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We review QCD based descriptions of diffractive deep inelastic scatter-
ing emphasizing the role of models with parton saturation. These models
provide natural explanation of such experimentally observed facts as the
constant ratio of σdiff/σtot as a function of the Bjorken variable x and
Regge factorization of diffractive parton distributions.

PACS numbers: 13.60.Hb

1. Introduction

Around 10% of deep inelastic scattering (DIS) events observed at HERA
at small value of the Bjorken variable x are diffractive events [1, 2], when
the incoming proton stays intact losing only a small fraction xIP of its initial
momentum. A large rapidity gap is formed between the scattered proton (or
its low mass excitation) and the diffractive system. The ratio of diffractive
to total DIS cross sections is to a good approximation constant as a function
of Q2. Thus in a first approximation, DIS diffraction is a leading twist effect
with logarithmic scaling violation. Moreover, the same ratio as a function
of x (or energy) is also constant. Theoretical models of diffraction should
explain these facts.

2. Diffractive parton distributions

In addition to the Bjorken variable x = Q2/(Q2 + W 2), there are two
dimensionless variables used in the description of DIS diffraction

xIP =
Q2 +M2

Q2 +W 2
, β =

x

xIP

=
Q2

Q2 +M2
, (1)

∗ Presented at the XXXIII International Symposium on Multiparticle Dynamics,

Kraków, Poland, September 5–11, 2003.

(497)



498 K. Golec-Biernat

where M2 is invariant mass squared of the diffractive system and W 2 is
the center-of-mass energy squared of the γ∗p system, see Fig. 1. In anal-
ogy to the inclusive DIS, the diffractive structure functions are defined:
FD

2,L(x, xIP , Q
2, t), where t = (p− p′)2 is the four momentum squared trans-

ferred from the proton into the diffractive system.
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Fig. 1. Kinematic invariants in DIS diffraction.

The leading twist description of diffractive DIS is realized using the
diffractive parton distributions (DPD) qD in terms of which

FD
2 =

Nf
∑

i=1

e2i β
{

qDi (xIP , t;β,Q
2) + qDi (xIP , t;β,Q

2)
}

, (2)

where i enumerates quark flavours. Eq. (2) is an example of the collinear
factorization formula proven for DIS diffraction in [3]. In the infinite mo-
mentum frame, the DPD have an interpretation of conditional probabilities
to find a parton in the proton with the momentum fraction x = βxIP under
the condition that the incoming proton stays intact and loses the fraction
xIP of its momentum. The collinear factorization fails in hadron–hadron
hard diffractive scattering due to initial state soft interactions [4, 5]. Thus,
unlike inclusive scattering, the diffractive parton distributions are no univer-
sal quantities. They can be used, however, for different diffractive processes
in lepton–nucleon scattering, e.g. for diffractive dijet production.

The collinear factorization theorem of [3] allows to use the Altarelli–
Parisi (DGLAP) evolution equations to find the Q2 dependence of DPD,
provided the initial conditions for evolution are known. They are found
from fits to diffractive DIS data in full analogy to the determination of
inclusive parton distributions [1, 2]. In the evolution equations only (β,Q2)
are relevant variables while (xIP , t) play the role of external parameters.
Thus a modelling of the latter dependence for the DPD is necessary. This
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is done using physical ideas about the nature of interactions leading to DIS
diffraction.

Traditionally, diffraction is related to the exchange of a pomeron: a
vacuum quantum number exchange, described by the linear Regge trajectory
αIP (t) = αIP (0) + α′t with αIP (0) ≥ 1, which dominates at high energy
(s→ ∞, t = const.). This is the basis of the Ingelman–Schlein (IS) [6] model
in which the pomeron is exchanged between the proton and the diffractive
system. In this case FD

2 factorizes into a pomeron flux f(xIP , t) and pomeron
parton distributions qIP (β,Q2) obeying the DGLAP equations

FD
2 = f(xIP , t)

Nf
∑

i=1

e2i β
{

2 qIP (β,Q2)
}

, (3)

where qIP = qIP reflects the vacuum nature of the pomeron. In this model
β is a fraction of the pomeron momentum carried by a quark. The QCD
analysis of the early HERA data using the IS model was done in [7] with

the pomeron flux f(xIP , t) ∼ x
1−2αIP (t)
IP , where the parameters of the Regge

trajectory and initial parton distributions were determined from analyses
of soft hadronic reactions, e.g. the soft pomeron value, αIP (0) = 1.1, was
used. More recent analyses of inclusive DIS diffraction [1, 2, 8] assume that
the DPD exhibit the same factorization as in the IS model, called Regge

factorization,
qD(xIP , t;β,Q

2) = f(xIP , t) q̃(β,Q
2) , (4)

and parameters in (4) (including αIP (0)) are determined from fits to the
diffractive DIS data using the DGLAP evolution equations.

In all cases a good description of data is found. However, the basic
experimental facts: the constant ratio σdiff/σtot as a function of energy and
Regge factorization, are described but not understood.

3. Dipole models and saturation

In these models, see [5, 9, 10], the diffractive final state is built start-
ing from a qq̄ pair in the color singlet state, and subsequently higher Fock
components (qq̄g being the first one) are added (Fig. 2). The colorless in-
teraction of such a diffractive state with the proton is also modelled. This
could be two gluons in the color singlet state (which leads to no energy de-
pendence) or more complicated gluon exchanges, e.g. the BFKL ladder with
much stronger than the soft pomeron energy dependence. In the simplest
case of the qq̄ system, the interaction is encoded in a dipole cross section
σ̂(x, r). The diffractive γ∗p→ qq̄p′ cross section is given in this case by

dσdiff

dt | t=0
=

1

16π

∫

d2r dz |Ψγ(r, z,Q2)|2 σ̂2(x, r), (5)
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Fig. 2. The qq̄ and qq̄g components of the diffractive system.

where r is the transverse separation of the qq̄ pair (dipole), z is the photon
longitudinal momentum fraction carried by a quark and Ψ

γ is the light-cone
wave function of the virtual photon.

In [11] the following form of the dipole cross section was proposed

σ̂(x, r) = σ0{1 − exp(−r2Q2
s (x))} , (6)

where the saturation scale Q2
s (x) ∼ x−λ with λ ≈ 0.3. Three parameters of

(7) were found from a fit to DIS data on F2 since the same dipole cross section
is involved in the description of σtot ∼ F2/Q

2. Formula (7) captures essential
features of parton saturation, see [12] and references therein. In particular,
it is important that σ̂ ≈ σ0 for r ≫ 1/Qs(x), and that the boundary of
this region 1/Qs(x) → 0 for decreasing x. Thus with increasing energy, the
dipole cross section saturates (proton is black) for smaller dipole sizes. In the
dual momentum space, the dipole cross section corresponds to the number
of gluons per unit of rapidity and transverse momentum. With the form (6),
the number of gluons with transverse momenta kT ≫ Qs(x) is proportional
to 1/k2

T and gluons are dilute, while for small momenta, kT ≤ Qs(x), the
number of gluons is tamed by their fusion in a dense system [13]. In such a
case, in the dipole space, σ̂ ≈ σ0. With decreasing x, this effect occurs for
transverse momenta kT ≫ ΛQCD. This is the region were nonlinear QCD
evolution equations appear [14].

The DIS diffraction is an ideal process to study parton saturation since it
is especially sensitive to the large dipole contribution, r > 1/Qs(x). Unlike
inclusive DIS, the region below is suppressed by an additional power of 1/Q2.
Moreover, saturation leads in a natural way to the constant ratio [15]

σdiff

σtot
∼

1

ln(Q2/Q2
s (x))

. (7)
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A good description of diffractive DIS was obtained in this approach without
additionally fitted parameters [15]. For other parameterization of σ̂ which
describes diffractive data but does not use the saturation form, see [16].

The description which is based on the high energy formula (5) contains all
powers of 1/Q2 (twists). Extracting the leading twist contribution from both
qq̄ and qq̄g components, the quark and gluon DPD can directly be computed
in the saturation model [17]. An exciting aspect of this calculation is the
Regge factorization of the DPD,

xIP q
D(xIP , β) = Q2

s (xIP ) q̄(β) ∼ x−0.3
IP , (8)

due to the form (6) in which r and x (or xIP ) are combined into one di-
mensionless variable rQs(x). This also leads to the geometric scaling for

inclusive DIS [18]. The dependence: FD
2 ∼ x1−2αIP

IP with αIP ≈ 1.15, re-
sulting from (8), is in remarkable agreement with the data [1, 2]. Thus the
Regge type behaviour and the dependence on energy of the diffractive DIS
data are naturally explained.

4. Diffractive vector meson production

Diffractive vector meson production gives an access to more detailed
structure of the qq̄ dipole interaction with the proton. Namely, the dipole–
proton scattering amplitude N(r, b, x) can be studied, for which

σ̂(r, x) = 2

∫

d2bN(r, b, x) , (9)

where b is the impact parameter of the dipole, see Fig. 3. Through the
t-dependence (at small t) of the vector meson production cross section, the
impact parameter dependence of this amplitude can be analyzed since

dσV M

dt
=

1

16π

∣

∣

∣

∣

Ψ
V ⊗

∫

d2b eib·∆N(r, b, x) ⊗ Ψ
γ

∣

∣

∣

∣

2

, (10)

where ∆ is a two-dimensional vector of transverse momentum transferred
into a vector meson: t = −∆

2. Formula (10) reflects the three step factor-
ization, shown in Fig. 3, and involves a nonperturbative vector meson wave
function Ψ

V , which needs to be modelled. The first studies of the diffractive
J/ψ production in the presented approach has already been performed [19].

The amplitude N can also be obtained from the QCD nonlinear evolu-
tion equation of Balitsky and Kovchegov [20], resulting from Color Glass
Condensate, an effective theory of dense gluon systems with saturation [12].
This is an exciting program to confront the theoretical studies of saturation
using the BK equation with the phenomenological analysis of data.
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Fig. 3. Diffractive vector meson production.
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