prediction and description of main properties of quark
and gluon jets. There are, however, some problems of the jet calculus
with the higher order corrections of the modified perturbative expansion
which should be resolved to get more precise statements. Some of them are
discussed here.

PACS numbers: 13.65.+i, 13.87.Ce, 13.85.Hd

The numerous achievements of pQCD in the jet calculus are well known
and described in the book [1] and many review papers (see, e.g., [2–6]).
The leading approximation is perfect and only high order terms need more
care. Here I present a critical survey of some problems related to these
calculations and rarely discussed. The figures demonstrating the comparison
with experiment are omitted to shorten the presentation. They can be found
in the above cited review papers.

I mention briefly the following five problems:
1. Different characteristics of jets are differently sensitive to higher or-

der corrections. Therefore, for the comparison with experiment, one should
choose those which are not overshadowed by the leading terms of the per-
turbative expansion and help most efficiently elucidate these corrections.

2. The correction terms are proportional to higher powers of the cou-
pling strength but can get the large numerical coefficients in front of them.
Thus, even though in asymptotics this expansion is valid due to the running
nature of the coupling strength, at present energies it could fail to provide
small corrections. Therefore one should find such characteristics where these
coefficients are small enough for corrections to be trusted.
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3. It is very desirable to get the physical interpretation and motiva-
tion for the value and nature of the higher order corrections (especially, for
cumulant moments).

4. The QCD equations or approximations used in the jet calculus are
sometimes not completely precise themselves. Their modifications can be
considered or the influence of the omitted terms estimated.

5. Some shortcomings of the analytic approach and numerical solutions
are discussed.

I will be mainly concerned with jet characteristics in some sense related
to the jet multiplicity distributions that are closer to my personal interests.
First, let me remind some simplest definitions [1,2] concerning jet multiplic-
ities in QCD. The generating function G is defined by the formula

G(y, u) =
∞

∑

n=0

Pn(y)un , (1)

where Pn(y) is the multiplicity distribution at the scale y = ln(pΘ/Q0) =
ln(2Q/Q0), p is the initial momentum, Θ is the angle of the divergence of
the jet (jet opening angle), assumed here to be fixed, Q is the jet virtuality,
Q0 = const., u is an auxiliary variable which is often omitted to shorten
notations. The analytic properties of the generating functions in u are of
the special interest (see [2, 4]) in view of some analogies with the statistical
physics, but we will not consider them here.

The moments of the distribution are defined as

Fq =

∑

n Pnn(n − 1) . . . (n − q + 1)

(
∑

n Pnn)q
=

1

〈n〉q
dqG(y, u)

duq

∣

∣

∣

∣

u=1

, (2)

Kq =
1

〈n〉q
dq ln G(y, u)

duq

∣

∣

∣

∣

u=1

. (3)

Here, Fq are the factorial moments, and Kq are the cumulant moments,
responsible for total and genuine (irreducible to lower ranks) correlations,
correspondingly. These moments are not independent. They are connected
by definite relations which can easily be derived from moments definitions
in terms of the generating function:

Fq =

q−1
∑

m=0

Cm
q−1Kq−mFm . (4)
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The QCD equations for the generating functions are1:

G′

G =

1
∫

0

dxKG
G (x)γ2

0 [GG(y + ln x)GG(y + ln(1 − x)) − GG(y)]

+nf

1
∫

0

dxKF
G(x)γ2

0 [GF(y + ln x)GF(y + ln(1 − x))−GG(y)] , (5)

G′

F =

1
∫

0

dxKG
F (x)γ2

0 [GG(y + ln x)GF(y + ln(1 − x)) − GF(y)] . (6)

Here G′(y) = dG/dy , nf is the number of active flavors,

γ2
0 =

2NcαS

π
. (7)

The running coupling constant in the two-loop approximation is

αS(y) =
2π

β0y

(

1 − β1

β2
0

ln 2y

y

)

+ O(y−3) , (8)

where

β0 =
11Nc − 2nf

3
, β1 =

17N2
c − nf(5Nc + 3CF)

3
. (9)

The labels G and F correspond to gluons and quarks, and the kernels of the
equations are:

KG
G(x) =

1

x
− (1 − x)[2 − x(1 − x)] , (10)

KF
G(x) =

1

4Nc
[x2 + (1 − x)2] , (11)

KG
F (x) =

CF

Nc

[

1

x
− 1 +

x

2

]

, (12)

Nc = 3 is the number of colours, and CF = (N2
c − 1)/2Nc = 4/3 in QCD.

Hereby, one can get equations for any moment of the multiplicity dis-
tribution both for quark and gluon jets. One should just equate the terms

1 To exclude the nonperturbative region from further consideration, the limits of inte-
gration in these equations are often chosen as exp(−y) and 1− exp(−y) which tend
to 0 and 1 at high energy y.



420 I.M. Dremin

with the same powers of u in both sides of the equations. In particular, the
equations for average multiplicities read

〈nG(y)〉′ =

∫

dxγ2
0 [KG

G(x)(〈nG(y + ln x)〉 + 〈nG(y + ln(1 − x)〉 − 〈nG(y)〉)

+nfK
F
G(x)(〈nF(y + ln x)〉 + 〈nF(y + ln(1 − x)〉 − 〈nG(y)〉)] ,

(13)

〈nF(y)〉′ =

∫

dxγ2
0KG

F (x)〈nG(y + lnx)〉 + 〈nF(y + ln(1 − x)〉 − 〈nF(y)〉) .

(14)

Their solutions can be looked for as

〈nG,F〉 ∝ exp





y
∫

γG,F(y′)dy′



 . (15)

The lower limit of integration has not been fixed because its variation results
in the substitution of a new normalization constant which is not shown in
the above relation but is in practice considered as a fitted parameter which
depends on the nonperturbative component of the underlying dynamics of
a process.

Using the perturbative expansion of the exponent in (15)

γG ≡ γ = γ0(1 − a1γ0 − a2γ
2
0 − a3γ

3
0) + O(γ5

0) (16)

one arrives to the so-called modified perturbative expansion of QCD. This
means that the perturbative expansion has been used in the exponent of the
expression for a physical quantity, i.e., even the first term includes higher
power corrections of the ordinary perturbative formulas. Moreover, the ex-
pansion parameter is the coupling strength itself and not its squared value
αS as usually happens. The structure of the equations (5), (6) dictates such
series. It was first shown in [7] that the systematic expansion can be ob-
tained by considering the Taylor series at low x in Eqs (5), (6). There it
was used for higher order calculations in gluodynamics. The ordinary per-
turbative expansion for mean multiplicity, if boldly attempted, would surely
fail because the coupling strength decreases with energy while multiplicities
increase mainly due to the enlarged phase space volume. The coefficients ai

are calculable from the Eqs (13), (14).
Let us briefly mention that the equations (5), (6) can be exactly solved

[8, 9] for fixed coupling strength, i.e., if γ0 is set constant. Then the mean
multiplicities increase like a power of energy. The comparison with experi-
ment has been done in recent paper [10].
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For the running coupling strength the multiplicities increase [1, 11, 12]
slower than power-like2 but stronger than logarithmically, namely

〈nG,F〉 = AG,Fy−a1c2 exp (2c
√

y + δG,F(y)) , (17)

where c = (4Nc/β0)
1/2,

δG(y) =
c√
y

[

2a2c
2 +

β1

β2
0

(ln 2y + 2)

]

+
c2

y

[

a3c
2 − a1β1

β2
0

(ln 2y + 1)

]

+ O
(

y−3/2
)

. (18)

The corresponding expression for δF(y) can be easily obtained from the
formulas for γF. Usually, in place of γF the ratio of average multiplicities in
gluon and quark jets

r =
〈nG〉
〈nF〉

=
AG

AF
exp(δG(y) − δF(y)) (19)

is introduced, and its perturbative expansion

r = r0(1 − r1γ0 − r2γ
2
0 − r3γ

3
0) + O(γ4

0) (20)

is used. The analytic expressions and numerical values of the parameters
ai, ri for all i ≤ 3 have been calculated from the perturbative solutions of
the above equations. All of them (except r0 = Nc/CF = 9/4) are at least
twice less than 1 (the review is given in [4]).

The relation between the anomalous dimensions of gluon and quark jets
is

γF = γ − r′

r
, (21)

where

r′ ≡ dr

dy
= Br0r1γ

3
0

[

1 +
2r2

r1
γ0 +

(

3r3

r1
+ B1

)

γ2
0 + O

(

γ3
0

)

]

(22)

with B = β0/8Nc ;B1 = β1/4Ncβ0.
Thus

γF = γ0

[

1 − a1γ0 − (a2 + Br1)γ
2
0 − (a3 + 2Br2 + Br2

1)γ
3
0

−(a4 + B(3r3 + 3r2r1 + B1r1 + r3
1))γ

4
0

]

. (23)

2 It is hard to distinguish these dependences at present energies (see [10]) but at 1 TeV
their predictions differ by the factor 1.5.
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At present, there exist three approaches to treating multiplicities. In
analytic solutions of the equations the perturbative approach with approxi-
mate energy conservation is used. The numerical solution allows to account
accurately for energy conservation. However, the transverse momentum is
taken into account only by angular ordering of jets in both approaches. Both
energy and momentum are conserved in Monte Carlo QCD models which
provide best fits to experimental data at present energies. Their predictions,
however, differ at higher energies mainly due to hadronization models used.
That is why further studies are needed.

1. Sensitivity to high order terms. The experimental data about
the energy dependence of mean multiplicity in e+e−-annihilation are well
described in all approaches. The two leading terms in expressions (17) com-
pletely determine it. They are the same for quark and gluon jets. That
is why gluodynamics can be used for their estimate as was done in early
years. The higher order corrections given by δG,F are almost unnoticeable
there. Thus mean multiplicities are not sensitive to these corrections by
themselves.

However, if one considers their ratio r, it happens to be really sensitive.
This is because in the ratio the two leading terms corresponding to lead-
ing order (LO) and next-to-leading order (NLO) cancel since they are the
same for both quark and gluon jets. Therefore, only higher order correc-
tions determine the energy behavior of the ratio r. The first term r0 = 9/4
is given by the relative strengths of gluon and quark forces. The next term
is proportional to γ0 and will be called NLOr-correction in distinction to
common NLO-terms. Actually, NLOr corresponds to 2NLO-terms (like a2)
because of the cancellation of the NLO (power-like in y) terms in the ratio
of multiplicities (see Eq. (23)). In the same sense the “r3”-term in r cor-
responds to 4NLO contribution in γ even though it is proportional to γ3

0
etc. (see [12]). This leads to shift and misuse of the terminology for the
anomalous dimensions γ’s and for the ratio r.

Thus we have found the characteristic which is more sensitive to higher
order corrections than mean multiplicities. The experimental data about
the ratio r are described with much lower accuracy about 15–20% in such
analytic approach (see [10]). Even though each subsequent perturbative
term in r improves the agreement, no precise fit has been achieved yet.

However, one should mention here that the computer solution of the
equations [13,14] provides the quantitative fit. This indicates that the higher
order uncalculated corrections are still comparatively large for this ratio
up to the highest presently available energies. Thus the discrepancy with
analytic results is of a purely technical origin.

Another very sensitive characteristic is the behavior of the factorial mo-
ments (2) as functions of the size of the phase space bins in which they are
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measured. Here, one has to deal with a part of the phase space and the above
equations are not applicable directly. One has to use the Feynman diagram
technique for the treatment of these small bins [15–17]. This complicates
the matter. It was impossible to account for high order corrections. Some
NLO-terms have only been considered in [16]. From comparison with exper-
iment (see, e.g., [18–20]) it is seen that the qualitative behavior is described
but quantitatively the disagreement becomes stronger at smaller bins. This
poses the problem of the proper account of higher order corrections. Possible
flow of partons from small bins should be considered more precisely. The
newly developed technique of the so-called non-global logarithms [21] can
be helpful in this respect.

2. High order coefficients. Fortunately, the coefficients ai and ri

happened to be small enough (see the Table in [4]) so that the subsequent
terms in the expansions of γ and r can be trusted even at the rather large
values of the expansion parameter γ0 ≈ 0.4–0.5 at present energies. This is
not always the case for some other characteristics. If the high order terms
become larger than 1, the expansion can not be trusted. Thus the next
problem is to find such characteristics for which it does not happen. Only
these features can be reliably compared with experiment.

This criterium becomes crucial, e.g., for the slope r′ of the ratio r. The
cancellation of two leading terms in the ratio r reveals itself in the propor-
tionality of the scale (energy) derivative r′ to γ3

0 . Therefore it can be cal-
culated up to the terms O(γ5

0). The leading term is very small (about 0.02
at the Z0-resonance). Asymptotically, all corrections vanish. However, at
present energies of Z0, they are so large that calculations become unreliable.
The second term in the brackets in (22) is larger than 1 since 2r2/r1 ≈ 4.9
and γ ≈ 0.45–0.5. Even the third term is approximately about 0.4. The
problem of convergence of the series at Z0-energies and below becomes cru-
cial.

Therefore, it is desirable to use at present energies such characteristics
which are sensitive to these corrections and do not possess large coefficients
in front of the expansion parameter. In particular, it has been shown in [12]
that these coefficients are smaller in the ratio of derivatives (slopes)

r(1) =
〈nG〉′
〈nF〉′

. (24)

This ratio should be slightly larger than r

r(1) ≈ r(1 + Br1γ
2
0) ≈ r(1 + 0.07γ2

0 ) . (25)

The same is true for the ratio of curvatures (or second derivatives)

r(2) =
〈nG〉′′
〈nF〉′′

. (26)
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It is even closer to the asymptotics

r(2) ≈ r(1 + 2Br1γ
2
0) ≈ r(1 + 0.14γ2

0 ) . (27)

The QCD predictions for them

r < r(1) < r(2) < 2.25 (28)

have been confirmed in experiment.
The present experimental accuracy does not allow, unfortunately, to

measure these values more accurately. As one sees, in expressions for r(1), r(2)

the coefficients in front of γ2
0 are slightly decreased compared with r but not

in front of γ0. The last ones cancel in their ratios to r so that the second
order terms are left. However, these ratios r(1)/r and r(2)/r have not yet
been accurately measured. Further search for such characteristics is needed.

3. Interpretation. Another question I’d like to raise concerns physical
interpretation of the high order effects. First of all I mean the oscillations
of cumulant moments as functions of their rank in QCD. They have not yet
been completely clarified. They were predicted analytically [7] and numeri-
cally [22] as the effect of the high order terms of the modified perturbative
expansion. Their detailed study was recently performed in [23] by the nu-
merical solution of QCD equations. First experimental confirmation was
found in [24, 25].

A peculiar feature of multiplicity distributions has been noticed in [23].
The even order factorial moments F2, F4, F8, F16 become equal to 1 at the en-
ergy about 20 GeV. This implies that the distribution has a quasi-Poissonian
shape. At lower energies it is sub-Poissonian, at higher ones — super-
Poissonian. The similar conclusion for gluon jets can be derived from re-
sults of [10]. It has been stated that no analytic explanation of it is known.
Actually, it is hard to proceed with analytic calculations to high rank mo-
ments because the expansion parameter qγ becomes large. However, one
can answer the question about the energy where F2 is equal to 1 in NLO-
approximation. This moment plays the main role for the distribution since
other moments are quite small. The equality F2 = 1 implies K2 = 0, and
according to [7] can be written as

1 − 4h1γ = 0 , (29)

where h1 = 11/24, γ is the QCD anomalous dimension. The energy E at
which this is satisfied is given by

ln
MZ

E
=

2π

β0

(

1

αZ
− 1

αE

)

(30)
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with αE = πγ2/6 = π/96h2
1 ; αZ ≈ 0.118; β0 = 9 for nf = 3. Hereby one

easily estimates
E ≈ 20 GeV . (31)

Thus the analytic estimations of the transition region coincide quite well
with computer calculations [23] and experiment [10]. Its universality for
other collisions would be interesting to check.

Usually exploited phenomenological distributions of the probability the-
ory do not possess any oscillations. E.g., all cumulant moments of the Pois-
son distribution are identically zero. One interprets this as the absence
of genuine correlations irreducible to the lower-rank correlations. For the
negative binomial distribution with the parameter k one easily gets

Hq =
Kq

Fq
= kB(q, k) > 0 . (32)

Since Fq are always positive according to their definition, this inequality
implies the positive values of Kq.

In the leading order approximation, the gluodynamics equation for the
generating function

[ln G(y)]′′ = γ2
0(G(y) − 1) (33)

transforms in the relation

q2Kq = Fq or Hq =
1

q2
. (34)

However, already in the next-to-leading order Hq-moments become negative
with a minimum at the rank qmin ≈ 24

11γ0
+ 0.5 ≈ 5 [7]. This minimum

is rather stable. Nevertheless this is a purely preasymptotic feature. The
minimum slowly moves to higher ranks with energy increase and disappears
in asymptotics as is required according to the formula (34). At higher or-
ders of the perturbative expansion, the oscillations of higher rank cumulant
moments show up [22,23]. They have been confirmed in experiment. Conver-
gence to 1/q2-limit with energy increase has been noticed in [23] for low-rank
moments. We are interested to get from experiment the data about the en-
ergy behavior of the ratios Hq or, better, of the asymptotically normalized
ratios Tq = q2Hq which should tend to 1 in asymptotics independently of q.
It would ask for high precision data at different energies.

The oscillations of cumulants reveal non-trivial collective behavior of
particles. The cumulants remind the virial coefficients of statistical physics.
The changing character of the genuine correlations implies that repulsion is
replaced by attraction (clustering, Van der Waals forces) in particle systems
with different number of particles. If the similar behavior of correlators per-
sists at quark level then it reminds, e.g., the theory of superfluidity. Asymp-
totic disappearance of oscillations would correspond to transition from su-
perfluid to normal component. In superconductivity, it is at the origin of
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Cooper pairs. Has it any impact on the hydrodynamical model of multiple
production? It would be exciting to find other examples of such a behavior
in hadronic systems. From experimental side, it would, perhaps, reveal itself
in the irregular behavior of mean multiplicities of subjets.

4. Generalization. Finally, there exists the problem of possible gen-
eralization of the equations for the generating functions. As such, the
Eqs (5), (6) have only been proved (see, e.g., [1]) up to the NLO-approxi-
mation. In principle, their high order treatment is unjustifued. Nevertheless,
one can assume that these equations have the status of the kinetic equations
of QCD.

From one side, we understand that even if treated as kinetic equations
these equations are limited by our ignorance of the four-gluon interaction
and non-perturbative effects, by the simplified treatment of conservation
laws etc. Actually, the energy conservation is accounted by the lnx and
ln(1 − x) terms in the equations. In the perturbative expansion we cut off
the Taylor expansions of the generating functions. Thus we approximate
the energy conservation. Namely this reveals itself in factorial moments be-
havior for small bins and in the oscillations of cumulant moments. In the
computer solutions [13, 14, 23] the energy (but not pt) restrictions are pre-
cisely considered and the results show better precision. Thus, probably the
inaccuracies of the analytic approach are connected just with the improper
treatment of the kinematic boundaries.

The modification of above equations was proposed [26] in the framework
of the dipole approach to QCD with more accurate kinematic bounds ac-
counting for the transverse momenta as well. It has been shown that the ratio
r can be obtained in good agreement with experimental data. Nevertheless,
further study [27] of higher rank moments of the multiplicity distribution
predicted by the modified equations has shown their extremely high sensi-
tivity to higher orders of the perturbative expansion. The results become
inconclusive.

The more radical phenomenological approaches to generalize these equa-
tions were attempted earlier [28–30]. In [28] it was proposed to treat hadron-
ization of partons at the final stage of jet evolution in analogy with the ion-
ization in electromagnetic cascades where it results in their saturation and
in the finite length of the shower. This leads to some modified equations if
the analogy between ionization losses in QED and confinement in QCD is
imposed. Three different stages of the cascade were considered in the mod-
ified kinetic equations proposed in [29, 30]. No quantitative results were,
however, obtained.

Thus no successful generalization is at work nowadays. Rather, in view of
quite satisfactory agreement with experiment, the general theoretical trend
has shifted to the direct calculation of non-perturbative effects in some jet
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characteristics (see, e.g., [31, 32]) and to understanding effects described by
the non-global logarithms [21].

5. The shortcomings of the analytic and numerical approaches.
The success of numerical solutions of QCD equations [8,13,14,23] raises the
question if the generalization will give any other noticeable contribution.
Our failure to describe more precisely the ratio r in analytic approach could
be just due some defects of the purely perturbative expansion at available
energies. The high order terms considered above correspond to corrections
only due to more accurate treatment of the energy conservation and of the
two-loop expression for the coupling strength (the term with β1 in (8), (18)
considered). Also it was claimed recently [33] that the renormalization group
improvement of the perturbative results gives rise to good description of
experimental data. Even in numerical calculations, it is still impossible to
consider in a proper way the transverse momenta. No high order terms
have been added to the kernels (10)–(12). The four-gluon vertex has been
completely ignored. Also, the non-perturbative effects are disregarded. All
these shortcomings provide the problems for further studies in the framework
of analytic and numerical approaches as well as for Monte Carlo models.

In conclusion, I would say that the practical accuracy of the pQCD
calculations is high enough. This is somewhat surprising in view of the
rather large value of the expansion parameter at present energies. They
can serve as a good estimate of the background in searches for new physics
effects. However, some principal questions concerning the calculation of
several properties of quark–gluon jets and the validity of QCD equations for
the generating functions at higher orders have not yet been resolved.

This work has been supported in part by the RFBR grants:
N 02-02-16779, 03-02-16134, NSH-1936.2003.2.
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