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QUARK�ANTIQUARK BOUND STATESAND THE BREIT EQUATIONGeorge D. TsibidisMathemati
s Institute, University of Warwi
kCoventry CV4 7AL, UKe-Mail address: tsibidis�iesl.forth.gr(Re
eived June 21, 2004)A non-
ovariant but approximately relativisti
 two-body wave equation(Breit equation) des
ribing the quantum me
hani
s of two fermions inter-a
ting with one another through a potential 
ontaining s
alar, pseudos
alarand ve
tor parts is presented. After expressing the sixteen 
omponent two-body wavefun
tion in terms of a radial and an angular fun
tion by meansof the multipole expansion, the initial equation 
an be redu
ed into a setof sixteen radial equations whi
h, in turn, 
an be 
lassi�ed in a

ordan
eto the parity and the state of the wavefun
tions involved. The adequa
y ofthe redu
ed equations in des
ribing real problems is dis
ussed by applyingthe theory to QCD problems and the 
al
ulation of the energies of boundstates of quark�antiquark systems is performed to order α4. We show thatbound states of heavy quarks 
an be des
ribed adequately by the Breitequation for a funnel intera
tion between the parti
les.PACS numbers: 03.65.Ge, 03.65.Pm, 12.39.Jh, 12.39.Ki1. Introdu
tionOver the years a number of equations has been introdu
ed in an e�ort todes
ribe adequately the relativisti
 dynami
s of a system of two intera
tingspin-1/2 parti
les ( [1�6℄). The problem is to determine how the two fermionsbehave when they are in�uen
ed by their mutual intera
tion. The simplestrelativisti
 equation for fermions, the Dira
 equation, whi
h 
an des
ribethe quantum me
hani
s of a single fermion, is not useful for a two-fermionsystem unless the mass of one of the parti
les is mu
h larger than that of theother parti
le. One equation that has been extensively used, in the past, isthe equation Breit proposed in 1929, whi
h des
ribes the intera
tion betweentwo ele
trons [2, 6�8℄

[E −H(1) −H(2) − Vint(|~x1 − ~x2|)ψ(~x1,~x2)] = 0 , (1)(2329)



2330 G.D. Tsibidiswhere H(i) = ~ai · ~pi + βm (i=1,2) is identi
al to the Dira
 Hamiltonianof the i parti
le and E is the total energy of the system. The intera
tionbetween the two parti
les equals Vint = VC + VB and it is partly due toan instantenous (stati
) Coulomb intera
tion VC and partly due to e�e
tspres
ribed by quantum ele
trodynami
s des
ribed by retardation terms
VB(~r) = −1

2VC(~r)(~a1 · ~a2 + ~a1 · r̂~a2 · r̂)whi
h is referred to, as �Breit Intera
tion�. ~ai are the Dira
 matri
es,
~r(≡ ~x1 − ~x2) is the relative position ve
tor and r̂ is the unit ve
tor.Although the initial Breit equation involved two ele
trons [7℄, we aimto generalise it for any two fermions. There are two requirements that theEq. (1) 
learly satis�es: (i) In the limit of negligent intera
tion between theparti
les, Eq. (1) implies that the total energy of the system equals the sumof the energies of the parti
les and the stationary wavefun
tion ψ(~x1,~x2)is the produ
t of the wavefun
tions ψ(~x1), ψ(~x2) whi
h are simply the so-lutions of the Lorentz-invariant Dira
 equations for ea
h parti
le, separately,(ii) In the non-relativisti
 limit, the Breit equation redu
es to the S
hrödingerequation for a two-parti
le system.If retardation e�e
ts are ignored, the Breit equation redu
es to the Dira
equation in the in�nite limit of the mass of one of the 
onstituent parti
lesand then, either equation 
an be used. Certainly, the former would providea more a

urate des
ription be
ause 
orre
tions due to the motion of theheavier parti
le should be taken into a

ount.Unlike the Dira
 equation, the Breit equation la
ks a very importantingredient 
hara
terising the relativisti
 equations, the 
ovarian
e. Eq. (1)is not written in a 
ovariant notation sin
e individual terms in the part rep-resenting the intera
tion are not Lorentz invariant (the potential is not arelativisti
ally invariant quantity). Besides this, not only does the wave-fun
tion in the Breit equation depend on the positions ~x1 and ~x2 but alsodepends on one time-variable (rather than an one time-variable ea
h for thetwo parti
les), a fa
t that does not allow a Lorentz-invariant formulation.However, it 
an be 
onsidered 
ovariant in the 
enter-of-mass-frame be
ause,in that 
ase, the relative motion of the parti
les is studied and there is onlyone position ve
tor whi
h 
omes into the equation, namely that one whi
hmeasures the distan
e between the two ele
trons, ~r. Attempts have beenmade aiming at deriving a 
ovariant Breit equation by means of 
onstrain-ing the equations. It is too early to say whether this work is su

essful [9℄.In spite of the fa
t that Breit equation manifestly la
ks 
ovarian
e, itappears that it 
an des
ribe e�
iently the quantum me
hani
s of some two-body systems (at least approximately to the required a

ura
y) for long-range intera
tions with small 
oupling [7, 10℄. When the equation was pro-posed by Breit in 1929 [2℄, QED was known and the long range Coulomb type



Quark�Antiquark Bound States and the Breit Equation 2331potential VC(~r) was the form of the instantaneous intera
tion for hydrogen-like atoms. In 
ontrast to the stati
 VC(~r) whi
h is the zero-order term inthe (v/
) expansion of the ele
tromagneti
 intera
tion, the Breit intera
-tion VB(~r) is the (v/
)2 term (velo
ity-dependent) and it 
onstitutes only anapproximation to the relativisti
 intera
tion between the two parti
les. Thestudy of the �ne and hyper�ne stru
ture for hydrogen-like atoms indi
atesthat the Breit intera
tion should not be 
onsidered on the same footing asthe Coulomb potential VC(~r). On the 
ontrary, it should be treated as asmall perturbation, otherwise it does not lead to 
orre
t results ( [10�15℄).The fa
t that the Breit equation gives satisfa
tory results for the Coulombpotential implies that the equation, although not 
ovariant, 
an provide agood des
ription to a two-body system for long-range intera
tions.In this work, we aim to extend the appli
ation of the Breit equationto systems of fermions that intera
t with one another through a short-rangestrong potential. Due to the fa
t that the distan
e between the two parti
lesis very small, one position ve
tor su�
es to des
ribe the system whi
h putsin the same footing time and position. Then, one might 
onsider the Breitequation is approximately 
ovariant and more 
ompatible with the spe
ialtheory of relativity, in the 
ase of short-range strong intera
tions.There has been a belief that the internal dynami
s of quark�antiquarksystems 
an be des
ribed satisfa
torily by two-body semi-relativisti
 equa-tions and some attempts have been made towards this dire
tion ( [13,16�34℄).This is a very interesting possibility sin
e it suggests a qq bound state 
ouldprovide a sort of �Hydrogen-atom� for QCD. In this paper, we 
onsiderfermionia 
omposed from heavy quarks (bottom, 
harm) and we assume thatthe parti
les intera
t with ea
h other through a �funnel� potential [16, 28℄.Throughout this paper, we will handle the Breit equation by taking into a
-
ount the instantaneous intera
tion between the parti
les and treating thenon-stati
 terms perturbatively. It turns out that the Breit equation o�ersa very good des
ription of the systems and this is partly due to the fa
t thatthe 
onstituents are heavy parti
les whose speed are very small so as to de-
lare that a semi-relativisti
 treatment gives satisfa
tory results for 
ertainbound states of the two fermions. Unfortunately, this does not seem to holdtrue in the event of higher bound states as well as for bound states of lighterparti
les be
ause a relativisti
 treatment is ne
essary.One of the advantages of the Breit equation is that it 
an be handledrelatively easily by means of some standard te
hniques (i.e. multipole te
h-nique [23,35�38℄). The wavefun
tion des
ribing the system is a sixteen 
om-ponent fun
tion and it 
an be used to obtain radial equations.



2332 G.D. TsibidisThis paper is organised as follows. We start in Se
tion 2 with the intro-du
tion of the Breit equation and we assume a general intera
tion betweentwo spin-1/2 parti
les in
luding a ve
tor, s
alar and pseudos
alar parti
leex
hange. Using the multipole te
hnique, we separate the equation intoits radial and angular parts and derive sixteen radial equations groupeda

ording to the values of the spin of the system. Then, we present the non-relativisti
 type of the potential whi
h des
ribes the intera
tion betweentwo quarks [Se
tion 3℄ and we derive the radial equations that apply inthat 
ase [Se
tion 4℄. In Se
tion 5, we solve the equations for two types ofquarkonia, bottomium and 
harmonium, and we 
al
ulate the energy levelsof various bound states. This 
onsideration allows us to 
he
k the validityof the Breit equation by 
omparing the results derived from the theory withwell-established results for bottomium and 
harmonium. Se
tion 6 
ontainsbrief 
on
luding remarks.2. The Breit equation and its redu
tion to radial equationsWe 
onsider a two-body Dira
 equation (Breit equation) [2, 6�8℄
[
E − γ

(1)
0 (~γ(1) · ~p +m1) − γ

(2)
0 (−~γ(2) · ~p +m2) − Vint(|~r|)

]
ψ(~r) = 0 (2)des
ribing a system of two spin-1/2 parti
les of masses m1 and m2, in the
enter of mass frame, intera
ting with ea
h other through a stati
 
entralpotential of the form [10, 38℄

Vint(r) = VS(r) + VP(r) + VV(r) ,

VS(r) = −(γ
(1)
0 ⊗ γ

(2)
0 )S(r) ,

VP(r) = −(iγ
(1)
0 γ

(1)
5 ) ⊗ (iγ

(2)
0 γ

(2)
5 )P (r) ,

VV(r) = +[(γ
(1)
0 γ(1)

µ ) ⊗ (γ
(2)
0 γ(2)

µ )]
µ=0

V (r) , (3)where ~r ≡ ~x1 − ~x2, ~p ≡ ~p1 = −~p2, r ≡ |~x1 − ~x2|, and VS(r), VP(r)and VV(r) are the parts of the intera
tion with s
alar, pseudos
alar andve
tor Lorentz stru
ture, respe
tively. The 
hoi
e of the 
ombination of the
γ matri
es whi
h leads to the appropriate Lorentz stru
ture is not unique,however, the sele
tion is based on some 
onditions whi
h should be satis�ed.To be more spe
i�
, γ(1)

0 + γ
(2)
0 has a s
alar Lorentz stru
ture, as well, andalthough it seems reasonable be
ause it 
ouples the potential S(r) dire
tlyto the mass of ea
h parti
le (a feature of the s
alar potential in 
ontrast tothe ve
tor potential whi
h 
ouples to the 
harge of the parti
les) does not�ip the heli
ities of the fermions in the 
ase of the 
hiral representation.



Quark�Antiquark Bound States and the Breit Equation 2333The signs in front of the various forms of the potentials 
an be justi�edas follows: in QED, the ve
tor ex
hange is a
tually the Coulomb intera
tionbetween parti
les and if their 
harges have the same sign, then VV(r) ispositive. On the other hand, for s
alar and pseudos
alar ex
hange the signof propagator is opposite to the Coulomb part of the photon propagator.The supers
ript i (i = 1, 2) whi
h appears in the γ matri
es refers tothe parti
le. The reason why in the 
ase of potentials with ve
tor Lorentzstru
ture only the γ(1)
0 , γ(2)

0 
ontributions have been taken into a

ount, isthat the ~γ(i) matri
es give a non-stati
 
hara
ter to the potential sin
e theyintrodu
e velo
ity terms1. γ(1)(γ(2)) is the Dira
 matrix γ a
ting in thesubspa
e of the spinor of parti
le 1 (2) and it a
ts on ψ from the left (right)
γ(1)ψ ≡ γ(1)ψ ,

γ(2)ψ ≡ ψ(γ(2))T . (4)The total spin of the system of the two parti
les is either S = 0 or S = 1,therefore the total angular momentum of the system is either j = l (for
S = 0) or j = l ± 1, l (for S = 1).The form Eq. (2) a
quires depends on the representation of the γ matri-
es. In the next subse
tion, Eq. (2) is written in the Dira
�Pauli represen-tation, where γ(i)

0 matri
es are taken to be diagonal. This 
hoi
e will allowus to examine the 
onne
tion with the non-relativisti
 limit.2.1. Dira
 representationIn the Dira
 representation, γ(i)
0 matrix is diagonal

γ0 = β =

(
1 0
0 −1

)
, γ5 =

(
0 1
1 0

)
, ~γ =

(
0 ~σ

−~σ 0

)
. (5)The spinor ψ(~r) is a sixteen-
omponent wave fun
tion and it 
an be repre-sented as a 4 × 4 matrix

ψ(~r) = (ψ
γ
(1)
0 γ

(2)
0

) =

(
ψ++ ψ+−

ψ−+ ψ−−

)
, (6)where the indi
es +,− are the eigenvalues (+1, −1) of the Dira
 matri
es

γ
(1)
0 , γ

(2)
0 in the so-
alled double Dira
 representation [10, 36, 37℄. The leftindex refers to the �rst parti
le and the right one to the se
ond parti
le. Byinserting (3) and (5) and (6) into Eq. (2), the Breit equation takes the form

1 We re
all the relation ~γ(i)
= γ

(i)
0 ~α(i)

= γ
(i)
0

~v(i)

c
, where ~v(i) is the velo
ity of the iparti
le.



2334 G.D. Tsibidis
E

(
ψ++ ψ+−

ψ−+ ψ−−

)
−
(

~σ(1) · ~pψ−+ ~σ(1) · ~pψ−−

~σ(1) · ~pψ++ ~σ(1) · ~pψ+−

)
−m1

(
ψ++ ψ+−

−ψ−+ −ψ−−

)

+

(
~σ(2) · ~pψ+− ~σ(2) · ~pψ++

~σ(2) · ~pψ−− ~σ(2) · ~pψ−+

)
−m2

(
ψ++ −ψ+−

ψ−+ −ψ−−

)

+S(r)

(
ψ++ −ψ+−

−ψ−+ ψ−−

)
− P (r)

(
ψ−− −ψ−+

−ψ+− ψ++

)

−V (r)

(
ψ++ ψ+−

ψ−+ ψ−−

)
= 0 . (7)In order to simplify Eq. (7) and bring it to a form whi
h 
an be handledeasily, we introdu
e the following 
omponents [36, 37℄

φ
φ0

}
= P0

i√
2
(ψ++ ∓ ψ−−) ,

~φ

~φ
0

}
=

1

2

(
~σ(1) − ~σ(2)

)
P1

1√
2
(ψ+− ± ψ−+) , (8)

χ
χ0

}
= P0

i√
2
(ψ+− ∓ ψ−+) ,

~χ

~χ0

}
=

1

2

(
~σ(1) − ~σ(2)

)
P1

1√
2
(ψ++ ± ψ−−) , (9)where

P0 =
1

4

(
1 − ~σ(1) · ~σ(2)

)
,

P1 =
1

4

(
3 + ~σ(1) · ~σ(2)

) (10)are the proje
tion operators on states with total spin S = 0 and S = 1,respe
tively,
P0|state〉 = |state S = 0〉 ,
P1|state〉 = |state S = 1〉 . (11)The 
omponents φ, φ0, χ, χ0 and ~φ, ~φ0, ~χ, ~χ0 
orrespond to spin S = 0 and

S = 1, respe
tively and they are fun
tions of ~r. Noting that
P0

(
~σ(1) − ~σ(2)

)
=
(
~σ(1) − ~σ(2)

)
P1 ,

P0

(
~σ(1) + ~σ(2)

)
=
(
~σ(1) + ~σ(2)

)
P0 = 0 (12)
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P0

(
σ

(1)
i σ

(2)
k + σ

(1)
k σ

(2)
i

)
= −2δikP0 ,

P0

(
σ

(1)
i σ

(2)
k − σ

(1)
k σ

(2)
i

)
= iP0ǫikl

(
~σ(1) − ~σ(2)

)

l
,

→֒ P0

(
σ

(1)
i − σ

(2)
i

)(
σ

(1)
k ± σ

(2)
k

)
=

{
2iP0ǫikl

(
~σ(1) − ~σ(2)

)

l
,

2P0δik .
(13)Eq. (7) leads to the following set of 
omponent wave equations [10, 36, 37℄

1

2

[
E + S(r) − P (r) − V (r)

]
φ0 − (m1 +m2)

2
φ− i~p · ~φ = 0 ,

1

2

[
E + S(r) + P (r) − V (r)

]
φ− (m1 +m2)

2
φ0 = 0 ,

1

2

[
E − S(r) + P (r) − V (r)

]
χ0 − (m1 −m2)

2
χ− i~p · ~χ = 0 ,

1

2

[
E − S(r) − P (r) − V (r)

]
χ− (m1 −m2)

2
χ0 = 0 ,

1

2

[
E + S(r) − P (r) − V (r)

]
~χ − (m1 +m2)

2
~χ0 + i~pχ0 = 0 ,

1

2

[
E + S(r) + P (r) − V (r)

]
~χ0 − (m1 +m2)

2
~χ + i~p × ~φ0 = 0 ,

1

2

[
E − S(r) + P (r) − V (r)

]
~φ − (m1 −m2)

2
~φ0 + i~pφ0 = 0 ,

1

2

[
E − S(r) − P (r) − V (r)

]
~φ0 − (m1 −m2)

2
~φ + i~p × ~χ0 = 0 . (14)The type of the potential we 
onsider is 
entral therefore the next step wewill follow is the introdu
tion of a method that will eventually separatethe angular from the radial dependen
es as it was performed in the threedimensional S
hrödinger equation. To this end, it is 
onvenient to introdu
ethe derivative

∂

∂ni⊥
≡ (δik − nink)

∂

∂nk
, (15)where ~n = ~r

r is a three dimensional ve
tor, while ∂
∂~n⊥

lies in the perpendi
u-lar plane [ni ∂
∂ni⊥

= ni(δik − nink)
∂
∂nk

= nk
∂
∂nk

− nk
∂
∂nk

= 0
]. Some useful



2336 G.D. Tsibidisidentities that are going to be used are the following
∂

∂~r
=

1

r

∂

∂~n⊥

+ ~n
∂

∂r
,

∂

∂~n⊥

· ~n = (δik − nink)
∂

∂nk
ni = (δik − nink)δki = 3 − 1 = 2 . (16)Then, ~▽

2
= ∂2

∂~r2 = (1
r

∂
∂~n⊥

+ ~n ∂
∂r )

2 = ∂2

∂r2 + 1
r2

∂2

∂~n
2
⊥

+ 2
r
∂
∂r . This form of theLapla
ian indi
ates that ∂2

∂~n
2
⊥

was 
orre
tly regarded as the angular part ofthe Lapla
ian. 2.2. Expansion of the wavefun
tionsThe 
omponent fun
tions de�ned by (8) and (9) are 
lassi�ed in twogroups: the s
alar (φ, φ0, χ, χ0) whi
h refer to states with S = 0, and theve
tor (~φ, ~φ0, ~χ, ~χ0)) whi
h 
orrespond to states with S = 1 [10, 36�38℄.These fun
tions 
an be expanded in the following way:(i) S
alar fun
tions (S = 0).The s
alar fun
tions 
an be written as
B(~r) =

∑

j,m

B(r)Yjm(~n) , (17)where B(~r) stands for any of the four S = 0 
omponent fun
tions, B(r)is the radial part of the fun
tion and Yjm(~n) are the spheri
al harmoni
sdepending only on the angles.(ii) Ve
tor fun
tions (S = 1).We de�ne an operator Sk whi
h a
ts on any of the four ve
tor 
omponents(8), (9) as follows
Sk( ~A(~r))|i ≡

1

2
(~σ(1) − ~σ(2))iP1

(
1

2

(
~σ(1) + ~σ(2)

)

k

)
1√
2
(. . .) , (18)where (. . .) equals (ψ+−+ψ−+) (for ~φ), (ψ+−−ψ−+) (for ~φ0 ), (ψ+++ψ−−)(for ~χ), (ψ++−ψ−−) (for ~χ0) and ~A(~r) is any of the four ve
tor 
omponents.We noti
e that the operator Sk does not a
t on ~A(~r) from the left sin
e inthat 
ase it would give zero (1

2

(
~σ(1) + ~σ(2)

)

k

1
2

(
~σ(1) − ~σ(2)

)

i
P1

(12)
= 0

).From the de�nition of Sk( ~A(~r))|i, it is 
lear that Sk( ~A(~r))|i = iǫikl φl. Bymaking use of the multipole te
hnique [10, 36, 37℄, it is possible to expand
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tor 
omponent ~A(~r) into three parts: �ele
tri
� (Ae), �longitudinal�(Al) and �magneti
� (Am)de�ned as
Ae(~r) =

∑

j,m

Ae(r)Yjm(~n) ,

Al(~r) =
∑

j,m

Al(r)Yjm(~n) ,

Am(~r) =
∑

j,m

Am(r)Yjm(~n) ,

~A(~r) = ~nAe(~r)︸ ︷︷ ︸
~Ae(~r)

− ∂

∂~n⊥

Al(~r)

j(j + 1)︸ ︷︷ ︸
~Al(~r)

− (~n × ∂

∂~n⊥

)
Am(~r)

j(j + 1)︸ ︷︷ ︸
~Am(~r)

. (19)
(In the rest of our study, for the sake of simpli
ity, we will the drop thesummation symbol∑

j,m

). It may seem that j in Yjm is the orbital momentumrather than the total one. But this is not true for the fun
tion ~A(~r) be
ausethe ve
tors to whi
h it is proportional, depend on angles. A
tually, if ~Sand ~L are the total spin and total orbital angular momentum operators,respe
tively, then for ea
h part of ~A(~r), for instan
e ~Ae(~r) ≡ ~nAe(r)Yjm(~n),one has [10℄
Jk( ~Ae(~r))|i = Sk( ~Ae(~r))|i + Lk( ~Ae(~r))|i

= iǫiklnlAe(r)Yjm(~r) − iǫklanl
∂

∂na
(niAe(r)Yjm(~n))

= −iǫklanlniAe(r)
∂Yjm(~n)

∂na
= ~niLk(Ae(r)Yjm(~n))

=⇒ ~J
2 ~Ae(~r) = ~nL2(Ae(r)Yjm(~n)) = j(j + 1) ~Ae(~r)whi
h implies that j is the total angular momentum. By inserting (17), (19)into Eqs. (14), we manage to eliminate the angular dependen
es and the



2338 G.D. TsibidisBreit equation redu
es to the following set of sixteen radial equations
1
2

[
E + S(r) − P (r) − V (r)

]
φ0 − (m1+m2)

2 φ−
(

d
dr

+ 2
r

)
φe − 1

r
φl = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
φ− (m1+m2)

2 φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
χ0 − (m1−m2)

2 χ−
(

d
dr

+ 2
r

)
χe − 1

r
χl = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
χ− (m1−m2)

2 χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χe − (m1+m2)

2 χ0
e + d

dr
χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χl − (m1+m2)

2 χ0
l −

j(j+1)
r

χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χm − (m1+m2)

2 χ0
m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

e − (m1+m2)
2 χe + 1

r
φ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

l −
(m1+m2)

2 χl −
(

d
dr

+ 1
r

)
φ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

m − (m1+m2)
2 χm + j(j+1)

r
φ0

e +
(

d
dr

+ 1
r

)
φ0

l = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φe − (m1−m2)

2 φ0
e + d

dr
φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φl − (m1−m2)

2 φ0
l −

j(j+1)
r

φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φm − (m1−m2)

2 φ0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

e − (m1−m2)
2 φe + 1

r
χ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

l − (m1−m2)
2 φl −

(
d
dr

+ 1
r

)
χ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

m − (m1−m2)
2 φm + j(j+1)

r
χ0

e +
(

d
dr

+ 1
r

)
χ0

l = 0 .(20)At this point, we will 
on
entrate on the properties of the s
alar andve
tor 
omponents as well as the new 
omponents to whi
h they have beenexpanded. As pointed out earlier, the s
alar 
omponents φ, φ0, χ, χ0 des
ribethe S = 0 states, while the rest, the ve
tor 
omponents, des
ribe the stateswith S = 1. In the latter 
ase, for ~χ, there are three states 
hara
terised bythe spe
tros
opi
 signatures 3(j−1)j ,
3 (j+1)j and 3jj (in the atomi
 notation

2S+1Lj) des
ribed by the wave-fun
tions χl=j−1, χl=j+1 and χl satisfying the
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χe =

√
j

2j + 1
χl=j−1 +

√
j + 1

2j + 1
χl=j+1 ,

χl =
√
j(j + 1)

(
−
√

j + 1

2j + 1
χl=j−1 +

√
j

2j + 1
χl=j+1

)
,

χm =
√
j(j + 1)χl=j . (21)Certainly, this 
an be generalised for the rest of the S = 1 
omponents: ~χ0, ~φand ~φ

0. The �magneti
� 
omponent is 
hosen to have l = j while the �ele
-tri
� and the �longitudinal� 
omponents have l = j ± 1 mixed if j > 0 (and
l = 1, if j = 0). If j = 0, then there should be only one χ 
omponent and wenote this is satis�ed sin
e χl = χm = 0 and χl=j−1 = χl=j = 0, χl=j+1 = χe.There are only two states with j = 0, 1S0 (j = 0, l = 0, S = 0) and 3P0(j = 0, l = 1, S = 1).The expressions (8) and (9) indi
ate that, for S = 0, the �large�large�(ψ++) and �small�small� (ψ−−) 
omponents are 
ontained in the ~χ, ~χ0and the �large�small� (ψ+−) and �small�large� (ψ−+) 
omponents appearin the ~φ, ~φ

0. In addition, all �ele
tri
� and �longitudinal� 
omponents of the
~χ, ~χ0, ~φ, ~φ

0 
orrespond to states with magneti
 quantum number ms = ±1while the �magneti
� 
omponents des
ribe states with ms = 0. On the otherhand, the states with S = 0 have the spe
tros
opi
 notation 1jj and the�large�large� (ψ++) and �small�small� (ψ−−) 
omponents are 
ontained inthe φ, φ0 and the �large�small� (ψ+−) and �small�large� (ψ−+) 
omponentsappear in the χ, χ0. All φ, φ0, χ, χ0 
orrespond to states with ms = 0.The parity of the system equals P = η(−1)l, where η = 1 or −1 forfermion�fermion or fermion�antifermion system, respe
tively. The sixteen
omponents have the following parity:(i) φ, φ0 : P = η(−1)j be
ause they both des
ribe the S = 0 states,therefore l = j,(ii) φe, φ0
e, φl, φ

0
l : P = −η(−1)j+1 (or −η(−1)j−1 whi
h gives the sameresult) = η(−1)j . A

ording to (21) the �ele
tri
� and �longitudinal�
omponents are 
ombinations of states with l = j + 1 and l = j − 1and this justi�es the exponent j+1 (or j−1). The (−) sign in front of

η is due to the fa
t that all these fun
tions are 
ombinations of �small�and �large� 
omponents,(iii) χm, χ0
m : P = η(−1)j ((21) implies that the �magneti
� 
omponent
orresponds to l = j states),
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ribe S = 0 states therefore l = j,however, in 
ontrast to the parity of the φ, φ0, there is a minus signwhi
h is attributed to the fa
t that χ, χ0 are 
ombinations of �small�and �large� 
omponents,(v) χe, χ0
e, χl, χ

0
l : P = −η(−1)j , (as in (ii)),(vi) φm, φ0

m : P = −η(−1)j , (as in (iii)).Again, the 
ombination of �small� and �large� 
omponents a

ounts for theminus sign in (v), (vi). To summarise, the 
omponents φ, φ0, φe, φ
0
e, φl,

φ0
l , χm, χ

0
m have parity P = η(−1)j while the 
omponents χ, χ0, χe, χ

0
e, χl,

χ0
l , φm, φ

0
m have parity P = −η(−1)j . We 
all the former 
ase, Pseudos
alarParti
le Traje
tory (PPT) while the latter is 
alled Ve
tor Parti
le Traje
-tory (VPT) [36,37℄. The �large�large� and �small�small� 
omponents in thePPT are 
ontained in the φ, φ0, χm, χ

0
m and have spe
tros
opi
 signature

1jj or 3jj. In the VPT, the �large�large� and �small�small� 
omponents are
ontained in χe, χ0
e, χl, χ

0
l and have signature 3(j − 1)j or 3(j + 1)j .Returning to Eqs. (20) and by making use of the previous dis
ussion,that set of equations 
an be split into two sets of equations a

ording towhether they belong to the PPT or VPT regime. To be more spe
i�
, ifthe two fermions do not possess the same mass, the following two sets ofequations are obtained from Eqs. (20) [10, 36, 37℄(i) PPT, 1jj or 3jj , P = η(−1)j .

1
2

[
E + S(r) − P (r) − V (r)

]
φ0 − (m1+m2)

2 φ−
(

d
dr

+ 2
r

)
φe − 1

r
φl = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
φ− (m1+m2)

2 φ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χm − (m1+m2)

2 χ0
m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

m − (m1+m2)
2 χm + j(j+1)

r
φ0

e +
(

d
dr

+ 1
r

)
φ0

l = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φe − (m1−m2)

2 φ0
e + d

dr
φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φl − (m1−m2)

2 φ0
l −

j(j+1)
r

φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φm − (m1−m2)

2 φ0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

e − (m1−m2)
2 φe + 1

r
χ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

l −
(m1−m2)

2 φl −
(

d
dr

+ 1
r

)
χ0

m = 0 .(22)
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1
2

[
E − S(r) + P (r) − V (r)

]
χ0 − (m1−m2)

2 χ−
(

d
dr

+ 2
r

)
χe − 1

r
χl = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
χ− (m1−m2)

2 χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χe − (m1+m2)

2 χ0
e + d

dr
χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χl − (m1+m2)

2 χ0
l −

j(j+1)
r

χ0 = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

e − (m1+m2)
2 χe + 1

r
φ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

l −
(m1+m2)

2 χl −
(

d
dr

+ 1
r

)
φ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

m − (m1−m2)
2 φm + j(j+1)

r
χ0

e +
(

d
dr

+ 1
r

)
χ0

l = 0 .(23)On the other hand, in the 
ase of equal masses m1 = m2 = m, theset PPT splits into two subsets, one with spe
tros
opi
 signature 1jj and ase
ond with 3jj while the VPT remains un
hanged(i) PPT, 1jj , P = η(−1)j .
1
2

[
E + S(r) − P (r) − V (r)

]
φ0 −mφ−

(
d
dr + 2

r

)
φe − 1

rφl = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
φ−mφ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φe + d

drφ
0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φl − j(j+1)

r φ0 = 0 . (24)(ii) PPT, 3jj , P = η(−1)j .
1
2

[
E + S(r) − P (r) − V (r)

]
χm −mχ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0
m −mχm + j(j+1)

r φ0
e +

(
d
dr + 1

r

)
φ0
l = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0
e + 1

rχ
0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0
l −

(
d
dr + 1

r

)
χ0
m = 0 .(25)
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1
2

[
E − S(r) + P (r) − V (r)

]
χ0 −

(
d
dr + 2

r

)
χe − 1

rχl = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χe −mχ0

e + d
drχ

0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χl −mχ0

l −
j(j+1)
r χ0 = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0
e −mχe + 1

rφ
0
m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0
l −mχl −

(
d
dr + 1

r

)
φ0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0
m + j(j+1)

r χ0
e + ( ddr + 1

r )χ
0
l = 0 . (26)The remaining two 
omponents χ, φm vanish in the event of the parti
leshaving the same mass m.3. A potential for quarkoniumIn the Introdu
tion, we dis
ussed the la
k of 
ovarian
e 
hara
terisingthe Breit equation. The wavefun
tion of the system of the two fermionsdepends on the position of the two parti
les (that is, two ve
tors, ea
h forthe two parti
les, are ne
essary) while it depends only on one time vari-able. This fa
t does not allow a Lorentz-invariant formulation. However, ifa very strong, short-range potential is 
onsidered to govern the intera
tionof the two parti
les, we 
an assume the two parti
les are so 
lose to one an-other that just one position ve
tor is enough to des
ribe the motion and thequantum me
hani
s of the system. In this 
ase, the number of the positionve
tor variables equals that of the time variables and we 
an assume that theequation be
omes approximately 
ovariant. The question rising is whetherthere exist su
h intera
tions between parti
les and if there are systems offermions to whi
h the Breit equation 
an be applied and subsequently betested. Talking about small distan
es, we are led to the plausible questionof what happens at distan
es up to 1 fermi whi
h is a feature of the strongintera
tions between quarks. It is known that there are systems, quarkonia,whi
h are bound states of quarks and antiquarks. A
tually, experimentaldata about many of these states exist [41℄, therefore, one 
ould maintainthat they 
onstitute a laboratory where the validity of any theory aiming atdes
ribing them, 
an be tested.
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 limit, the quark�antiquark intera
tion is domi-nated by ve
tor and s
alar potential [10, 33℄. The former, whi
h is of theCoulomb type 
onstitutes the intera
tion at small distan
es and 
orrespondsto one gluon ex
hange. In that 
ase, quarkonium 
an be viewed as the �hy-drogen atom� of strong intera
tion Physi
s. By 
ontrast, at large distan
es,
on�nement dominates and the intera
tion is proportional to the interparti-
le distan
e. The 
on�ning part of the potential has s
alar stru
ture [10,33℄and thereby the interquark potential 
onsists of a Coulomb part whi
h is ofve
tor type and a linear part whi
h is of s
alar type
Vint(r) = VV(r) + VS(r)

= −4

3

αs(Q
2)

r

[
(γ

(1)
0 γ(1)

µ ) ⊗ (γ
(2)
0 γ(2)

µ )
]

+ κr(γ
(1)
0 ⊗ γ

(2)
0 ) , (27)where αs is the 
oupling 
onstant of the strong intera
tion, Q2 is the relevantmomentum transfer and κ is the string 
onstant [39℄.Certainly, the non-relativisti
 part of the potential is not su�
ient if wewish to test the Breit equation. The 
ontribution of relativisti
 
orre
tionsare required and we must take them into a

ount. At this point, we re-
all that the original Breit equation 
ontained terms 
alled Breit intera
tionthat a

ount for relativisti
 
orre
tions. The in
lusion of the Breit intera
-tion in the original equation does not lead to 
orre
t results ( [10�15℄) for
ertain quantum-me
hani
al systems. Unless this term is treated as a smallperturbation, the results di�er from the well-established data.By studying the s
attering amplitude for a parti
le�antiparti
le 
ollision[10, 40℄, we 
an derive an e�e
tive potential in the Pauli approximation ofthe Breit equation. That potential will a

ount for the intera
tion and itwill in
lude both relativisti
 and non-relativisti
 
ontributions. We needbear in mind that the Breit intera
tion is the se
ond-order term in the (v/c)expansion of a Coulomb intera
tion. In the Pauli approximation, the ve
torpart of the quark�antiquark potential 
ontributes the following term to theintera
tion

UVector (~p,~r) =

{
−4

3

αs

r

}
+ V1 + V2 + V3 ,

V1 =

{

− ~p4

8m3
1

− ~p4

8m3
2

+
2

3
παs

(
1

m2
1

+
1

m2
2

)
δ(~r)

}

− 2αs

3m1m2r

[

~p2 +
(~r · ~p)2

r2

]

,
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V2 =

{
2αs

3r3

[
1

m2
1

~L · ~S1 +
1

m2
2

~L · ~S2

]}
+

4αs

3m1m2r3
~L · ~S ,

V3 =
2αs

m1m2r3



−
1

3
~S

2
+

(
~r · ~S

)2

r2



+
16παs

9m1m2

(
~S

2 − 3

2

)
δ(~r) , (28)where the {. . .} terms 
orrespond to the stati
 part of the intera
tion. Therest of the terms are responsible for retardation e�e
ts and they 
an be as-so
iated to the Breit intera
tion. We emphasise that this derivation is inanalogy with the pro
edure followed towards obtaining the retarded part ofthe potential in a parti
le�antiparti
le ele
tromagneti
 intera
tion (s
atter-ing). We re
all, that in that 
ase, the 
ontribution of the Dik (i, k = 1, 2, 3)part of the photon propagator in the Coulomb gauge was taken into a
-
ount [40℄.On the other hand, the s
alar 
on�ning potential 
ontributes only tothe stati
 part of the intera
tion. Unlike the ve
tor part of the intera
tion,the s
alar term of the potential 
annot lead to the emergen
e of retardede�e
ts sin
e there is not an equivalent of the photon propagator that wouldresult in su
h a 
ontribution. The s
attering amplitude leads to the followingintera
tion operator [10, 33℄

UScalar (~r) = {κr} + V4 ,

V4 =

{
− 1

2m2
1m

2
2

κ

r
~L ·
(
m2

1
~S2 +m2

2
~S1

)}
, (29)where {. . .} merely imply that the intera
tion is 
hara
terised by stati
 be-haviour. For parti
les with the same mass, V2, V4 
orrespond to the spin�orbit intera
tion. Although both potentials, (VVector) and (VScalar) are at-tra
tive, they give the opposite sign of spin�orbit intera
tion, a feature whi
his going to result in a quite interesting e�e
t regarding the ordering of thestates (Se
tion 5.1). In addition, we should stress the absen
e of a spin�spin intera
tion in the 
on�ning potential meaning that tensor for
es are
ontained entirely in the Coulomb-like ve
tor potential. The absen
e ofspin�spin and tensor terms in the s
alar intera
tion as well as the di�er-ent form of spin�orbit terms between the linear and Coulomb-like potentials
onstitute the most striking di�eren
e between the two types of intera
tion.So far, the form of the potential des
ribing strong intera
tions has beendis
ussed to some extent but nothing has been mentioned about the ef-�
ien
y of su
h a potential. The 
harmonium and bottomium spe
tra are
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ura
y of the potential besides the adequa
yof the Breit equation in des
ribing strong intera
tions 
an be tested. Next,we will follow a pro
edure towards 
al
ulating the energy levels of variousbound states of quark�antiquark systems, however, we have to obtain �rstthe equations. In the following se
tion, we will derive the radial equationsfor those systems as they are produ
ed by means of the Eqs. (24)�(26).4. Appli
ation of the Breit equation to quarkoniumThe quark�antiquark bound states 
an be 
lassi�ed in three 
ategoriesa

ording to their spe
tros
opi
 signature [10℄:(i) States with j = l, S = 0.After making the substitutions V (r) = −4
3
αs
r , S(r) = −κr and eliminatingall 
omponents but φ0, Eqs. (24) lead to

d2φ0(r)

dr2
+

dφ0(r)

dr

(
2

r
−

κ− 4
3
αs
r2

E + κr + 4
3
αs
r

)

+

{
1

4

[(
E +

4

3

αs

r

)2

− κ2r2

]

− j(j + 1)

r2
−m2E + κr + 4

3
αs
r

E − κr + 4
3
αs
r

}
φ0(r) = 0 . (30)(ii) States with j = l, S = 1.Similarly, Eqs. (25) give

d2χ0
m(r)

dr2
+

dχ0
m(r)

dr

(
2

r
−

κ− 4
3
αs
r2

E + κr + 4
3
αs
r

)

+

{
1

4

[(
E +

4

3

αs

r

)2

− κ2r2

]
− j(j + 1)

r2

− m2E + κr + 4
3
αs
r

E − κr + 4
3
αs
r

− 1

r

κ− 4
3
αs
r2

E + κr + 4
3
αs
r

}
χ0
m(r) = 0 . (31)(iii) States with j = l ± 1, S = 1.Finally, Eqs. (26) 
an be redu
ed to the following two 
oupled di�erentialequations

d2χ0
e(r)

dr2
+
dχ0

e(r)

dr

[
2

r
+

−4αs
3r2 − κ

E + 4αs
3r − κr

+
−2κ

(
E + 8αs

3r

)
(
E + 4αs

3r

)2 − (κr)2

]
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+χ0

e(r)






(
E + 4αs

3r + κr
) [

1
4

(
E + 4αs

3r − κr
)2 −m2

]

E + 4αs
3r − κr

− j(j + 1)

r2

+
−4κ

(
E + 8αs

3r

)
(
E + 4αs

3r

)2 − (κr)2

1

r
− 2

r2
+
κ2 + 16α2

s
9r4

+ 8αsκ
3r2

+ 8αsE
3r3

E + 4αs
3r + κr

1

E + 4αs
3r − κr

}

= χ0
l (r)

[
1

r2
− −2κ

(
E + 8αs

3r

)
(
E + 4αs

3r + κr
)2

1

r
+

(
E + 4αs

3r − κr
)

(
E + 4αs

3r + κr
) 1

r2

]
, (32)

d2χ0
l (r)

dr2
+
dχ0

l (r)

dr

[
2

r
+

−4αs
3r2 − κ

E + 4αs
3r + κr

]

+ χ0
l (r)

{
E + 4αs

3r + κr

E + 4αs
3r − κr

×
[

1

4

(
E +

4αs

3r
− κr

)2

−m2

]

− j(j + 1)

r2
− 1

r

−4αs
3r2 + κ

E + 4αs
3r + κr

}

= χ0
e(r)

[
2j(j + 1)

r2
+
j(j + 1)

r

(
−4αs

3r2 − κ

E + 4αs
3r − κr

+
−4αs

3r2 + κ

E + 4αs
3r + κr

)]

.(33)The behaviour of the 
omponent wavefun
tions in the above equations nearthe origin 
an be dedu
ed easily if we noti
e that at very small interparti
ledistan
es, the dominant part of the potential has a ve
tor, Coulomb-likeform. Thus, the wavefun
tions for small r look like
state 1ll , rφ0 ∼ rγ+1 , γ = −1 +

√
1 + j(j + 1) − 4

9
α2
s ,

state 3ll , rχ0
m ∼ rγ+1 , γ = −1 +

√
j(j + 1) − 4

9
α2
s ,

state 3ll±1 ,

{
rχ0

e ∼ rγ+1

rχ0
l ∼ rγ+1

}
, γ =






√
j(j + 1) + 1 − 4

9α
2
s

−1 +
√
j(j + 1) − 4

9α
2
s

.(34)On the other hand, due to the in
lusion of the 
on�ning potential, thewavefun
tions have a di�erent behaviour at large distan
es. They look like
∼ e−

1
4
κr2 . The behaviour of the wavefun
tions near the origin and at largedistan
es will be used in the next se
tions in order to solve the di�erentialequations des
ribing the dynami
s of the quantum me
hani
al systems.



Quark�Antiquark Bound States and the Breit Equation 23475. Solution of the equationsAs pointed out in the previous se
tions, the energy levels of the variousstates are derived from the solution of the above radial equations, however,those values do not represent the 
omplete energy sin
e the potential usedis merely the stati
 potential. The 
ontribution of the retarded part ofthe intera
tion should be in
luded to obtain the relativisti
 
orre
tions tothe energy. The stati
 part 
onsists of the {. . .} terms in the expressions[(28), (29)℄ while the rest are the retarded terms. At this point, we shouldre
all that we do not expe
t satisfa
tory results unless the Breit (retarded)terms are treated by �rst order perturbation theory for parti
ular states.The appli
ation to QED problems ( [10�15℄) demonstrated this assertion is
orre
t. In that 
ase, the total energy of the system is given by the expression
Etotal = Estatic + 〈state |Vretarded| state〉 , (35)where |state 〉 stands for the stationary unperturbed states for the Coulombpotential. The same pro
edure 
an be followed when the potential has theform (27), however, unlike QED problems, the eigenstates are not knownand they should be 
al
ulated before we pro
eed. Unfortunately, an exa
tsolution for su
h a potential 
annot be obtained and an approximate methodshould be tried. One way is by treating the Coulomb term as a small per-turbation [42℄. Another method, whi
h will be employed in this paper, isto use the three-dimensional isotropi
 harmoni
 os
illator (TDIHO) eigen-states [10,43℄. The potential of the harmoni
 os
illator provides 
on�nementof quarks and the important feature of this potential is that the wavefun
-tions and the matrix elements 
an be 
al
ulated easily and they 
an possessan expli
it form. The parameters of the wavefun
tions will be adjusted soas to �t the numeri
ally 
al
ulated eigenfun
tions for the potential (27).The intera
tion potential of TDIHO equals

VTDIHO = 1
2µω

2r2 , (36)where µ and ω are �tting parameters. The energy levels of the system aregiven by the expression
E(nr, l) =

(
2nr + l + 3

2

)
ω, nr, l = 0, 1, 2, . . . (37)and the normalised radial parts of the wavefun
tions whi
h are going to beused are the following [43℄
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R1S = 2

(
λ3

1S

π

)1/4

exp

(
−λ1S

2
r2
)

︸ ︷︷ ︸
B1S(r)

, R1P =

√
8λ1P

3
rB1P (r) ,

R2S =
√

6

(
1 − 2

3
λ2Sr

2

)
B2S(r) , R2P =

√
4λ2P

15
r
(
5 − 2λ2P r

2
)
B2P (r) ,

R3S =
1√
30

(
15 − 20λ3Sr

2 + 4λ2
3Sr

4
)
B3S(r) ,

R4S =
1√

1260

(
105 − 210λ4Sr

2 + 84λ2
4Sr

4 − 8λ3
4Sr

6
)
B4S(r) ,

R5S =
1√

90720

(
945 − 2520λ5Sr

2 + 1512λ2
5Sr

4

−288λ3
5Sr

6 + 16λ4
5Sr

8
)
B5S(r) ,

R6S =
1√

9979200

(
10395 − 34650λ6Sr

2 + 27720λ2
6Sr

4

−7920λ3
6Sr

6 + 880λ4
6Sr

8 − 32λ5
6Sr

10
)
B6S(r) ,where Bindex ≡ B (λ1S → λindex). λ1S ≡ λ = µω while the rest of the λs arefun
tions of λ1S and their values will be determined from experimental data.This is done be
ause the harmoni
 os
illator is an approximation of the �fun-nel� potential [16,28℄ therefore the values of the various parameters need tobe adjusted to be in agreement with the experimental values of the 
orre-sponding quantities. It is ne
essary to emphasise that the λs have a massdependen
e implying that the relation among them whi
h will emerge is notthe same for all quarkonium systems. The parameters µ, ω, in turn, 
anbe estimated by 
omparing the values of the quantities in whi
h they enterwith those derived from experimental data. The leptoni
 widths, the massdi�eren
es and the various energy levels of some 
ertain states are quanti-ties that 
an help us to estimate not only those parameters but also otherparameters su
h as the 
oupling 
onstant αs, the string 
onstant κ and thequark masses. To a
hieve this goal, we will take advantage of the knowledgeof the energy levels of the 
harmonium and bottomium systems [41℄.5.1. The bottomium systemWe aim to estimate the energies of the twelve states of the bottomiumsystem whi
h are spin triplet states, i.e. S = 1 (ortho-bottomium). The

1−−, 0++, 2++ states are ve
tor mesons and the stati
 part of the intera
tionbetween the 
onstituent parti
les leads to the des
ription of their dynami
s



Quark�Antiquark Bound States and the Breit Equation 2349by Eqs. (32), (33). On the other hand, the rest of the states, denoted with
1++, are pseudos
alar mesons and they are des
ribed by Eq. (31). Finally,six more pseudos
alar meson states (Table I) (with JPC = 0−+, 1+−) willbe 
onsidered and Eq. (30) des
ribes those states. Unlike QED, the expli
itform of the potential of QCD and the 
oupling strength are not knowntherefore a method towards estimating them should be formulated. Thepro
edure be
omes more di�
ult if we remember that the solution of theabove equations is not enough to get the energy spe
trum sin
e the values
al
ulated a

ount only for a part of the whole energy. The rest of the
ontribution results from relativisti
 e�e
ts due to the non-instantaneousintera
tion whi
h should not be ignored. The 
ombination leads to theproblem resisting an analyti
 treatment and only a numeri
al method seems
apable of solving it. TABLE IEnergy levels of not experimentally measured bottomium states as a fun
tion ofthe parameters αs,mb, λs.Meson JPC Energy due to Energy 
orre
tions due tostates the stati
 potential the Breit terms (Aindex = 1

9
αs

m2
b

√
λ3
index

π

)

η(1S) 0−+ Estatic(η(1S)) −48.0A1S

η(2S) 0−+ Estatic(η(2S)) −416.0A2S

η(3S) 0−+ Estatic(η(3S)) −603.2A3S

η(4S) 0−+ Estatic(η(4S)) −769.7A4S

h(1P ) 1+− Estatic(h(1P )) −128.0A1P

h(2P ) 1+− Estatic(h(2P )) −268.8A2PSin
e the 
oupling 
onstant αs of the system as well as the mass of thebottom quark mb are not known, the use of some of the states to determinethese values is inevitable. In addition, there are some more parameters whi
hneed to be estimated: the string 
onstant κ and the λs. Before we embarkon 
al
ulating the various quantities, we will �rst attempt to express theenergies of the states in terms of the unknown parameters.The energy of the system 
onsists of two parts, one 
oming from thenon-perturbative solution of the Eqs. (30)�(33) and another derived fromthe perturbative treatment of the non-retarded parts of V1, V2, V3 in (28) byrepla
ing m1,m2 with mb ≡ m. The former will be 
alled Estatic while thelatter whi
h is non-instantaneous, in nature, will be 
alled Enon−static. The
ombined result in the total energy of the system Esystem is
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Esystem = Estatic + 〈V1 + V2 + V3〉︸ ︷︷ ︸

Enon−static

= Estatic +

〈
− 2αs

3m2

[
−2

r

d2

dr2
− 2

r2
d

dr
+

1

r3
~L

2
]

+
4αs

3m2r3
~L · ~S +

2αs

m2r3



−
1

3
~S

2
+

(
~r · ~S

)2

r2





︸ ︷︷ ︸
S12

+
16παs

9m2

(
~S

2 − 3

2

)
δ (~r)

〉
. (38)The spin�orbit perturbative 
orre
tion and S12 vanish for S-states whilethe δ fun
tions give a non-zero 
ontribution. By 
ontrast, the P -states are
hara
terised by the opposite behaviour (~L · ~S, S12 6= 0, 〈δ (~r)〉 = 0

). InTable II, the energies of various states are summarised and we noti
e thatthe knowledge of the λs is ne
essary to obtain the values of the 
orre
tionsdue to the Breit terms. The de
ay widths of the states will be used, next,to evaluate the relation of the λs and other parameters to some measuredTABLE IIEnergy levels of bottomium as a fun
tion of the parameters αs,mb, λs.Meson Energy due to Energy 
orre
tions due tostates the stati
 potential the Breit terms (Aindex = 1
9

αs

m2
b

√
λ3
index

π

)

Υ(1S) Estatic(Υ(1S)) +8.0A1S

Υ(2S) Estatic(Υ(2S)) −80.0A2S

Υ(3S) Estatic(Υ(3S)) −183.2A3S

Υ(4S) Estatic(Υ(4S)) −279.7A4S

Υ(5S) Estatic(Υ(5S)) −371.0A5S

Υ(6S) Estatic(Υ(6S)) −458.1A6S

χb0(1P ) Estatic(χb0(1P )) −320.0A1P

χb1(1P ) Estatic(χb1(1P )) −160.0A1P

χb2(1P ) Estatic(χb2(1P )) −70.4A1P

χb0(2P ) Estatic(χb0(2P )) −518.4A2P

χb1(2P ) Estatic(χb1(2P )) −310.4A2P

χb2(2P ) Estatic(χb2(2P )) −193.9A2P
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ted Van Royen�Weisskopf� formula [18, 26℄
Γ
(
V → e+e−

)
=

16πα2Q2
b

m2
V

|ψ(0)|2
(

1 − 16

3π
αs

)
, α =

1

137
, Qb =

1

3(39)relates the leptoni
 width, i.e. e+e− de
ay of the neutral V ve
tor mesons,and the wavefun
tion of bottomium at the origin. mV stands for the mass ofthe meson. Although the 
oupling 
onstant has not been estimated yet, thefa
t that we are dealing with strong intera
tions suggests that the radiative
orre
tions are so large that only ratios su
h as
r(V ′/V ) ≡ Γ (V ′ → e+e− or µ+µ−)

Γ (V → e+e− or µ+µ−)
=

m2
V(

m′

V

)2
|ψ′(0)|2

|ψ(0)|2
(40)
an be 
al
ulated reliably be
ause the 
orre
tions are suppressed and do notappear in the above expressions. In (40), V ′ is another ve
tor state of thequarkonium system having mass m′

V . All 1−− ve
tor states 
an de
ay intoan ele
tron�positron (or muon�antimuon) pair and the �ve ratios of thesede
ays with respe
t the �referen
e de
ay� of the Υ(1S) state are given fromexperiment [41℄
r(2S/1S)µ ≡

E2
Υ(1S)

E2
Υ(2S)

∣∣ψΥ(2S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.4 ± 0.1 , (41)

r(3S/1S)µ ≡
E2

Υ(1S)

E2
Υ(3S)

∣∣ψΥ(3S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.37 ± 0.06 , (42)

r(4S/1S) ≡
E2

Υ(1S)

E2
Υ(4S)

∣∣ψΥ(4S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.18 ± 0.04 , (43)

r(5S/1S) ≡
E2

Υ(1S)

E2
Υ(5S)

∣∣ψΥ(5S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.23 ± 0.05 , (44)

r(6S/1S) ≡
E2

Υ(1S)

E2
Υ(6S)

∣∣ψΥ(6S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.10 ± 0.02 (45)(the index µ in (41) and (42) indi
ates that the ve
tor mesons involvedde
ay into muon�antimuon pairs). Ea
h one of r(nS/1S) (n = 2, . . . 6) is afun
tion of the energy of the system and two λs, i.e., λ1S and λnS .The relations (41)�(45) 
an be used to establish the relation among the

λs, energies and m. (38) is another useful expression whi
h will be employedin order to 
al
ulate the energies of the various states as well as the values of
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αs, κ,m. The part of the energy due to the instantaneous intera
tion shouldbe 
ombined with the non-retarded 
orre
tions so that the energy obtainedis in agreement with experiment. This is 
alled ��tting pro
edure� and itwill help us to determine the four unknown parameters αs, κ,m, λ1S . Therest of the λs, asso
iated with the S-states, are related to them throughthe de
ay widths Γ (V → e+e−) whose values are well established. Thereare two more λs, namely, λ1P and λ2P whi
h 
annot be 
al
ulated a

u-rately by means of the transitions de
ays, as pointed out in the previousparagraph. The total number of the unknown parameters, i.e. six, requiressix energy values to be set as input values. We 
hoose the energies of the
Υ(1S),Υ(2S),Υ(3S),Υ(4S), χb1(1P ), χb1(2P ) states as the input values.Although P -states with the same prin
ipal quantum number 
an be used,we avoid it be
ause they 
orrespond to energies very 
lose to one anotherwhi
h may lead to wrong results. The harmoni
 os
illator wavefun
tions
onstitute an approximation to the real wavefun
tions of the funnel poten-tial and in the stage of optimising them, the method may be too sensitive tosmall energy di�eren
es. Thus, we 
hoose the following values establishedby experiment [41℄

E [Υ(1S)] = 9460.37 ± 0.21 MeV ,

E [Υ(2S)] = 10023.30 ± 0.31 MeV ,

E [Υ(3S)] = 10355.3 ± 0.5 MeV ,

E [Υ(4S)] = 10580.0 ± 3.5 MeV ,

E [χb1(1P )] = 9891.9 ± 0.7 MeV ,

E [χb1(2P )] = 10255.2 ± 0.5 MeV . (46)The energies of the Υ states will help us to determine the relations betweenthe λnS (n = 2, 3, 4) and λ1S through the ratios (41)�(43).The mass of the bottom quark is regarded as a parameter whi
h will beevaluated, however, its value will be 
ontstrained in the range 4.1 GeV ≤
mb ≡ m ≤ 5 GeV (running mass) [41℄. The energies due to the stati
intera
tion 
an be expressed easily in terms of the total energy and theparameters. From (38), Estatic = Etotal − Eperturbation whi
h means thatthe numeri
al solution of Eqs. (31)�(33) 
an lead to the determination ofthe parameters, provided that the relations 
onne
ting them di
tated bythe 
orresponding quantities are satis�ed. Thus, the main problem redu
esto the solution of the di�erential equations. Certainly, it is important toobserve that Eqs. (30)�(33) exhibit a singularity at

r0 =
1

2

E

κ
+

√
1

4

(
E

κ

)2

+
4

3

αs

κ
. (47)
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h is not present in the initial Breit equation but itemerges after the redu
tion of it to radial equations. Although the equa-tions are singular at r = 0 as well, due to the 
entrifugal term j(j+1)
r2(j is the total angular momentum of the system), the new singularity im-plies the appearan
e of a turning point that is energy dependent [10,13,44℄.The question rising is whether the emergen
e of this singularity 
auses anyproblem to the solution of the di�erential equations. Due to the fa
t that we
onsider only a short-range potential and the wavefun
tion tends to vanishat distan
es (r ≥ 1 fm), we will not experien
e any di�
ulty in solving thedi�erential equations. It will be shown that r0 is bigger than 10 fm (for thelowest energy) whi
h implies that the singularity does not 
ause any problemin the range where QCD applies, on the grounds that the equations havemeaning in this parti
ular range.The χ and Υ states of the ��tting pro
edure� are des
ribed by Eq. (31)and Eqs. ((32), (33)), respe
tively, and these equations 
an be redu
ed to aset of twenty, �rst order di�erential equations. The problem is a boundary-value problem and two boundary points, Rinitial, Rfinal need to be spe
i�edbetween whi
h the integration will take pla
e. We 
hoose Rfinal ≃ 3 fmwhere the wavefun
tion and its derivative are taken to vanish due to the
on�nement. On the other hand, the 
hoi
e of Rinitial requires more 
are.At small distan
es, the Coulomb potential dominates the intera
tion andsin
e the potential is singular at r = 0, we are not allowed to start theintegration at that point, therefore we 
hoose a point whi
h is mu
h smallerthan rc ≡ αs

Λ
(Λ: QCD s
ale parameter). The QCD s
ale parameter Λ isnot an independent parameter, it is related, instead, to κ [30, 33℄ throughthe expression

κ =
8πΛ2

27
. (48)We set Rinitial = 10−10rc. The wavefun
tion behaves as rγ at r = Rinitialwhile it vanishes at r = Rfinal. A

ording to (34),

γ =





−1 +

√
j(j + 1) − 4

9α
2
s , for χb1 states ,√

j(j + 1) + 1 − 4
9α

2
s , for Υ , χb0, χb2 states .

(49)The reason why the bigger value of γ was preferred in the 3ll±1 states isbe
ause the wavefun
tion goes to zero faster.The numeri
al integration of the di�erential equations is a
hieved bymeans of a Runge�Kutta-based routine and it leads to the following valuesfor the parameters [10℄
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αs = 0.36 ± 0.04 ,

κ = 0.793 ± 0.008
GeV

fm
,

mb ≡ m = 4.987 ± 0.009 GeV ,

λ1S ≃ 0.829 (GeV)2 ,

λ1P ≃ 0.107 (GeV)2 ,

λ2P ≃ 0.120 (GeV)2 (50)whi
h, in turn, give
λ2S

(41)
≃ 0.147 (GeV)2 ,

λ3S
(42)
≃ 0.126 (GeV)2 ,

λ4S
(43)≃ 0.072 (GeV)2 ,

Λ
(48)
= 409 ± 40 MeV . (51)Now that the parameters have been estimated, they 
an be used to 
al-
ulate the rest of the energy levels of the system. The states that are goingto be 
onsidered 
an be 
lassi�ed in three groups a

ording to the set ofequations that des
ribe their instantaneous behaviour or, equivalently, thespe
tros
opi
 signature: (i) η(1S), η(2S), η(3S), η(4S), hb(1P ), hb(2P ), with

2S+1LJ ≡1 ll, (ii) χb1(1P ), χb1(2P ), with 2S+1LJ ≡3 ll, and,�nally, (iii) Υ(1S),Υ(2S),Υ(3S),Υ(4S),Υ(5S),Υ(6S), χb0(1P ), χb0(1P ),
χb0(2P ), χb2(2P ), with 2S+1LJ ≡3 ll±1. By applying Eqs. (30)�(33) to the
ases (i), (ii) and (iii), and by imposing the same boundary 
onditions, aspreviously, the energies of the states 
an be obtained. The λs of the wave-fun
tions entering the equations are dependent on the energies of the 
orre-sponding states, therefore the expressions (44), (45) should be employed. Inaddition, Table II and Table I provide the 
ontribution of the Breit terms tothe energy of the system. If all these elements are taken into a

ount, theenergy values of the above states are 
al
ulated and they are summarisedin Table III and Table IV. The experimentally established energies are alsostated.The two remaining λs, namely, λ5S , λ6S are 
al
ulated and they are equalto

λ5S ≃ 0.082 (GeV)2 ,

λ6S ≃ 0.045 (GeV)2 . (52)Looking at Table III and Table IV, there are some points whi
h need tobe emphasised:



Quark�Antiquark Bound States and the Breit Equation 2355TABLE IIIThe energy spe
trum of the bottomium system derived from experiment (third
olumn), the Breit equation (fourth and �fth 
olumns) and the expe
tation valuesof the square of the velo
ity operator v for ea
h state (sixth 
olumn). The asterisk(*) refers to the states used to �t the parameters. The position of every state inthe spe
trum (for the states we have 
onsidered) is mentioned in the �rst 
olumn.Meson JPC Energy Energy (theory)(MeV)states (experim.) Stati
 part Retarded part 〈(
v
c

)2〉(MeV) (MeV) (MeV)
Υ(1S) 1−− 9460.37± 0.21 9460.37± 0.21 ∗ 0.0502nd 9454.89± 0.21 +5.48± 0.01

Υ(2S) 1−− 10023.30± 0.31 10023.30± 0.31 ∗ 0.0838th 10027.40± 0.31 −4.101± 0.007

Υ(3S) 1−− 10355.3± 0.5 10355.3± 0.5 ∗ 0.11114th 10362.9± 0.5 −7.42± 0.01

Υ(4S) 1−− 10580.0± 3.5 10580.0± 3.5 ∗ 0.08716th 10584.9± 3.5 −4.929± 0.008

Υ(5S) 1−− 10865± 8 10882± 8 0.12517th 10890± 8 −7.86± 0.01

Υ(6S) 1−− 11019± 8 11037± 9 0.08318th 11041± 9 −3.944± 0.007

η(1S) 0−+ 9393.9± 0.3 0.0501st 9426.8± 0.3 −32.88± 0.08

η(2S) 0−+ 9973.3± 0.4 0.0837th 9994.6± 0.4 −21.32± 0.04

η(3S) 0−+ 10324± 2 0.11113th 10348± 2 −24.42± 0.04

η(4S) 0−+ 10553± 1 0.08715th 10567± 1 −13.56± 0.02

χb0(1P ) 0++ 9859.8± 1.3 9858.9± 0.4 0.0433rd 9869.1± 0.4 −10.15± 0.02

χb1(1P ) 1++ 9891.9± 0.7 9891.9± 0.7 ∗ 0.0435th 9897.0± 0.7 −5.077± 0.001

χb2(1P ) 2++ 9913.2± 0.6 9914.7± 0.9 0.0436th 9916.9± 0.9 −2.234± 0.004

h(1P ) 1+− 9906± 1 0.0434th 9910± 1 −4.062± 0.007



2356 G.D. Tsibidis TABLE IVThe energy spe
trum of the bottomium system derived from experiment (third
olumn), the Breit equation (fourth and �fth 
olumns) and the expe
tation valuesof the square of the velo
ity operator v for ea
h state (sixth 
olumn). The asterisk(*) refers to the states used to �t the parameters. The position of every state inthe spe
trum (for the states we have 
onsidered) is mentioned in the �rst 
olumn.Meson JPC Energy Energy (theory)(MeV)states (experim.) Stati
 part Retarded part 〈(
v
c

)2〉(MeV) (MeV) (MeV)
χb0(2P ) 0++ 10232.1± 0.6 10234.3± 0.2 0.0879th 10253.9± 0.2 −19.60± 0.03
χb1(2P ) 1++ 10255.2± 0.5 10255.2± 0.5 ∗ 0.08711th 10266.9± 0.5 −11.74± 0.02
χb2(2P ) 2++ 10268.5± 0.4 10266.9± 0.7 0.08712th 10274.3± 0.7 −7.33± 0.01
h(2P ) 1+− 10260.2± 0.9 0.08710th 10270.4± 0.9 −10.17± 0.02(i) we noti
e that the states predi
ted from the theory have the righta

ession and almost the 
orre
t energy di�eren
e between the P statesemerges. A
tually, there is not a very big dis
repan
y between the theoreti
alresults and the experimental data as it 
an be dedu
ed from Table V. ForTABLE VSplittings of the 1P and 2P levels of bottomium.

∆M Theory Experiment Deviation(MeV) (MeV) (%)
m (χb1(1P )) −m (χb0(1P )) 33.0 ± 0.8 32 ± 1 3.1
m (χb2(1P )) −m (χb1(1P )) 22.8 ± 1.1 21.3 ± 0.9 7.0
m (χb1(2P )) −m (χb0(2P )) 20.9 ± 0.8 23.1 ± 0.8 9.5
m (χb2(2P )) −m (χb1(2P )) 11.7 ± 0.9 13.3 ± 0.6 12.0higher states, it is getting bigger and the dis
repan
y be
omes larger andthis is quite reasonable sin
e those states are 
hara
terised by large speed,therefore the v2 approximation to the Breit terms 
onstitutes a rather roughapproximation,(ii) the part of the energy due to the instantaneous intera
tion a

ounts formore of the energy, however, the 
ontribution of terms due to retardation isvery important to a
quire the 
orre
t splitting of the P states. At this point,an interesting feature of the funnel potential should be mentioned. The spin�
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tion 
oming from the Coulomb-like part of the potential (28)di�er from the spin�orbit intera
tion resulting from the linear part (29) inthe sign. Thus, if only the Coulomb-like potential was present, it wouldorder the P -levels, in as
ending order 3P0, 3P1, 3P0. On the other hand,the existen
e solely of the s
alar part would order them oppositely. The fa
tthat the previous order is obtained suggests that the spin�orbit part due tothe ve
tor potential dominates,(iii) the ratios ρ (χbJ(1P )) , ρ (χbJ(1P )) (≡ (2++ − 1++)/(1++ − 0++)) 
anbe 
al
ulated from Table 5.1. They are equal to
ρ (χbJ(1P )) = 0.69 ± 0.03 ,
ρ (χbJ(2P )) = 0.56 ± 0.09whi
h are in a very good agreement with experiment [41℄
ρ (χbJ(1P )) = 0.67 ± 0.03 ,
ρ (χbJ(2P )) = 0.58 ± 0.03(iv) the states are 
hara
terised by small speed (〈(v/c)2〉 ≤ 0.11

) whi
hmake the appli
ation of the Pauli approximation and perturbation theorypossible. 〈(v/c)2
〉 is proportional to the λ of the 
orresponding state andinversely proportional to the mass of the bottom quark,(v) r0 depends on the energy of the state and r0 ≃ 12 fm. [ Rinitial, r0 ) thatis 
learly larger than the range within whi
h the intera
tion takes pla
e. If we
ontinue the integration of the di�erential equations for bigger interparti
ledistan
es, we noti
e that at r = r0 both the wavefun
tion and its derivativevanish due to 
on�nement.(vi) the splittings of the 1S, 2S, 3S, 4S states are given from Table VI.TABLE VISplittings of the S levels of bottomium.

∆M Theory (MeV)
m (Υ(1S)) −m (η(1S)) 66.5 ± 0.4

m (Υ(2S)) −m (η(2S)) 50.0 ± 0.5

m (Υ(3S)) −m (η(3S)) 31 ± 2

m (Υ(4S)) −m (η(4S)) 27 ± 4The su

essful des
ription of bottomium by means of the Breit equation
an serve as a �rst indi
ation that the equation 
an be used in short-rangeintera
tions, however, before we generalise, it would be wise to study thespe
trum of other quarkonia 
omposed of lighter quarks.
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harmonium systemIn this se
tion, a similar pro
edure is going to be followed in order to 
al-
ulate the 
harmonium spe
trum. The twelve states we will 
onsider havethe quantum numbers JPC = 1−−, 0++, 2++, 0−+, 1+−. As in the previ-ous subse
tion, the widths of the de
ays of the S states into e+e− will beemployed and the relations between the λs of the radial part of the wave-fun
tions will be eventually revealed. The de
ays lead to ratios given by thefollowing expressions
r(2S/1S) ≡

E2
J/ψ(1S)

E2
ψ(2S)

∣∣ψψ(2S)(0)
∣∣2

∣∣ψJ/ψ(1S)(0)
∣∣2 = 0.41 ± 0.05 , (53)

r(3S/1S) ≡
E2
J/ψ(1S)

E2
ψ(3S)

∣∣ψψ(3S)(0)
∣∣2

∣∣ψJ/ψ(1S)(0)
∣∣2 = 0.14 ± 0.03 , (54)

r(4S/1S) ≡
E2
J/ψ(1S)

E2
ψ(4S)

∣∣ψψ(4S)(0)
∣∣2

∣∣ψJ/ψ(1S)(0)
∣∣2 = 0.09 ± 0.02 . (55)The parameters that need to be evaluated are three, the mass of the 
harmquark, mc ≡ m, λ1S and λ1P . It is assumed that the 
oupling 
onstant αsand string 
onstant κ are the same as in the bottomium system. This liesin the so-
alled �avour independen
e [45℄ of the strong intera
tions whi
hsuggests that the intera
tion between c, c̄ does not di�er from that between

b, b̄. The same holds true for any 
ombination of two quarks. Sin
e allquarks exist in the same three 
olour states, they must have identi
al strongintera
tions.The ��tting pro
edure� [10℄ is going to be followed, in order to deter-mine the three parameters. We �rst impose the 
onstraint that the massof the 
harm quarks lies within the range 1 GeV ≤ m ≤ 1.6 GeV (runningmass) [41℄. The energies of the states J/ψ(1S), ψ(2S), χc1(1P ) are 
hosenas input values and the ratios (53)�(55) as well as the di�erential equationsEqs. (31)�(33) are used. The latter are integrated in the range [10−10rc, 3 fm
]where rc = αs/Λ. By solving the di�erential equations and by taking into a
-
ount the relations between the parameters imposed by (53)�(55), we obtainthe following results [10℄

mc ≡ = 1.572 ± 0.009 GeV ,

λ1S ≃ 0.395 (GeV)2 ,

λ1P ≃ 0.074 (GeV)2 (56)whi
h, in turn, give
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λ2S

(53)
≃ 0.083 (GeV)2 ,

λ3S
(54)
≃ 0.040 (GeV)2 ,

λ4S
(55)
≃ 0.030 (GeV)2 . (57)Now that the parameters have been estimated, they 
an be used to
al
ulate the rest of the energy levels of the system. The appli
ation ofEqs. (30)�(33) and Table VII leads to the results summarised in Table VIII.These values 
an be used to 
al
ulate the S and P splittings whi
h have beenTABLE VIIEnergy levels of 
harmonium as a fun
tion of the parameters αs,mc, µ, λs.Meson Energy due to Energy 
orre
tions due tostates the stati
 potential the Breit terms (Aindex = 1

9
αs

m2
c

√
λ3
index

π

)

J/ψ(1S) Estatic(J/ψ(1S)) +8.0A1S

ψ(2S) Estatic(ψ(2S)) −80.0A2S

ψ(3S) Estatic(ψ(3S)) −183.2A3S

ψ(4S) Estatic(ψ(4S)) −279.7A4S

ηc(1S) Estatic(η(1S)) −48.0A1S

ηc(2S) Estatic(η(2S)) −416.0A2S

ηc(3S) Estatic(η(3S)) −603.2A3S

ηc(4S) Estatic(η(4S)) −769.7A4S

hc(1P ) Estatic(hc(1S)) −128.0A1S

χc0(1P ) Estatic(χc0(1P )) −320.0A1P

χc1(1P ) Estatic(χc1(1P )) −160.0A1P

χc2(1P ) Estatic(χc2(1P )) −70.4A1P

χc1(1P ) Estatic(χc1(1P )) −160.0A1P

χc2(1P ) Estatic(χc2(1P )) −70.4A1Pmeasured in the laboratory and their dis
repan
y and, eventually, the su
-
ess of the theory 
an be evaluated (Table IX, Table X). We noti
e there isa dis
repan
y of 18% between the theoreti
al and the experimental splittingof the χc2(1P ) and χc1(1P ) states. The ratio ρ = (2++−1++)/ (1++ − 0++)equals ρ = 0.420 + 0.005 whi
h is well below the experimentally 
al
ulated(≡ 0.49) [41℄. Thus, although, some of the energy levels seem to be in a verygood agreement with experiment, the results should be taken with great 
are.The reason why the 
harmonium system is not des
ribed entirely adequatelyby the theoreti
al model is that our theory 
onsiders the stati
 intera
tion as



2360 G.D. Tsibidis TABLE VIIIThe energy spe
trum of the 
harmonium system derived from the experiment (third
olumn), the Breit equation (fourth and �fth 
olumns) and the expe
tation valuesof the square of the velo
ity operator v for ea
h state (sixth 
olumn). The asterisk(*) refers to the states used to �t the parameters. The position of every state inthe spe
trum (for the states we have 
onsidered) is mentioned in the �rst 
olumn.Meson JPC Energy Energy (theory)(MeV)states (experim.) Stati
 part Retarded part 〈(
v
c

)2〉(MeV) (MeV) (MeV)
J/ψ(1S) 1−− 3096.88± 0.04 3096.88± 0.04 ∗ 0.242nd 3078.68± 0.04 +18.2 ± 0.1

ψ(2S) 1−− 3686.00± 0.09 3686.00± 0.09 ∗ 0.478th 3703.58± 0.08 −17.58± 0.03

ψ(3S) 1−− 4040± 10 4106 ± 10 0.3610th 4120± 10 −13.54± 0.02

ψ(4S) 1−− 4415± 6 4454 ± 8 0.3712th 4467± 8 −13.44± 0.02

η(1S) 0−+ 2979.8± 2.1 2987 ± 2 0.241st 3095± 2 −108.0± 0.8

η(2S) 0−+ 3594± 5 3601 ± 1 0.477th 3692± 1 −91.4 ± 0.2

η(3S) 0−+ 4023 ± 1 0.369th 4068± 1 −44.59± 0.08

η(4S) 0−+ 4379.1± 0.9 0.3711th 4416.1± 0.9 −36.98± 0.07

χc0(1P ) 0++ 3417.3± 2.8 3422 ± 1 0.303rd 3481± 1 −59.0 ± 0.1

χc1(1P ) 1++ 3510.53± 0.12 3510.53± 0.12 ∗ 0.305th 3540.02± 0.12 −29.49± 0.05

χc2(1P ) 2++ 3556.17± 0.13 3547.9± 0.2 0.306th 3560.9± 0.2 −12.98± 0.02

h(1P ) 1+− 3526.14± 0.24 3483 ± 2 0.304th 3507± 2 −23.60± 0.04
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harmonium.
∆M Theory Experiment Deviation(MeV) (MeV) (%)

m (ψ(1S)) −m (ηc(1S)) 110 ± 2 117 ± 2 6.0

m (ψ(2S)) −m (ηc(2S)) 85 ± 1 92 ± 5 7.6

m (ψ(3S)) −m (ηc(3S)) 83 ± 10

m (ψ(4S)) −m (ηc(4S)) 75 ± 8 TABLE XSplittings of the 1P levels of 
harmonium.
∆M Theory Experiment Deviation(MeV) (MeV) (%)

m (χc1(1P )) −m (χc0(1P )) 89 ± 1 96 ± 1 4.3
m (χc2(1P )) −m (χc1(1P )) 37.4 ± 0.2 45.6 ± 0.2 18.0the main 
ontributor to the system's energy and it treats the retarded termsperturbatively. The problem is that for 
harmonium, this s
heme does notprovide exa
tly the 
orre
t energy as it nearly does for bottomium, result-ing to larger deviations from experimental values. In 
ontrast to bottomiumwhere the 
orre
tions due to the Breit terms 
onstitute a small proportionof the total energy, in 
harmonium they are quite large. Anyway, larger 
or-re
tions to the stati
 energy (whi
h, also, 
ontains relativisti
 
ontributions)were expe
ted sin
e these terms are inversely proportional to the mass ofthe 
onstituent parti
les. By looking at the expe
tation value of the squareof the speed of the systems (Table III, Table IV and Table VIII), we 
an
on
lude that, indeed, although the relativisti
 
orre
tions are not negligi-ble, to some extent, both bottomium and 
harmonium 
an be regarded asnon-relativisti
 systems, with this assertion suiting more to bottomium.Another reason for the failure to obtain the 
orre
t results is the formof the potential that is supposed to des
ribe strong intera
tions. Althoughthe potential employed exhibits the 
orre
t behaviour at small and largedistan
es, we are not able to determine what it looks like in between. Inother words, we do not know its exa
t form. Certainly, a knowledge of thiswould lead to better results.In addition, we should not forget the order to whi
h the energy valueshas been 
al
ulated. If the wavefun
tion used, 
orresponded to the solutions
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trum would 
ontain 
orre
tions of order upto α4
s . For the wavefun
tions of the harmoni
 os
illator, the energies 
ontainterms of order up to αs. If we wish to 
al
ulate the energies more a

urately,we need to 
onsider higher order terms sin
e their in
lusion would provide anessential 
ontribution to the energy levels, however, again, the results shouldnot agree exa
tly with experiment. This is be
ause it is not possible to takeinto a

ount all diagrams. Thus, we should better 
ompare our results withother theories. We 
onsider the study 
ondu
ted by Ei
hten et al. (they,also, used a funnel potential as a possible form of the intera
tion) [28℄ on
harmonium. They �tted the parameters (αs = 0.39, κ = 926 GeV/fm) and
al
ulated the energies summarised in Table XI, Table XII. The asterisk (*)refers to the states used to �t the parameters. Their values are slightlydi�erent from those we used be
ause at the time those 
al
ulations were
arried out, the experimental data di�ered from the re
ent results. The

P -states, also, in these tables represent the 
enter-of-mass state of the j = 0,
j = 1, j = 2 states. TABLE XIThe 
harmonium spe
trum a

ording to Ei
hten et al. [28℄.Charmonium mc = 1.84 GeVState Energy (MeV)

J/ψ(1S) 3095∗

ψ(2S) 3684∗

ψ(3S) 4110

ψ(4S) 4460

ψ(5S) 4790

χc(1P ) 3522∗The 
oupling 
onstant of the intera
tion and the QCD s
ale parameterwere 
al
ulated in the previous subse
tion where we studied the bottomiumspe
trum. One might wonder whether it would be wise to allow the valuesof these parameters to be derived from the study of 
harmonium, instead.The problem is that in order to estimate these values, one approximationhas been made already by optimising the radial wavefun
tions of the three-dimensional harmoni
 os
illator (in addition to the approximation 
on
ern-ing the form of the potential and the approximation related to the e�e
tiveintera
tion). A more rigorous and a

urate pro
edure should assume theuse of the wavefun
tions of the funnel potential. It is true that 
harmoniumexhibits a more relativisti
 behaviour than bottomium and a very 
areful
onsideration should be taken, otherwise there is a danger of obtaining un-



Quark�Antiquark Bound States and the Breit Equation 2363TABLE XIIThe bottomium spe
trum a

ording to Ei
hten et al. [28℄.Bottomium mb = 5.17 GeVState Energy (MeV)
Υ(1S) 9460∗

Υ(2S) 10050

Υ(3S) 10400

Υ(4S) 10670

Υ(5S) 10920

Υ(6S) 11140

χb(1P ) 9960

χb(2P ) 10310

χb(3P ) 10600reliable results. The fa
t that bottomium 
onsists of heavier parti
les andthereby the system is regarded as less relativisti
 implies that su
h approx-imations as those performed throughout this work are less likely to resultin una

eptable and meaningless results if the parameters are 
al
ulated forbottomium. 6. Con
lusionsIn this paper, the appli
ation of the Breit equation to bound state ofsystems 
hara
terised by short-range intera
tions was studied. Despite the
lear la
k of 
ovarian
e of the equation, we assumed that it 
an be 
onsid-ered to be approximately Lorentz invariant for systems intera
ting througha very strong short-range potentials su
h as quarkonia and more spe
i�
ally,bottomium and 
harmonium. A funnel potential was introdu
ed as a 
an-didate potential des
ribing QCD and the Pauli approximation of the Breitequation was employed in order to distinguish the 
ontribution of the stati
terms of the intera
tion from that part of the intera
tion responsible for re-tardation. The solution of the Breit equation helped to obtain the spe
trumof bottomium and 
harmonium and to 
ompare them with experimentaldata. The S and P states as well as their splitting were 
al
ulated and itturned out that the results are, in general, in a very good agreement withexperiment. The Breit equation was, also, used to determine the 
oupling
onstant and the s
ale parameter of the strong intera
tion and they wereestimated to be αs = 0.36 ± 0.04 and Λ = 409 ± 40GeV, respe
tively.
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ess was attributed to the fa
t that the small speed ofthe states allowed the Breit terms to be treated perturbatively despite therelatively large 
oupling 
onstant (αs/m
2 is small while αs is large). Thelarge mass of the 
onstituent parti
les makes the systems less relativisti
,therefore the stati
 part of the intera
tion 
ontributes mu
h more to thebinding energy than the Breit terms.Unfortunately, for systems that are 
hara
terised by larger speed or,equivalently, by a smaller mass, the dis
repan
y between experiment andthe theory is large enough to raise 
on
erns over the reliability of the Breitequation as a satisfa
tory theory. This suggests that, in that 
ase, theBreit equation is not adequate to des
ribe systems of two fermions and analternative equation should be employed.I would like to thank N. Dombey for interesting and essential 
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