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QUARK�ANTIQUARK BOUND STATESAND THE BREIT EQUATIONGeorge D. TsibidisMathematis Institute, University of WarwikCoventry CV4 7AL, UKe-Mail address: tsibidis�iesl.forth.gr(Reeived June 21, 2004)A non-ovariant but approximately relativisti two-body wave equation(Breit equation) desribing the quantum mehanis of two fermions inter-ating with one another through a potential ontaining salar, pseudosalarand vetor parts is presented. After expressing the sixteen omponent two-body wavefuntion in terms of a radial and an angular funtion by meansof the multipole expansion, the initial equation an be redued into a setof sixteen radial equations whih, in turn, an be lassi�ed in aordaneto the parity and the state of the wavefuntions involved. The adequay ofthe redued equations in desribing real problems is disussed by applyingthe theory to QCD problems and the alulation of the energies of boundstates of quark�antiquark systems is performed to order α4. We show thatbound states of heavy quarks an be desribed adequately by the Breitequation for a funnel interation between the partiles.PACS numbers: 03.65.Ge, 03.65.Pm, 12.39.Jh, 12.39.Ki1. IntrodutionOver the years a number of equations has been introdued in an e�ort todesribe adequately the relativisti dynamis of a system of two interatingspin-1/2 partiles ( [1�6℄). The problem is to determine how the two fermionsbehave when they are in�uened by their mutual interation. The simplestrelativisti equation for fermions, the Dira equation, whih an desribethe quantum mehanis of a single fermion, is not useful for a two-fermionsystem unless the mass of one of the partiles is muh larger than that of theother partile. One equation that has been extensively used, in the past, isthe equation Breit proposed in 1929, whih desribes the interation betweentwo eletrons [2, 6�8℄

[E −H(1) −H(2) − Vint(|~x1 − ~x2|)ψ(~x1,~x2)] = 0 , (1)(2329)



2330 G.D. Tsibidiswhere H(i) = ~ai · ~pi + βm (i=1,2) is idential to the Dira Hamiltonianof the i partile and E is the total energy of the system. The interationbetween the two partiles equals Vint = VC + VB and it is partly due toan instantenous (stati) Coulomb interation VC and partly due to e�etspresribed by quantum eletrodynamis desribed by retardation terms
VB(~r) = −1

2VC(~r)(~a1 · ~a2 + ~a1 · r̂~a2 · r̂)whih is referred to, as �Breit Interation�. ~ai are the Dira matries,
~r(≡ ~x1 − ~x2) is the relative position vetor and r̂ is the unit vetor.Although the initial Breit equation involved two eletrons [7℄, we aimto generalise it for any two fermions. There are two requirements that theEq. (1) learly satis�es: (i) In the limit of negligent interation between thepartiles, Eq. (1) implies that the total energy of the system equals the sumof the energies of the partiles and the stationary wavefuntion ψ(~x1,~x2)is the produt of the wavefuntions ψ(~x1), ψ(~x2) whih are simply the so-lutions of the Lorentz-invariant Dira equations for eah partile, separately,(ii) In the non-relativisti limit, the Breit equation redues to the Shrödingerequation for a two-partile system.If retardation e�ets are ignored, the Breit equation redues to the Diraequation in the in�nite limit of the mass of one of the onstituent partilesand then, either equation an be used. Certainly, the former would providea more aurate desription beause orretions due to the motion of theheavier partile should be taken into aount.Unlike the Dira equation, the Breit equation laks a very importantingredient haraterising the relativisti equations, the ovariane. Eq. (1)is not written in a ovariant notation sine individual terms in the part rep-resenting the interation are not Lorentz invariant (the potential is not arelativistially invariant quantity). Besides this, not only does the wave-funtion in the Breit equation depend on the positions ~x1 and ~x2 but alsodepends on one time-variable (rather than an one time-variable eah for thetwo partiles), a fat that does not allow a Lorentz-invariant formulation.However, it an be onsidered ovariant in the enter-of-mass-frame beause,in that ase, the relative motion of the partiles is studied and there is onlyone position vetor whih omes into the equation, namely that one whihmeasures the distane between the two eletrons, ~r. Attempts have beenmade aiming at deriving a ovariant Breit equation by means of onstrain-ing the equations. It is too early to say whether this work is suessful [9℄.In spite of the fat that Breit equation manifestly laks ovariane, itappears that it an desribe e�iently the quantum mehanis of some two-body systems (at least approximately to the required auray) for long-range interations with small oupling [7, 10℄. When the equation was pro-posed by Breit in 1929 [2℄, QED was known and the long range Coulomb type



Quark�Antiquark Bound States and the Breit Equation 2331potential VC(~r) was the form of the instantaneous interation for hydrogen-like atoms. In ontrast to the stati VC(~r) whih is the zero-order term inthe (v/) expansion of the eletromagneti interation, the Breit intera-tion VB(~r) is the (v/)2 term (veloity-dependent) and it onstitutes only anapproximation to the relativisti interation between the two partiles. Thestudy of the �ne and hyper�ne struture for hydrogen-like atoms indiatesthat the Breit interation should not be onsidered on the same footing asthe Coulomb potential VC(~r). On the ontrary, it should be treated as asmall perturbation, otherwise it does not lead to orret results ( [10�15℄).The fat that the Breit equation gives satisfatory results for the Coulombpotential implies that the equation, although not ovariant, an provide agood desription to a two-body system for long-range interations.In this work, we aim to extend the appliation of the Breit equationto systems of fermions that interat with one another through a short-rangestrong potential. Due to the fat that the distane between the two partilesis very small, one position vetor su�es to desribe the system whih putsin the same footing time and position. Then, one might onsider the Breitequation is approximately ovariant and more ompatible with the speialtheory of relativity, in the ase of short-range strong interations.There has been a belief that the internal dynamis of quark�antiquarksystems an be desribed satisfatorily by two-body semi-relativisti equa-tions and some attempts have been made towards this diretion ( [13,16�34℄).This is a very interesting possibility sine it suggests a qq bound state ouldprovide a sort of �Hydrogen-atom� for QCD. In this paper, we onsiderfermionia omposed from heavy quarks (bottom, harm) and we assume thatthe partiles interat with eah other through a �funnel� potential [16, 28℄.Throughout this paper, we will handle the Breit equation by taking into a-ount the instantaneous interation between the partiles and treating thenon-stati terms perturbatively. It turns out that the Breit equation o�ersa very good desription of the systems and this is partly due to the fat thatthe onstituents are heavy partiles whose speed are very small so as to de-lare that a semi-relativisti treatment gives satisfatory results for ertainbound states of the two fermions. Unfortunately, this does not seem to holdtrue in the event of higher bound states as well as for bound states of lighterpartiles beause a relativisti treatment is neessary.One of the advantages of the Breit equation is that it an be handledrelatively easily by means of some standard tehniques (i.e. multipole teh-nique [23,35�38℄). The wavefuntion desribing the system is a sixteen om-ponent funtion and it an be used to obtain radial equations.



2332 G.D. TsibidisThis paper is organised as follows. We start in Setion 2 with the intro-dution of the Breit equation and we assume a general interation betweentwo spin-1/2 partiles inluding a vetor, salar and pseudosalar partileexhange. Using the multipole tehnique, we separate the equation intoits radial and angular parts and derive sixteen radial equations groupedaording to the values of the spin of the system. Then, we present the non-relativisti type of the potential whih desribes the interation betweentwo quarks [Setion 3℄ and we derive the radial equations that apply inthat ase [Setion 4℄. In Setion 5, we solve the equations for two types ofquarkonia, bottomium and harmonium, and we alulate the energy levelsof various bound states. This onsideration allows us to hek the validityof the Breit equation by omparing the results derived from the theory withwell-established results for bottomium and harmonium. Setion 6 ontainsbrief onluding remarks.2. The Breit equation and its redution to radial equationsWe onsider a two-body Dira equation (Breit equation) [2, 6�8℄
[
E − γ

(1)
0 (~γ(1) · ~p +m1) − γ

(2)
0 (−~γ(2) · ~p +m2) − Vint(|~r|)

]
ψ(~r) = 0 (2)desribing a system of two spin-1/2 partiles of masses m1 and m2, in theenter of mass frame, interating with eah other through a stati entralpotential of the form [10, 38℄

Vint(r) = VS(r) + VP(r) + VV(r) ,

VS(r) = −(γ
(1)
0 ⊗ γ

(2)
0 )S(r) ,

VP(r) = −(iγ
(1)
0 γ

(1)
5 ) ⊗ (iγ

(2)
0 γ

(2)
5 )P (r) ,

VV(r) = +[(γ
(1)
0 γ(1)

µ ) ⊗ (γ
(2)
0 γ(2)

µ )]
µ=0

V (r) , (3)where ~r ≡ ~x1 − ~x2, ~p ≡ ~p1 = −~p2, r ≡ |~x1 − ~x2|, and VS(r), VP(r)and VV(r) are the parts of the interation with salar, pseudosalar andvetor Lorentz struture, respetively. The hoie of the ombination of the
γ matries whih leads to the appropriate Lorentz struture is not unique,however, the seletion is based on some onditions whih should be satis�ed.To be more spei�, γ(1)

0 + γ
(2)
0 has a salar Lorentz struture, as well, andalthough it seems reasonable beause it ouples the potential S(r) diretlyto the mass of eah partile (a feature of the salar potential in ontrast tothe vetor potential whih ouples to the harge of the partiles) does not�ip the heliities of the fermions in the ase of the hiral representation.



Quark�Antiquark Bound States and the Breit Equation 2333The signs in front of the various forms of the potentials an be justi�edas follows: in QED, the vetor exhange is atually the Coulomb interationbetween partiles and if their harges have the same sign, then VV(r) ispositive. On the other hand, for salar and pseudosalar exhange the signof propagator is opposite to the Coulomb part of the photon propagator.The supersript i (i = 1, 2) whih appears in the γ matries refers tothe partile. The reason why in the ase of potentials with vetor Lorentzstruture only the γ(1)
0 , γ(2)

0 ontributions have been taken into aount, isthat the ~γ(i) matries give a non-stati harater to the potential sine theyintrodue veloity terms1. γ(1)(γ(2)) is the Dira matrix γ ating in thesubspae of the spinor of partile 1 (2) and it ats on ψ from the left (right)
γ(1)ψ ≡ γ(1)ψ ,

γ(2)ψ ≡ ψ(γ(2))T . (4)The total spin of the system of the two partiles is either S = 0 or S = 1,therefore the total angular momentum of the system is either j = l (for
S = 0) or j = l ± 1, l (for S = 1).The form Eq. (2) aquires depends on the representation of the γ matri-es. In the next subsetion, Eq. (2) is written in the Dira�Pauli represen-tation, where γ(i)

0 matries are taken to be diagonal. This hoie will allowus to examine the onnetion with the non-relativisti limit.2.1. Dira representationIn the Dira representation, γ(i)
0 matrix is diagonal

γ0 = β =

(
1 0
0 −1

)
, γ5 =

(
0 1
1 0

)
, ~γ =

(
0 ~σ

−~σ 0

)
. (5)The spinor ψ(~r) is a sixteen-omponent wave funtion and it an be repre-sented as a 4 × 4 matrix

ψ(~r) = (ψ
γ
(1)
0 γ

(2)
0

) =

(
ψ++ ψ+−

ψ−+ ψ−−

)
, (6)where the indies +,− are the eigenvalues (+1, −1) of the Dira matries

γ
(1)
0 , γ

(2)
0 in the so-alled double Dira representation [10, 36, 37℄. The leftindex refers to the �rst partile and the right one to the seond partile. Byinserting (3) and (5) and (6) into Eq. (2), the Breit equation takes the form

1 We reall the relation ~γ(i)
= γ

(i)
0 ~α(i)

= γ
(i)
0

~v(i)

c
, where ~v(i) is the veloity of the ipartile.
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E

(
ψ++ ψ+−

ψ−+ ψ−−

)
−
(

~σ(1) · ~pψ−+ ~σ(1) · ~pψ−−

~σ(1) · ~pψ++ ~σ(1) · ~pψ+−

)
−m1

(
ψ++ ψ+−

−ψ−+ −ψ−−

)

+

(
~σ(2) · ~pψ+− ~σ(2) · ~pψ++

~σ(2) · ~pψ−− ~σ(2) · ~pψ−+

)
−m2

(
ψ++ −ψ+−

ψ−+ −ψ−−

)

+S(r)

(
ψ++ −ψ+−

−ψ−+ ψ−−

)
− P (r)

(
ψ−− −ψ−+

−ψ+− ψ++

)

−V (r)

(
ψ++ ψ+−

ψ−+ ψ−−

)
= 0 . (7)In order to simplify Eq. (7) and bring it to a form whih an be handledeasily, we introdue the following omponents [36, 37℄

φ
φ0

}
= P0

i√
2
(ψ++ ∓ ψ−−) ,

~φ

~φ
0

}
=

1

2

(
~σ(1) − ~σ(2)

)
P1

1√
2
(ψ+− ± ψ−+) , (8)

χ
χ0

}
= P0

i√
2
(ψ+− ∓ ψ−+) ,

~χ

~χ0

}
=

1

2

(
~σ(1) − ~σ(2)

)
P1

1√
2
(ψ++ ± ψ−−) , (9)where

P0 =
1

4

(
1 − ~σ(1) · ~σ(2)

)
,

P1 =
1

4

(
3 + ~σ(1) · ~σ(2)

) (10)are the projetion operators on states with total spin S = 0 and S = 1,respetively,
P0|state〉 = |state S = 0〉 ,
P1|state〉 = |state S = 1〉 . (11)The omponents φ, φ0, χ, χ0 and ~φ, ~φ0, ~χ, ~χ0 orrespond to spin S = 0 and

S = 1, respetively and they are funtions of ~r. Noting that
P0

(
~σ(1) − ~σ(2)

)
=
(
~σ(1) − ~σ(2)

)
P1 ,

P0

(
~σ(1) + ~σ(2)

)
=
(
~σ(1) + ~σ(2)

)
P0 = 0 (12)



Quark�Antiquark Bound States and the Breit Equation 2335and by means of the identities
P0

(
σ

(1)
i σ

(2)
k + σ

(1)
k σ

(2)
i

)
= −2δikP0 ,

P0

(
σ

(1)
i σ

(2)
k − σ

(1)
k σ

(2)
i

)
= iP0ǫikl

(
~σ(1) − ~σ(2)

)

l
,

→֒ P0

(
σ

(1)
i − σ

(2)
i

)(
σ

(1)
k ± σ

(2)
k

)
=

{
2iP0ǫikl

(
~σ(1) − ~σ(2)

)

l
,

2P0δik .
(13)Eq. (7) leads to the following set of omponent wave equations [10, 36, 37℄

1

2

[
E + S(r) − P (r) − V (r)

]
φ0 − (m1 +m2)

2
φ− i~p · ~φ = 0 ,

1

2

[
E + S(r) + P (r) − V (r)

]
φ− (m1 +m2)

2
φ0 = 0 ,

1

2

[
E − S(r) + P (r) − V (r)

]
χ0 − (m1 −m2)

2
χ− i~p · ~χ = 0 ,

1

2

[
E − S(r) − P (r) − V (r)

]
χ− (m1 −m2)

2
χ0 = 0 ,

1

2

[
E + S(r) − P (r) − V (r)

]
~χ − (m1 +m2)

2
~χ0 + i~pχ0 = 0 ,

1

2

[
E + S(r) + P (r) − V (r)

]
~χ0 − (m1 +m2)

2
~χ + i~p × ~φ0 = 0 ,

1

2

[
E − S(r) + P (r) − V (r)

]
~φ − (m1 −m2)

2
~φ0 + i~pφ0 = 0 ,

1

2

[
E − S(r) − P (r) − V (r)

]
~φ0 − (m1 −m2)

2
~φ + i~p × ~χ0 = 0 . (14)The type of the potential we onsider is entral therefore the next step wewill follow is the introdution of a method that will eventually separatethe angular from the radial dependenes as it was performed in the threedimensional Shrödinger equation. To this end, it is onvenient to introduethe derivative

∂

∂ni⊥
≡ (δik − nink)

∂

∂nk
, (15)where ~n = ~r

r is a three dimensional vetor, while ∂
∂~n⊥

lies in the perpendiu-lar plane [ni ∂
∂ni⊥

= ni(δik − nink)
∂
∂nk

= nk
∂
∂nk

− nk
∂
∂nk

= 0
]. Some useful



2336 G.D. Tsibidisidentities that are going to be used are the following
∂

∂~r
=

1

r

∂

∂~n⊥

+ ~n
∂

∂r
,

∂

∂~n⊥

· ~n = (δik − nink)
∂

∂nk
ni = (δik − nink)δki = 3 − 1 = 2 . (16)Then, ~▽

2
= ∂2

∂~r2 = (1
r

∂
∂~n⊥

+ ~n ∂
∂r )

2 = ∂2

∂r2 + 1
r2

∂2

∂~n
2
⊥

+ 2
r
∂
∂r . This form of theLaplaian indiates that ∂2

∂~n
2
⊥

was orretly regarded as the angular part ofthe Laplaian. 2.2. Expansion of the wavefuntionsThe omponent funtions de�ned by (8) and (9) are lassi�ed in twogroups: the salar (φ, φ0, χ, χ0) whih refer to states with S = 0, and thevetor (~φ, ~φ0, ~χ, ~χ0)) whih orrespond to states with S = 1 [10, 36�38℄.These funtions an be expanded in the following way:(i) Salar funtions (S = 0).The salar funtions an be written as
B(~r) =

∑

j,m

B(r)Yjm(~n) , (17)where B(~r) stands for any of the four S = 0 omponent funtions, B(r)is the radial part of the funtion and Yjm(~n) are the spherial harmonisdepending only on the angles.(ii) Vetor funtions (S = 1).We de�ne an operator Sk whih ats on any of the four vetor omponents(8), (9) as follows
Sk( ~A(~r))|i ≡

1

2
(~σ(1) − ~σ(2))iP1

(
1

2

(
~σ(1) + ~σ(2)

)

k

)
1√
2
(. . .) , (18)where (. . .) equals (ψ+−+ψ−+) (for ~φ), (ψ+−−ψ−+) (for ~φ0 ), (ψ+++ψ−−)(for ~χ), (ψ++−ψ−−) (for ~χ0) and ~A(~r) is any of the four vetor omponents.We notie that the operator Sk does not at on ~A(~r) from the left sine inthat ase it would give zero (1

2

(
~σ(1) + ~σ(2)

)

k

1
2

(
~σ(1) − ~σ(2)

)

i
P1

(12)
= 0

).From the de�nition of Sk( ~A(~r))|i, it is lear that Sk( ~A(~r))|i = iǫikl φl. Bymaking use of the multipole tehnique [10, 36, 37℄, it is possible to expand



Quark�Antiquark Bound States and the Breit Equation 2337any vetor omponent ~A(~r) into three parts: �eletri� (Ae), �longitudinal�(Al) and �magneti� (Am)de�ned as
Ae(~r) =

∑

j,m

Ae(r)Yjm(~n) ,

Al(~r) =
∑

j,m

Al(r)Yjm(~n) ,

Am(~r) =
∑

j,m

Am(r)Yjm(~n) ,

~A(~r) = ~nAe(~r)︸ ︷︷ ︸
~Ae(~r)

− ∂

∂~n⊥

Al(~r)

j(j + 1)︸ ︷︷ ︸
~Al(~r)

− (~n × ∂

∂~n⊥

)
Am(~r)

j(j + 1)︸ ︷︷ ︸
~Am(~r)

. (19)
(In the rest of our study, for the sake of simpliity, we will the drop thesummation symbol∑

j,m

). It may seem that j in Yjm is the orbital momentumrather than the total one. But this is not true for the funtion ~A(~r) beausethe vetors to whih it is proportional, depend on angles. Atually, if ~Sand ~L are the total spin and total orbital angular momentum operators,respetively, then for eah part of ~A(~r), for instane ~Ae(~r) ≡ ~nAe(r)Yjm(~n),one has [10℄
Jk( ~Ae(~r))|i = Sk( ~Ae(~r))|i + Lk( ~Ae(~r))|i

= iǫiklnlAe(r)Yjm(~r) − iǫklanl
∂

∂na
(niAe(r)Yjm(~n))

= −iǫklanlniAe(r)
∂Yjm(~n)

∂na
= ~niLk(Ae(r)Yjm(~n))

=⇒ ~J
2 ~Ae(~r) = ~nL2(Ae(r)Yjm(~n)) = j(j + 1) ~Ae(~r)whih implies that j is the total angular momentum. By inserting (17), (19)into Eqs. (14), we manage to eliminate the angular dependenes and the



2338 G.D. TsibidisBreit equation redues to the following set of sixteen radial equations
1
2

[
E + S(r) − P (r) − V (r)

]
φ0 − (m1+m2)

2 φ−
(

d
dr

+ 2
r

)
φe − 1

r
φl = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
φ− (m1+m2)

2 φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
χ0 − (m1−m2)

2 χ−
(

d
dr

+ 2
r

)
χe − 1

r
χl = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
χ− (m1−m2)

2 χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χe − (m1+m2)

2 χ0
e + d

dr
χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χl − (m1+m2)

2 χ0
l −

j(j+1)
r

χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χm − (m1+m2)

2 χ0
m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

e − (m1+m2)
2 χe + 1

r
φ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

l −
(m1+m2)

2 χl −
(

d
dr

+ 1
r

)
φ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

m − (m1+m2)
2 χm + j(j+1)

r
φ0

e +
(

d
dr

+ 1
r

)
φ0

l = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φe − (m1−m2)

2 φ0
e + d

dr
φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φl − (m1−m2)

2 φ0
l −

j(j+1)
r

φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φm − (m1−m2)

2 φ0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

e − (m1−m2)
2 φe + 1

r
χ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

l − (m1−m2)
2 φl −

(
d
dr

+ 1
r

)
χ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

m − (m1−m2)
2 φm + j(j+1)

r
χ0

e +
(

d
dr

+ 1
r

)
χ0

l = 0 .(20)At this point, we will onentrate on the properties of the salar andvetor omponents as well as the new omponents to whih they have beenexpanded. As pointed out earlier, the salar omponents φ, φ0, χ, χ0 desribethe S = 0 states, while the rest, the vetor omponents, desribe the stateswith S = 1. In the latter ase, for ~χ, there are three states haraterised bythe spetrosopi signatures 3(j−1)j ,
3 (j+1)j and 3jj (in the atomi notation

2S+1Lj) desribed by the wave-funtions χl=j−1, χl=j+1 and χl satisfying the
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χe =

√
j

2j + 1
χl=j−1 +

√
j + 1

2j + 1
χl=j+1 ,

χl =
√
j(j + 1)

(
−
√

j + 1

2j + 1
χl=j−1 +

√
j

2j + 1
χl=j+1

)
,

χm =
√
j(j + 1)χl=j . (21)Certainly, this an be generalised for the rest of the S = 1 omponents: ~χ0, ~φand ~φ

0. The �magneti� omponent is hosen to have l = j while the �ele-tri� and the �longitudinal� omponents have l = j ± 1 mixed if j > 0 (and
l = 1, if j = 0). If j = 0, then there should be only one χ omponent and wenote this is satis�ed sine χl = χm = 0 and χl=j−1 = χl=j = 0, χl=j+1 = χe.There are only two states with j = 0, 1S0 (j = 0, l = 0, S = 0) and 3P0(j = 0, l = 1, S = 1).The expressions (8) and (9) indiate that, for S = 0, the �large�large�(ψ++) and �small�small� (ψ−−) omponents are ontained in the ~χ, ~χ0and the �large�small� (ψ+−) and �small�large� (ψ−+) omponents appearin the ~φ, ~φ

0. In addition, all �eletri� and �longitudinal� omponents of the
~χ, ~χ0, ~φ, ~φ

0 orrespond to states with magneti quantum number ms = ±1while the �magneti� omponents desribe states with ms = 0. On the otherhand, the states with S = 0 have the spetrosopi notation 1jj and the�large�large� (ψ++) and �small�small� (ψ−−) omponents are ontained inthe φ, φ0 and the �large�small� (ψ+−) and �small�large� (ψ−+) omponentsappear in the χ, χ0. All φ, φ0, χ, χ0 orrespond to states with ms = 0.The parity of the system equals P = η(−1)l, where η = 1 or −1 forfermion�fermion or fermion�antifermion system, respetively. The sixteenomponents have the following parity:(i) φ, φ0 : P = η(−1)j beause they both desribe the S = 0 states,therefore l = j,(ii) φe, φ0
e, φl, φ

0
l : P = −η(−1)j+1 (or −η(−1)j−1 whih gives the sameresult) = η(−1)j . Aording to (21) the �eletri� and �longitudinal�omponents are ombinations of states with l = j + 1 and l = j − 1and this justi�es the exponent j+1 (or j−1). The (−) sign in front of

η is due to the fat that all these funtions are ombinations of �small�and �large� omponents,(iii) χm, χ0
m : P = η(−1)j ((21) implies that the �magneti� omponentorresponds to l = j states),



2340 G.D. Tsibidis(iv) χ, χ0 : P = −η(−1)j . Both χ, χ0 desribe S = 0 states therefore l = j,however, in ontrast to the parity of the φ, φ0, there is a minus signwhih is attributed to the fat that χ, χ0 are ombinations of �small�and �large� omponents,(v) χe, χ0
e, χl, χ

0
l : P = −η(−1)j , (as in (ii)),(vi) φm, φ0

m : P = −η(−1)j , (as in (iii)).Again, the ombination of �small� and �large� omponents aounts for theminus sign in (v), (vi). To summarise, the omponents φ, φ0, φe, φ
0
e, φl,

φ0
l , χm, χ

0
m have parity P = η(−1)j while the omponents χ, χ0, χe, χ

0
e, χl,

χ0
l , φm, φ

0
m have parity P = −η(−1)j . We all the former ase, PseudosalarPartile Trajetory (PPT) while the latter is alled Vetor Partile Traje-tory (VPT) [36,37℄. The �large�large� and �small�small� omponents in thePPT are ontained in the φ, φ0, χm, χ

0
m and have spetrosopi signature

1jj or 3jj. In the VPT, the �large�large� and �small�small� omponents areontained in χe, χ0
e, χl, χ

0
l and have signature 3(j − 1)j or 3(j + 1)j .Returning to Eqs. (20) and by making use of the previous disussion,that set of equations an be split into two sets of equations aording towhether they belong to the PPT or VPT regime. To be more spei�, ifthe two fermions do not possess the same mass, the following two sets ofequations are obtained from Eqs. (20) [10, 36, 37℄(i) PPT, 1jj or 3jj , P = η(−1)j .

1
2

[
E + S(r) − P (r) − V (r)

]
φ0 − (m1+m2)

2 φ−
(

d
dr

+ 2
r

)
φe − 1

r
φl = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
φ− (m1+m2)

2 φ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χm − (m1+m2)

2 χ0
m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

m − (m1+m2)
2 χm + j(j+1)

r
φ0

e +
(

d
dr

+ 1
r

)
φ0

l = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φe − (m1−m2)

2 φ0
e + d

dr
φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φl − (m1−m2)

2 φ0
l −

j(j+1)
r

φ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φm − (m1−m2)

2 φ0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

e − (m1−m2)
2 φe + 1

r
χ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

l −
(m1−m2)

2 φl −
(

d
dr

+ 1
r

)
χ0

m = 0 .(22)
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1
2

[
E − S(r) + P (r) − V (r)

]
χ0 − (m1−m2)

2 χ−
(

d
dr

+ 2
r

)
χe − 1

r
χl = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
χ− (m1−m2)

2 χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χe − (m1+m2)

2 χ0
e + d

dr
χ0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χl − (m1+m2)

2 χ0
l −

j(j+1)
r

χ0 = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

e − (m1+m2)
2 χe + 1

r
φ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0

l −
(m1+m2)

2 χl −
(

d
dr

+ 1
r

)
φ0

m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0

m − (m1−m2)
2 φm + j(j+1)

r
χ0

e +
(

d
dr

+ 1
r

)
χ0

l = 0 .(23)On the other hand, in the ase of equal masses m1 = m2 = m, theset PPT splits into two subsets, one with spetrosopi signature 1jj and aseond with 3jj while the VPT remains unhanged(i) PPT, 1jj , P = η(−1)j .
1
2

[
E + S(r) − P (r) − V (r)

]
φ0 −mφ−

(
d
dr + 2

r

)
φe − 1

rφl = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
φ−mφ0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φe + d

drφ
0 = 0 ,

1
2

[
E − S(r) + P (r) − V (r)

]
φl − j(j+1)

r φ0 = 0 . (24)(ii) PPT, 3jj , P = η(−1)j .
1
2

[
E + S(r) − P (r) − V (r)

]
χm −mχ0

m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
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r φ0
e +

(
d
dr + 1

r

)
φ0
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1
2

[
E − S(r) − P (r) − V (r)

]
φ0
e + 1

rχ
0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0
l −

(
d
dr + 1

r

)
χ0
m = 0 .(25)
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1
2

[
E − S(r) + P (r) − V (r)

]
χ0 −

(
d
dr + 2

r

)
χe − 1

rχl = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χe −mχ0

e + d
drχ

0 = 0 ,

1
2

[
E + S(r) − P (r) − V (r)

]
χl −mχ0

l −
j(j+1)
r χ0 = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0
e −mχe + 1

rφ
0
m = 0 ,

1
2

[
E + S(r) + P (r) − V (r)

]
χ0
l −mχl −

(
d
dr + 1

r

)
φ0
m = 0 ,

1
2

[
E − S(r) − P (r) − V (r)

]
φ0
m + j(j+1)

r χ0
e + ( ddr + 1

r )χ
0
l = 0 . (26)The remaining two omponents χ, φm vanish in the event of the partileshaving the same mass m.3. A potential for quarkoniumIn the Introdution, we disussed the lak of ovariane haraterisingthe Breit equation. The wavefuntion of the system of the two fermionsdepends on the position of the two partiles (that is, two vetors, eah forthe two partiles, are neessary) while it depends only on one time vari-able. This fat does not allow a Lorentz-invariant formulation. However, ifa very strong, short-range potential is onsidered to govern the interationof the two partiles, we an assume the two partiles are so lose to one an-other that just one position vetor is enough to desribe the motion and thequantum mehanis of the system. In this ase, the number of the positionvetor variables equals that of the time variables and we an assume that theequation beomes approximately ovariant. The question rising is whetherthere exist suh interations between partiles and if there are systems offermions to whih the Breit equation an be applied and subsequently betested. Talking about small distanes, we are led to the plausible questionof what happens at distanes up to 1 fermi whih is a feature of the stronginterations between quarks. It is known that there are systems, quarkonia,whih are bound states of quarks and antiquarks. Atually, experimentaldata about many of these states exist [41℄, therefore, one ould maintainthat they onstitute a laboratory where the validity of any theory aiming atdesribing them, an be tested.



Quark�Antiquark Bound States and the Breit Equation 2343In the non-relativisti limit, the quark�antiquark interation is domi-nated by vetor and salar potential [10, 33℄. The former, whih is of theCoulomb type onstitutes the interation at small distanes and orrespondsto one gluon exhange. In that ase, quarkonium an be viewed as the �hy-drogen atom� of strong interation Physis. By ontrast, at large distanes,on�nement dominates and the interation is proportional to the interparti-le distane. The on�ning part of the potential has salar struture [10,33℄and thereby the interquark potential onsists of a Coulomb part whih is ofvetor type and a linear part whih is of salar type
Vint(r) = VV(r) + VS(r)

= −4

3

αs(Q
2)

r

[
(γ

(1)
0 γ(1)

µ ) ⊗ (γ
(2)
0 γ(2)

µ )
]

+ κr(γ
(1)
0 ⊗ γ

(2)
0 ) , (27)where αs is the oupling onstant of the strong interation, Q2 is the relevantmomentum transfer and κ is the string onstant [39℄.Certainly, the non-relativisti part of the potential is not su�ient if wewish to test the Breit equation. The ontribution of relativisti orretionsare required and we must take them into aount. At this point, we re-all that the original Breit equation ontained terms alled Breit interationthat aount for relativisti orretions. The inlusion of the Breit intera-tion in the original equation does not lead to orret results ( [10�15℄) forertain quantum-mehanial systems. Unless this term is treated as a smallperturbation, the results di�er from the well-established data.By studying the sattering amplitude for a partile�antipartile ollision[10, 40℄, we an derive an e�etive potential in the Pauli approximation ofthe Breit equation. That potential will aount for the interation and itwill inlude both relativisti and non-relativisti ontributions. We needbear in mind that the Breit interation is the seond-order term in the (v/c)expansion of a Coulomb interation. In the Pauli approximation, the vetorpart of the quark�antiquark potential ontributes the following term to theinteration

UVector (~p,~r) =

{
−4

3

αs

r

}
+ V1 + V2 + V3 ,

V1 =

{

− ~p4

8m3
1

− ~p4

8m3
2

+
2

3
παs

(
1

m2
1

+
1

m2
2

)
δ(~r)

}

− 2αs

3m1m2r

[

~p2 +
(~r · ~p)2

r2

]

,



2344 G.D. Tsibidis
V2 =

{
2αs

3r3

[
1

m2
1

~L · ~S1 +
1

m2
2

~L · ~S2

]}
+

4αs

3m1m2r3
~L · ~S ,

V3 =
2αs

m1m2r3



−
1

3
~S

2
+

(
~r · ~S

)2

r2



+
16παs

9m1m2

(
~S

2 − 3

2

)
δ(~r) , (28)where the {. . .} terms orrespond to the stati part of the interation. Therest of the terms are responsible for retardation e�ets and they an be as-soiated to the Breit interation. We emphasise that this derivation is inanalogy with the proedure followed towards obtaining the retarded part ofthe potential in a partile�antipartile eletromagneti interation (satter-ing). We reall, that in that ase, the ontribution of the Dik (i, k = 1, 2, 3)part of the photon propagator in the Coulomb gauge was taken into a-ount [40℄.On the other hand, the salar on�ning potential ontributes only tothe stati part of the interation. Unlike the vetor part of the interation,the salar term of the potential annot lead to the emergene of retardede�ets sine there is not an equivalent of the photon propagator that wouldresult in suh a ontribution. The sattering amplitude leads to the followinginteration operator [10, 33℄

UScalar (~r) = {κr} + V4 ,

V4 =

{
− 1

2m2
1m

2
2

κ

r
~L ·
(
m2

1
~S2 +m2

2
~S1

)}
, (29)where {. . .} merely imply that the interation is haraterised by stati be-haviour. For partiles with the same mass, V2, V4 orrespond to the spin�orbit interation. Although both potentials, (VVector) and (VScalar) are at-trative, they give the opposite sign of spin�orbit interation, a feature whihis going to result in a quite interesting e�et regarding the ordering of thestates (Setion 5.1). In addition, we should stress the absene of a spin�spin interation in the on�ning potential meaning that tensor fores areontained entirely in the Coulomb-like vetor potential. The absene ofspin�spin and tensor terms in the salar interation as well as the di�er-ent form of spin�orbit terms between the linear and Coulomb-like potentialsonstitute the most striking di�erene between the two types of interation.So far, the form of the potential desribing strong interations has beendisussed to some extent but nothing has been mentioned about the ef-�ieny of suh a potential. The harmonium and bottomium spetra are



Quark�Antiquark Bound States and the Breit Equation 2345well-known [41℄, therefore the auray of the potential besides the adequayof the Breit equation in desribing strong interations an be tested. Next,we will follow a proedure towards alulating the energy levels of variousbound states of quark�antiquark systems, however, we have to obtain �rstthe equations. In the following setion, we will derive the radial equationsfor those systems as they are produed by means of the Eqs. (24)�(26).4. Appliation of the Breit equation to quarkoniumThe quark�antiquark bound states an be lassi�ed in three ategoriesaording to their spetrosopi signature [10℄:(i) States with j = l, S = 0.After making the substitutions V (r) = −4
3
αs
r , S(r) = −κr and eliminatingall omponents but φ0, Eqs. (24) lead to
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+
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φ0(r) = 0 . (30)(ii) States with j = l, S = 1.Similarly, Eqs. (25) give
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χ0
m(r) = 0 . (31)(iii) States with j = l ± 1, S = 1.Finally, Eqs. (26) an be redued to the following two oupled di�erentialequations
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.(33)The behaviour of the omponent wavefuntions in the above equations nearthe origin an be dedued easily if we notie that at very small interpartiledistanes, the dominant part of the potential has a vetor, Coulomb-likeform. Thus, the wavefuntions for small r look like
state 1ll , rφ0 ∼ rγ+1 , γ = −1 +

√
1 + j(j + 1) − 4

9
α2
s ,

state 3ll , rχ0
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−1 +
√
j(j + 1) − 4
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2
s

.(34)On the other hand, due to the inlusion of the on�ning potential, thewavefuntions have a di�erent behaviour at large distanes. They look like
∼ e−

1
4
κr2 . The behaviour of the wavefuntions near the origin and at largedistanes will be used in the next setions in order to solve the di�erentialequations desribing the dynamis of the quantum mehanial systems.



Quark�Antiquark Bound States and the Breit Equation 23475. Solution of the equationsAs pointed out in the previous setions, the energy levels of the variousstates are derived from the solution of the above radial equations, however,those values do not represent the omplete energy sine the potential usedis merely the stati potential. The ontribution of the retarded part ofthe interation should be inluded to obtain the relativisti orretions tothe energy. The stati part onsists of the {. . .} terms in the expressions[(28), (29)℄ while the rest are the retarded terms. At this point, we shouldreall that we do not expet satisfatory results unless the Breit (retarded)terms are treated by �rst order perturbation theory for partiular states.The appliation to QED problems ( [10�15℄) demonstrated this assertion isorret. In that ase, the total energy of the system is given by the expression
Etotal = Estatic + 〈state |Vretarded| state〉 , (35)where |state 〉 stands for the stationary unperturbed states for the Coulombpotential. The same proedure an be followed when the potential has theform (27), however, unlike QED problems, the eigenstates are not knownand they should be alulated before we proeed. Unfortunately, an exatsolution for suh a potential annot be obtained and an approximate methodshould be tried. One way is by treating the Coulomb term as a small per-turbation [42℄. Another method, whih will be employed in this paper, isto use the three-dimensional isotropi harmoni osillator (TDIHO) eigen-states [10,43℄. The potential of the harmoni osillator provides on�nementof quarks and the important feature of this potential is that the wavefun-tions and the matrix elements an be alulated easily and they an possessan expliit form. The parameters of the wavefuntions will be adjusted soas to �t the numerially alulated eigenfuntions for the potential (27).The interation potential of TDIHO equals

VTDIHO = 1
2µω

2r2 , (36)where µ and ω are �tting parameters. The energy levels of the system aregiven by the expression
E(nr, l) =

(
2nr + l + 3

2

)
ω, nr, l = 0, 1, 2, . . . (37)and the normalised radial parts of the wavefuntions whih are going to beused are the following [43℄
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2 + 1512λ2
5Sr

4

−288λ3
5Sr

6 + 16λ4
5Sr

8
)
B5S(r) ,

R6S =
1√

9979200

(
10395 − 34650λ6Sr

2 + 27720λ2
6Sr

4

−7920λ3
6Sr

6 + 880λ4
6Sr

8 − 32λ5
6Sr

10
)
B6S(r) ,where Bindex ≡ B (λ1S → λindex). λ1S ≡ λ = µω while the rest of the λs arefuntions of λ1S and their values will be determined from experimental data.This is done beause the harmoni osillator is an approximation of the �fun-nel� potential [16,28℄ therefore the values of the various parameters need tobe adjusted to be in agreement with the experimental values of the orre-sponding quantities. It is neessary to emphasise that the λs have a massdependene implying that the relation among them whih will emerge is notthe same for all quarkonium systems. The parameters µ, ω, in turn, anbe estimated by omparing the values of the quantities in whih they enterwith those derived from experimental data. The leptoni widths, the massdi�erenes and the various energy levels of some ertain states are quanti-ties that an help us to estimate not only those parameters but also otherparameters suh as the oupling onstant αs, the string onstant κ and thequark masses. To ahieve this goal, we will take advantage of the knowledgeof the energy levels of the harmonium and bottomium systems [41℄.5.1. The bottomium systemWe aim to estimate the energies of the twelve states of the bottomiumsystem whih are spin triplet states, i.e. S = 1 (ortho-bottomium). The

1−−, 0++, 2++ states are vetor mesons and the stati part of the interationbetween the onstituent partiles leads to the desription of their dynamis



Quark�Antiquark Bound States and the Breit Equation 2349by Eqs. (32), (33). On the other hand, the rest of the states, denoted with
1++, are pseudosalar mesons and they are desribed by Eq. (31). Finally,six more pseudosalar meson states (Table I) (with JPC = 0−+, 1+−) willbe onsidered and Eq. (30) desribes those states. Unlike QED, the expliitform of the potential of QCD and the oupling strength are not knowntherefore a method towards estimating them should be formulated. Theproedure beomes more di�ult if we remember that the solution of theabove equations is not enough to get the energy spetrum sine the valuesalulated aount only for a part of the whole energy. The rest of theontribution results from relativisti e�ets due to the non-instantaneousinteration whih should not be ignored. The ombination leads to theproblem resisting an analyti treatment and only a numerial method seemsapable of solving it. TABLE IEnergy levels of not experimentally measured bottomium states as a funtion ofthe parameters αs,mb, λs.Meson JPC Energy due to Energy orretions due tostates the stati potential the Breit terms (Aindex = 1

9
αs

m2
b

√
λ3
index

π

)

η(1S) 0−+ Estatic(η(1S)) −48.0A1S

η(2S) 0−+ Estatic(η(2S)) −416.0A2S

η(3S) 0−+ Estatic(η(3S)) −603.2A3S

η(4S) 0−+ Estatic(η(4S)) −769.7A4S

h(1P ) 1+− Estatic(h(1P )) −128.0A1P

h(2P ) 1+− Estatic(h(2P )) −268.8A2PSine the oupling onstant αs of the system as well as the mass of thebottom quark mb are not known, the use of some of the states to determinethese values is inevitable. In addition, there are some more parameters whihneed to be estimated: the string onstant κ and the λs. Before we embarkon alulating the various quantities, we will �rst attempt to express theenergies of the states in terms of the unknown parameters.The energy of the system onsists of two parts, one oming from thenon-perturbative solution of the Eqs. (30)�(33) and another derived fromthe perturbative treatment of the non-retarded parts of V1, V2, V3 in (28) byreplaing m1,m2 with mb ≡ m. The former will be alled Estatic while thelatter whih is non-instantaneous, in nature, will be alled Enon−static. Theombined result in the total energy of the system Esystem is
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Esystem = Estatic + 〈V1 + V2 + V3〉︸ ︷︷ ︸

Enon−static

= Estatic +

〈
− 2αs

3m2

[
−2

r

d2

dr2
− 2

r2
d

dr
+

1

r3
~L

2
]

+
4αs

3m2r3
~L · ~S +

2αs

m2r3



−
1

3
~S

2
+

(
~r · ~S

)2

r2





︸ ︷︷ ︸
S12

+
16παs

9m2

(
~S

2 − 3

2

)
δ (~r)

〉
. (38)The spin�orbit perturbative orretion and S12 vanish for S-states whilethe δ funtions give a non-zero ontribution. By ontrast, the P -states areharaterised by the opposite behaviour (~L · ~S, S12 6= 0, 〈δ (~r)〉 = 0

). InTable II, the energies of various states are summarised and we notie thatthe knowledge of the λs is neessary to obtain the values of the orretionsdue to the Breit terms. The deay widths of the states will be used, next,to evaluate the relation of the λs and other parameters to some measuredTABLE IIEnergy levels of bottomium as a funtion of the parameters αs,mb, λs.Meson Energy due to Energy orretions due tostates the stati potential the Breit terms (Aindex = 1
9

αs

m2
b

√
λ3
index

π

)

Υ(1S) Estatic(Υ(1S)) +8.0A1S

Υ(2S) Estatic(Υ(2S)) −80.0A2S

Υ(3S) Estatic(Υ(3S)) −183.2A3S

Υ(4S) Estatic(Υ(4S)) −279.7A4S

Υ(5S) Estatic(Υ(5S)) −371.0A5S

Υ(6S) Estatic(Υ(6S)) −458.1A6S

χb0(1P ) Estatic(χb0(1P )) −320.0A1P

χb1(1P ) Estatic(χb1(1P )) −160.0A1P

χb2(1P ) Estatic(χb2(1P )) −70.4A1P

χb0(2P ) Estatic(χb0(2P )) −518.4A2P

χb1(2P ) Estatic(χb1(2P )) −310.4A2P

χb2(2P ) Estatic(χb2(2P )) −193.9A2P



Quark�Antiquark Bound States and the Breit Equation 2351quantities. The �Correted Van Royen�Weisskopf� formula [18, 26℄
Γ
(
V → e+e−

)
=

16πα2Q2
b

m2
V

|ψ(0)|2
(

1 − 16

3π
αs

)
, α =

1

137
, Qb =

1

3(39)relates the leptoni width, i.e. e+e− deay of the neutral V vetor mesons,and the wavefuntion of bottomium at the origin. mV stands for the mass ofthe meson. Although the oupling onstant has not been estimated yet, thefat that we are dealing with strong interations suggests that the radiativeorretions are so large that only ratios suh as
r(V ′/V ) ≡ Γ (V ′ → e+e− or µ+µ−)

Γ (V → e+e− or µ+µ−)
=

m2
V(

m′

V

)2
|ψ′(0)|2

|ψ(0)|2
(40)an be alulated reliably beause the orretions are suppressed and do notappear in the above expressions. In (40), V ′ is another vetor state of thequarkonium system having mass m′

V . All 1−− vetor states an deay intoan eletron�positron (or muon�antimuon) pair and the �ve ratios of thesedeays with respet the �referene deay� of the Υ(1S) state are given fromexperiment [41℄
r(2S/1S)µ ≡

E2
Υ(1S)

E2
Υ(2S)

∣∣ψΥ(2S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.4 ± 0.1 , (41)

r(3S/1S)µ ≡
E2

Υ(1S)

E2
Υ(3S)

∣∣ψΥ(3S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.37 ± 0.06 , (42)

r(4S/1S) ≡
E2

Υ(1S)

E2
Υ(4S)

∣∣ψΥ(4S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.18 ± 0.04 , (43)

r(5S/1S) ≡
E2

Υ(1S)

E2
Υ(5S)

∣∣ψΥ(5S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.23 ± 0.05 , (44)

r(6S/1S) ≡
E2

Υ(1S)

E2
Υ(6S)

∣∣ψΥ(6S)(0)
∣∣2

∣∣ψΥ(1S)(0)
∣∣2 = 0.10 ± 0.02 (45)(the index µ in (41) and (42) indiates that the vetor mesons involveddeay into muon�antimuon pairs). Eah one of r(nS/1S) (n = 2, . . . 6) is afuntion of the energy of the system and two λs, i.e., λ1S and λnS .The relations (41)�(45) an be used to establish the relation among the

λs, energies and m. (38) is another useful expression whih will be employedin order to alulate the energies of the various states as well as the values of
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αs, κ,m. The part of the energy due to the instantaneous interation shouldbe ombined with the non-retarded orretions so that the energy obtainedis in agreement with experiment. This is alled ��tting proedure� and itwill help us to determine the four unknown parameters αs, κ,m, λ1S . Therest of the λs, assoiated with the S-states, are related to them throughthe deay widths Γ (V → e+e−) whose values are well established. Thereare two more λs, namely, λ1P and λ2P whih annot be alulated au-rately by means of the transitions deays, as pointed out in the previousparagraph. The total number of the unknown parameters, i.e. six, requiressix energy values to be set as input values. We hoose the energies of the
Υ(1S),Υ(2S),Υ(3S),Υ(4S), χb1(1P ), χb1(2P ) states as the input values.Although P -states with the same prinipal quantum number an be used,we avoid it beause they orrespond to energies very lose to one anotherwhih may lead to wrong results. The harmoni osillator wavefuntionsonstitute an approximation to the real wavefuntions of the funnel poten-tial and in the stage of optimising them, the method may be too sensitive tosmall energy di�erenes. Thus, we hoose the following values establishedby experiment [41℄

E [Υ(1S)] = 9460.37 ± 0.21 MeV ,

E [Υ(2S)] = 10023.30 ± 0.31 MeV ,

E [Υ(3S)] = 10355.3 ± 0.5 MeV ,

E [Υ(4S)] = 10580.0 ± 3.5 MeV ,

E [χb1(1P )] = 9891.9 ± 0.7 MeV ,

E [χb1(2P )] = 10255.2 ± 0.5 MeV . (46)The energies of the Υ states will help us to determine the relations betweenthe λnS (n = 2, 3, 4) and λ1S through the ratios (41)�(43).The mass of the bottom quark is regarded as a parameter whih will beevaluated, however, its value will be ontstrained in the range 4.1 GeV ≤
mb ≡ m ≤ 5 GeV (running mass) [41℄. The energies due to the statiinteration an be expressed easily in terms of the total energy and theparameters. From (38), Estatic = Etotal − Eperturbation whih means thatthe numerial solution of Eqs. (31)�(33) an lead to the determination ofthe parameters, provided that the relations onneting them ditated bythe orresponding quantities are satis�ed. Thus, the main problem reduesto the solution of the di�erential equations. Certainly, it is important toobserve that Eqs. (30)�(33) exhibit a singularity at

r0 =
1

2

E

κ
+

√
1

4

(
E

κ

)2

+
4

3

αs

κ
. (47)



Quark�Antiquark Bound States and the Breit Equation 2353This is a feature whih is not present in the initial Breit equation but itemerges after the redution of it to radial equations. Although the equa-tions are singular at r = 0 as well, due to the entrifugal term j(j+1)
r2(j is the total angular momentum of the system), the new singularity im-plies the appearane of a turning point that is energy dependent [10,13,44℄.The question rising is whether the emergene of this singularity auses anyproblem to the solution of the di�erential equations. Due to the fat that weonsider only a short-range potential and the wavefuntion tends to vanishat distanes (r ≥ 1 fm), we will not experiene any di�ulty in solving thedi�erential equations. It will be shown that r0 is bigger than 10 fm (for thelowest energy) whih implies that the singularity does not ause any problemin the range where QCD applies, on the grounds that the equations havemeaning in this partiular range.The χ and Υ states of the ��tting proedure� are desribed by Eq. (31)and Eqs. ((32), (33)), respetively, and these equations an be redued to aset of twenty, �rst order di�erential equations. The problem is a boundary-value problem and two boundary points, Rinitial, Rfinal need to be spei�edbetween whih the integration will take plae. We hoose Rfinal ≃ 3 fmwhere the wavefuntion and its derivative are taken to vanish due to theon�nement. On the other hand, the hoie of Rinitial requires more are.At small distanes, the Coulomb potential dominates the interation andsine the potential is singular at r = 0, we are not allowed to start theintegration at that point, therefore we hoose a point whih is muh smallerthan rc ≡ αs

Λ
(Λ: QCD sale parameter). The QCD sale parameter Λ isnot an independent parameter, it is related, instead, to κ [30, 33℄ throughthe expression

κ =
8πΛ2

27
. (48)We set Rinitial = 10−10rc. The wavefuntion behaves as rγ at r = Rinitialwhile it vanishes at r = Rfinal. Aording to (34),

γ =





−1 +

√
j(j + 1) − 4

9α
2
s , for χb1 states ,√

j(j + 1) + 1 − 4
9α

2
s , for Υ , χb0, χb2 states .

(49)The reason why the bigger value of γ was preferred in the 3ll±1 states isbeause the wavefuntion goes to zero faster.The numerial integration of the di�erential equations is ahieved bymeans of a Runge�Kutta-based routine and it leads to the following valuesfor the parameters [10℄
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αs = 0.36 ± 0.04 ,

κ = 0.793 ± 0.008
GeV

fm
,

mb ≡ m = 4.987 ± 0.009 GeV ,

λ1S ≃ 0.829 (GeV)2 ,

λ1P ≃ 0.107 (GeV)2 ,

λ2P ≃ 0.120 (GeV)2 (50)whih, in turn, give
λ2S

(41)
≃ 0.147 (GeV)2 ,

λ3S
(42)
≃ 0.126 (GeV)2 ,

λ4S
(43)≃ 0.072 (GeV)2 ,

Λ
(48)
= 409 ± 40 MeV . (51)Now that the parameters have been estimated, they an be used to al-ulate the rest of the energy levels of the system. The states that are goingto be onsidered an be lassi�ed in three groups aording to the set ofequations that desribe their instantaneous behaviour or, equivalently, thespetrosopi signature: (i) η(1S), η(2S), η(3S), η(4S), hb(1P ), hb(2P ), with

2S+1LJ ≡1 ll, (ii) χb1(1P ), χb1(2P ), with 2S+1LJ ≡3 ll, and,�nally, (iii) Υ(1S),Υ(2S),Υ(3S),Υ(4S),Υ(5S),Υ(6S), χb0(1P ), χb0(1P ),
χb0(2P ), χb2(2P ), with 2S+1LJ ≡3 ll±1. By applying Eqs. (30)�(33) to theases (i), (ii) and (iii), and by imposing the same boundary onditions, aspreviously, the energies of the states an be obtained. The λs of the wave-funtions entering the equations are dependent on the energies of the orre-sponding states, therefore the expressions (44), (45) should be employed. Inaddition, Table II and Table I provide the ontribution of the Breit terms tothe energy of the system. If all these elements are taken into aount, theenergy values of the above states are alulated and they are summarisedin Table III and Table IV. The experimentally established energies are alsostated.The two remaining λs, namely, λ5S , λ6S are alulated and they are equalto

λ5S ≃ 0.082 (GeV)2 ,

λ6S ≃ 0.045 (GeV)2 . (52)Looking at Table III and Table IV, there are some points whih need tobe emphasised:



Quark�Antiquark Bound States and the Breit Equation 2355TABLE IIIThe energy spetrum of the bottomium system derived from experiment (thirdolumn), the Breit equation (fourth and �fth olumns) and the expetation valuesof the square of the veloity operator v for eah state (sixth olumn). The asterisk(*) refers to the states used to �t the parameters. The position of every state inthe spetrum (for the states we have onsidered) is mentioned in the �rst olumn.Meson JPC Energy Energy (theory)(MeV)states (experim.) Stati part Retarded part 〈(
v
c

)2〉(MeV) (MeV) (MeV)
Υ(1S) 1−− 9460.37± 0.21 9460.37± 0.21 ∗ 0.0502nd 9454.89± 0.21 +5.48± 0.01

Υ(2S) 1−− 10023.30± 0.31 10023.30± 0.31 ∗ 0.0838th 10027.40± 0.31 −4.101± 0.007

Υ(3S) 1−− 10355.3± 0.5 10355.3± 0.5 ∗ 0.11114th 10362.9± 0.5 −7.42± 0.01

Υ(4S) 1−− 10580.0± 3.5 10580.0± 3.5 ∗ 0.08716th 10584.9± 3.5 −4.929± 0.008

Υ(5S) 1−− 10865± 8 10882± 8 0.12517th 10890± 8 −7.86± 0.01

Υ(6S) 1−− 11019± 8 11037± 9 0.08318th 11041± 9 −3.944± 0.007

η(1S) 0−+ 9393.9± 0.3 0.0501st 9426.8± 0.3 −32.88± 0.08

η(2S) 0−+ 9973.3± 0.4 0.0837th 9994.6± 0.4 −21.32± 0.04

η(3S) 0−+ 10324± 2 0.11113th 10348± 2 −24.42± 0.04

η(4S) 0−+ 10553± 1 0.08715th 10567± 1 −13.56± 0.02

χb0(1P ) 0++ 9859.8± 1.3 9858.9± 0.4 0.0433rd 9869.1± 0.4 −10.15± 0.02

χb1(1P ) 1++ 9891.9± 0.7 9891.9± 0.7 ∗ 0.0435th 9897.0± 0.7 −5.077± 0.001

χb2(1P ) 2++ 9913.2± 0.6 9914.7± 0.9 0.0436th 9916.9± 0.9 −2.234± 0.004

h(1P ) 1+− 9906± 1 0.0434th 9910± 1 −4.062± 0.007



2356 G.D. Tsibidis TABLE IVThe energy spetrum of the bottomium system derived from experiment (thirdolumn), the Breit equation (fourth and �fth olumns) and the expetation valuesof the square of the veloity operator v for eah state (sixth olumn). The asterisk(*) refers to the states used to �t the parameters. The position of every state inthe spetrum (for the states we have onsidered) is mentioned in the �rst olumn.Meson JPC Energy Energy (theory)(MeV)states (experim.) Stati part Retarded part 〈(
v
c

)2〉(MeV) (MeV) (MeV)
χb0(2P ) 0++ 10232.1± 0.6 10234.3± 0.2 0.0879th 10253.9± 0.2 −19.60± 0.03
χb1(2P ) 1++ 10255.2± 0.5 10255.2± 0.5 ∗ 0.08711th 10266.9± 0.5 −11.74± 0.02
χb2(2P ) 2++ 10268.5± 0.4 10266.9± 0.7 0.08712th 10274.3± 0.7 −7.33± 0.01
h(2P ) 1+− 10260.2± 0.9 0.08710th 10270.4± 0.9 −10.17± 0.02(i) we notie that the states predited from the theory have the rightaession and almost the orret energy di�erene between the P statesemerges. Atually, there is not a very big disrepany between the theoretialresults and the experimental data as it an be dedued from Table V. ForTABLE VSplittings of the 1P and 2P levels of bottomium.

∆M Theory Experiment Deviation(MeV) (MeV) (%)
m (χb1(1P )) −m (χb0(1P )) 33.0 ± 0.8 32 ± 1 3.1
m (χb2(1P )) −m (χb1(1P )) 22.8 ± 1.1 21.3 ± 0.9 7.0
m (χb1(2P )) −m (χb0(2P )) 20.9 ± 0.8 23.1 ± 0.8 9.5
m (χb2(2P )) −m (χb1(2P )) 11.7 ± 0.9 13.3 ± 0.6 12.0higher states, it is getting bigger and the disrepany beomes larger andthis is quite reasonable sine those states are haraterised by large speed,therefore the v2 approximation to the Breit terms onstitutes a rather roughapproximation,(ii) the part of the energy due to the instantaneous interation aounts formore of the energy, however, the ontribution of terms due to retardation isvery important to aquire the orret splitting of the P states. At this point,an interesting feature of the funnel potential should be mentioned. The spin�



Quark�Antiquark Bound States and the Breit Equation 2357orbit interation oming from the Coulomb-like part of the potential (28)di�er from the spin�orbit interation resulting from the linear part (29) inthe sign. Thus, if only the Coulomb-like potential was present, it wouldorder the P -levels, in asending order 3P0, 3P1, 3P0. On the other hand,the existene solely of the salar part would order them oppositely. The fatthat the previous order is obtained suggests that the spin�orbit part due tothe vetor potential dominates,(iii) the ratios ρ (χbJ(1P )) , ρ (χbJ(1P )) (≡ (2++ − 1++)/(1++ − 0++)) anbe alulated from Table 5.1. They are equal to
ρ (χbJ(1P )) = 0.69 ± 0.03 ,
ρ (χbJ(2P )) = 0.56 ± 0.09whih are in a very good agreement with experiment [41℄
ρ (χbJ(1P )) = 0.67 ± 0.03 ,
ρ (χbJ(2P )) = 0.58 ± 0.03(iv) the states are haraterised by small speed (〈(v/c)2〉 ≤ 0.11

) whihmake the appliation of the Pauli approximation and perturbation theorypossible. 〈(v/c)2
〉 is proportional to the λ of the orresponding state andinversely proportional to the mass of the bottom quark,(v) r0 depends on the energy of the state and r0 ≃ 12 fm. [ Rinitial, r0 ) thatis learly larger than the range within whih the interation takes plae. If weontinue the integration of the di�erential equations for bigger interpartiledistanes, we notie that at r = r0 both the wavefuntion and its derivativevanish due to on�nement.(vi) the splittings of the 1S, 2S, 3S, 4S states are given from Table VI.TABLE VISplittings of the S levels of bottomium.

∆M Theory (MeV)
m (Υ(1S)) −m (η(1S)) 66.5 ± 0.4

m (Υ(2S)) −m (η(2S)) 50.0 ± 0.5

m (Υ(3S)) −m (η(3S)) 31 ± 2

m (Υ(4S)) −m (η(4S)) 27 ± 4The suessful desription of bottomium by means of the Breit equationan serve as a �rst indiation that the equation an be used in short-rangeinterations, however, before we generalise, it would be wise to study thespetrum of other quarkonia omposed of lighter quarks.



2358 G.D. Tsibidis5.2. The harmonium systemIn this setion, a similar proedure is going to be followed in order to al-ulate the harmonium spetrum. The twelve states we will onsider havethe quantum numbers JPC = 1−−, 0++, 2++, 0−+, 1+−. As in the previ-ous subsetion, the widths of the deays of the S states into e+e− will beemployed and the relations between the λs of the radial part of the wave-funtions will be eventually revealed. The deays lead to ratios given by thefollowing expressions
r(2S/1S) ≡

E2
J/ψ(1S)

E2
ψ(2S)

∣∣ψψ(2S)(0)
∣∣2

∣∣ψJ/ψ(1S)(0)
∣∣2 = 0.41 ± 0.05 , (53)

r(3S/1S) ≡
E2
J/ψ(1S)

E2
ψ(3S)

∣∣ψψ(3S)(0)
∣∣2

∣∣ψJ/ψ(1S)(0)
∣∣2 = 0.14 ± 0.03 , (54)

r(4S/1S) ≡
E2
J/ψ(1S)

E2
ψ(4S)

∣∣ψψ(4S)(0)
∣∣2

∣∣ψJ/ψ(1S)(0)
∣∣2 = 0.09 ± 0.02 . (55)The parameters that need to be evaluated are three, the mass of the harmquark, mc ≡ m, λ1S and λ1P . It is assumed that the oupling onstant αsand string onstant κ are the same as in the bottomium system. This liesin the so-alled �avour independene [45℄ of the strong interations whihsuggests that the interation between c, c̄ does not di�er from that between

b, b̄. The same holds true for any ombination of two quarks. Sine allquarks exist in the same three olour states, they must have idential stronginterations.The ��tting proedure� [10℄ is going to be followed, in order to deter-mine the three parameters. We �rst impose the onstraint that the massof the harm quarks lies within the range 1 GeV ≤ m ≤ 1.6 GeV (runningmass) [41℄. The energies of the states J/ψ(1S), ψ(2S), χc1(1P ) are hosenas input values and the ratios (53)�(55) as well as the di�erential equationsEqs. (31)�(33) are used. The latter are integrated in the range [10−10rc, 3 fm
]where rc = αs/Λ. By solving the di�erential equations and by taking into a-ount the relations between the parameters imposed by (53)�(55), we obtainthe following results [10℄

mc ≡ = 1.572 ± 0.009 GeV ,

λ1S ≃ 0.395 (GeV)2 ,

λ1P ≃ 0.074 (GeV)2 (56)whih, in turn, give
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λ2S

(53)
≃ 0.083 (GeV)2 ,

λ3S
(54)
≃ 0.040 (GeV)2 ,

λ4S
(55)
≃ 0.030 (GeV)2 . (57)Now that the parameters have been estimated, they an be used toalulate the rest of the energy levels of the system. The appliation ofEqs. (30)�(33) and Table VII leads to the results summarised in Table VIII.These values an be used to alulate the S and P splittings whih have beenTABLE VIIEnergy levels of harmonium as a funtion of the parameters αs,mc, µ, λs.Meson Energy due to Energy orretions due tostates the stati potential the Breit terms (Aindex = 1

9
αs

m2
c

√
λ3
index

π

)

J/ψ(1S) Estatic(J/ψ(1S)) +8.0A1S

ψ(2S) Estatic(ψ(2S)) −80.0A2S

ψ(3S) Estatic(ψ(3S)) −183.2A3S

ψ(4S) Estatic(ψ(4S)) −279.7A4S

ηc(1S) Estatic(η(1S)) −48.0A1S

ηc(2S) Estatic(η(2S)) −416.0A2S

ηc(3S) Estatic(η(3S)) −603.2A3S

ηc(4S) Estatic(η(4S)) −769.7A4S

hc(1P ) Estatic(hc(1S)) −128.0A1S

χc0(1P ) Estatic(χc0(1P )) −320.0A1P

χc1(1P ) Estatic(χc1(1P )) −160.0A1P

χc2(1P ) Estatic(χc2(1P )) −70.4A1P

χc1(1P ) Estatic(χc1(1P )) −160.0A1P

χc2(1P ) Estatic(χc2(1P )) −70.4A1Pmeasured in the laboratory and their disrepany and, eventually, the su-ess of the theory an be evaluated (Table IX, Table X). We notie there isa disrepany of 18% between the theoretial and the experimental splittingof the χc2(1P ) and χc1(1P ) states. The ratio ρ = (2++−1++)/ (1++ − 0++)equals ρ = 0.420 + 0.005 whih is well below the experimentally alulated(≡ 0.49) [41℄. Thus, although, some of the energy levels seem to be in a verygood agreement with experiment, the results should be taken with great are.The reason why the harmonium system is not desribed entirely adequatelyby the theoretial model is that our theory onsiders the stati interation as



2360 G.D. Tsibidis TABLE VIIIThe energy spetrum of the harmonium system derived from the experiment (thirdolumn), the Breit equation (fourth and �fth olumns) and the expetation valuesof the square of the veloity operator v for eah state (sixth olumn). The asterisk(*) refers to the states used to �t the parameters. The position of every state inthe spetrum (for the states we have onsidered) is mentioned in the �rst olumn.Meson JPC Energy Energy (theory)(MeV)states (experim.) Stati part Retarded part 〈(
v
c

)2〉(MeV) (MeV) (MeV)
J/ψ(1S) 1−− 3096.88± 0.04 3096.88± 0.04 ∗ 0.242nd 3078.68± 0.04 +18.2 ± 0.1

ψ(2S) 1−− 3686.00± 0.09 3686.00± 0.09 ∗ 0.478th 3703.58± 0.08 −17.58± 0.03

ψ(3S) 1−− 4040± 10 4106 ± 10 0.3610th 4120± 10 −13.54± 0.02

ψ(4S) 1−− 4415± 6 4454 ± 8 0.3712th 4467± 8 −13.44± 0.02

η(1S) 0−+ 2979.8± 2.1 2987 ± 2 0.241st 3095± 2 −108.0± 0.8

η(2S) 0−+ 3594± 5 3601 ± 1 0.477th 3692± 1 −91.4 ± 0.2

η(3S) 0−+ 4023 ± 1 0.369th 4068± 1 −44.59± 0.08

η(4S) 0−+ 4379.1± 0.9 0.3711th 4416.1± 0.9 −36.98± 0.07

χc0(1P ) 0++ 3417.3± 2.8 3422 ± 1 0.303rd 3481± 1 −59.0 ± 0.1

χc1(1P ) 1++ 3510.53± 0.12 3510.53± 0.12 ∗ 0.305th 3540.02± 0.12 −29.49± 0.05

χc2(1P ) 2++ 3556.17± 0.13 3547.9± 0.2 0.306th 3560.9± 0.2 −12.98± 0.02

h(1P ) 1+− 3526.14± 0.24 3483 ± 2 0.304th 3507± 2 −23.60± 0.04
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∆M Theory Experiment Deviation(MeV) (MeV) (%)

m (ψ(1S)) −m (ηc(1S)) 110 ± 2 117 ± 2 6.0

m (ψ(2S)) −m (ηc(2S)) 85 ± 1 92 ± 5 7.6

m (ψ(3S)) −m (ηc(3S)) 83 ± 10

m (ψ(4S)) −m (ηc(4S)) 75 ± 8 TABLE XSplittings of the 1P levels of harmonium.
∆M Theory Experiment Deviation(MeV) (MeV) (%)

m (χc1(1P )) −m (χc0(1P )) 89 ± 1 96 ± 1 4.3
m (χc2(1P )) −m (χc1(1P )) 37.4 ± 0.2 45.6 ± 0.2 18.0the main ontributor to the system's energy and it treats the retarded termsperturbatively. The problem is that for harmonium, this sheme does notprovide exatly the orret energy as it nearly does for bottomium, result-ing to larger deviations from experimental values. In ontrast to bottomiumwhere the orretions due to the Breit terms onstitute a small proportionof the total energy, in harmonium they are quite large. Anyway, larger or-retions to the stati energy (whih, also, ontains relativisti ontributions)were expeted sine these terms are inversely proportional to the mass ofthe onstituent partiles. By looking at the expetation value of the squareof the speed of the systems (Table III, Table IV and Table VIII), we anonlude that, indeed, although the relativisti orretions are not negligi-ble, to some extent, both bottomium and harmonium an be regarded asnon-relativisti systems, with this assertion suiting more to bottomium.Another reason for the failure to obtain the orret results is the formof the potential that is supposed to desribe strong interations. Althoughthe potential employed exhibits the orret behaviour at small and largedistanes, we are not able to determine what it looks like in between. Inother words, we do not know its exat form. Certainly, a knowledge of thiswould lead to better results.In addition, we should not forget the order to whih the energy valueshas been alulated. If the wavefuntion used, orresponded to the solutions



2362 G.D. Tsibidisof the Coulomb problem, the spetrum would ontain orretions of order upto α4
s . For the wavefuntions of the harmoni osillator, the energies ontainterms of order up to αs. If we wish to alulate the energies more aurately,we need to onsider higher order terms sine their inlusion would provide anessential ontribution to the energy levels, however, again, the results shouldnot agree exatly with experiment. This is beause it is not possible to takeinto aount all diagrams. Thus, we should better ompare our results withother theories. We onsider the study onduted by Eihten et al. (they,also, used a funnel potential as a possible form of the interation) [28℄ onharmonium. They �tted the parameters (αs = 0.39, κ = 926 GeV/fm) andalulated the energies summarised in Table XI, Table XII. The asterisk (*)refers to the states used to �t the parameters. Their values are slightlydi�erent from those we used beause at the time those alulations werearried out, the experimental data di�ered from the reent results. The

P -states, also, in these tables represent the enter-of-mass state of the j = 0,
j = 1, j = 2 states. TABLE XIThe harmonium spetrum aording to Eihten et al. [28℄.Charmonium mc = 1.84 GeVState Energy (MeV)

J/ψ(1S) 3095∗

ψ(2S) 3684∗

ψ(3S) 4110

ψ(4S) 4460

ψ(5S) 4790

χc(1P ) 3522∗The oupling onstant of the interation and the QCD sale parameterwere alulated in the previous subsetion where we studied the bottomiumspetrum. One might wonder whether it would be wise to allow the valuesof these parameters to be derived from the study of harmonium, instead.The problem is that in order to estimate these values, one approximationhas been made already by optimising the radial wavefuntions of the three-dimensional harmoni osillator (in addition to the approximation onern-ing the form of the potential and the approximation related to the e�etiveinteration). A more rigorous and aurate proedure should assume theuse of the wavefuntions of the funnel potential. It is true that harmoniumexhibits a more relativisti behaviour than bottomium and a very arefulonsideration should be taken, otherwise there is a danger of obtaining un-



Quark�Antiquark Bound States and the Breit Equation 2363TABLE XIIThe bottomium spetrum aording to Eihten et al. [28℄.Bottomium mb = 5.17 GeVState Energy (MeV)
Υ(1S) 9460∗

Υ(2S) 10050

Υ(3S) 10400

Υ(4S) 10670

Υ(5S) 10920

Υ(6S) 11140

χb(1P ) 9960

χb(2P ) 10310

χb(3P ) 10600reliable results. The fat that bottomium onsists of heavier partiles andthereby the system is regarded as less relativisti implies that suh approx-imations as those performed throughout this work are less likely to resultin unaeptable and meaningless results if the parameters are alulated forbottomium. 6. ConlusionsIn this paper, the appliation of the Breit equation to bound state ofsystems haraterised by short-range interations was studied. Despite thelear lak of ovariane of the equation, we assumed that it an be onsid-ered to be approximately Lorentz invariant for systems interating througha very strong short-range potentials suh as quarkonia and more spei�ally,bottomium and harmonium. A funnel potential was introdued as a an-didate potential desribing QCD and the Pauli approximation of the Breitequation was employed in order to distinguish the ontribution of the statiterms of the interation from that part of the interation responsible for re-tardation. The solution of the Breit equation helped to obtain the spetrumof bottomium and harmonium and to ompare them with experimentaldata. The S and P states as well as their splitting were alulated and itturned out that the results are, in general, in a very good agreement withexperiment. The Breit equation was, also, used to determine the ouplingonstant and the sale parameter of the strong interation and they wereestimated to be αs = 0.36 ± 0.04 and Λ = 409 ± 40GeV, respetively.



2364 G.D. TsibidisA part of the suess was attributed to the fat that the small speed ofthe states allowed the Breit terms to be treated perturbatively despite therelatively large oupling onstant (αs/m
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