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Generalized Aratyn—Ferreira-Zimerman O(3) nonlinear sigma model
with a particular symmetry breaking term, so-called dielectric function,
is discussed. Static multi-soliton configurations with finite energy and non-
trivial Hopf index are found. We show that such configurations consist of
nested toroidal solitons. Moreover, nontrivial sphaleron-like solutions i.e.
configurations with zero total topological charge are also presented.

PACS numbers: 11.10.Lm, 05.45.Yv

1. Introduction

It is widely believed that toroidal knotted topological solitons so-called
hopfions play a very important role in the temporary physics. In fact, they
seem to give a natural language of describing particle excitations in the
low energy sector of the quantum gluodynamics i.e. famous glueball states.
This idea, proposed and developed by Faddeev, Niemi [1,2] and Cho [3],
provides an elegant framework where masses as well as other physical prop-
erties can be understood in terms of topological characteristics of solutions’.
In particular, the well-known Vakulenko—Kapitansky inequality [4] gives the

following spectrum of the glueballs E ~ 1500 MeV]QH]%, where Qg = 1,2...
is Hopf index. Moreover, it has been also observed that the spectrum should
possess right-left degeneracy [5]. It follows from the observation that energy
of the topological solutions does not depend on the sign of the topological
charge.

Unfortunately, in case of the Faddeev—Niemi model only numerical so-
lutions have been found [6-8]. However, there exist models which allow

! For other applications of knotted solitons see [17].
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us to learn something more about the mathematical structure and behav-
ior of toroidal solutions [9]. They can be regarded as a toy models where
we can test some ideas borrowed from the standard soliton theory in two
space dimensions. In fact, the Aratyn—Ferreira—Zimerman [10] model is
a widely discussed example of a theory where exact soliton solutions with
arbitrary Hopf number have been obtained. Moreover, some generalizations
to N-interacting Aratyn—Ferreira—Zimerman-like models [11] or including
a symmetry breaking term have been discussed and analytically solutions ob-
tained [12]. In particular, the problem of the existence of hopfions in models
with broken O(3) global symmetry seems to play the important role in the
context of gluodynamics. It follows from the fact that the Faddeev—Niemi
model admits massless excitations being an effect of the spontaneous O(3)
symmetry breaking. This pathological behavior can be cured by adding some
explicitly symmetry breaking terms in the action, see for example [13-16].
In general such modified Faddeev—Niemi Lagrangian has the form

o1(7) - (7 X O7) 2 n @(@ﬁ)% (1)

L=— 1

where two so-called dielectric functions o7 and o9 have been introduced.
Moreover, one can also include a potential term for ©. Obviously this mod-
ification makes the original model even more complicated and, so far, no
analytical calculations have been presented.

In the present work we would like to continue the investigation of hopfions
in models with broken global O(3) symmetry. In order to do it, we will take
advantage of the Aratyn—Ferreira—Zimerman model [10] with a particular
symmetry breaking dielectric function [12].

The main aim of our work is to analyze multi-soliton configurations in
this toy model. We are especially interested in construction of sphaleron-like
solutions 4.e. configurations with zero total topological charge but non-trivial
local topological structure. Such solutions might be helpful in finding of
a time depending topological soliton i.e. breather, which in general consists
of one-soliton and one antisoliton component. Additionally, it would give us
also a chance to investigate the decay and scattering of hopfions.

Due to the fact that the symmetry breaking is realized in the same
manner as in the QCD motivated model (1) our work might be regarded
us the first step in analytical investigation of the scattering and decay of
glueballs as well as in finding of the breather which can change the spectrum
of the glueballs.
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2. Multi-soliton configuration

In this paper we will look for toroidal topologically nontrivial configu-
rations in (3 + 1) Minkowski space—time for the following Lagrangian den-
sity [12, 18]

Sy

L =0 () [[ﬁ- (Bt 8Vﬁ)]2] , 2)

where the symmetry breaking dielectric function o, so-called dielectric func-
tion, is chosen in a very special form which provides analytical solutions

o(f) = — 1 (3)

<1 — (n3)2) i

i = (n',n%,n3) is a unit three-component vector field. As it was shown
in [12] such a model belongs to a wide family of integrable theories. Here,
integrability is understood in the sense that infinitely many conserved cur-
rents exist [19,20].

In order to find static soliton solutions we take advantage of the stereo-
graphic projection

1

ﬁ:

and introduce toroidal coordinates

x = gSinhncosgb,
q

Yy = 2sinhnsinqb,
q

2= %sineg, (5)
q

where ¢ = coshn—cos€ and a > 0 is a constant of dimension of length fixing
the scale in the coordinates. Moreover, we use Aratyn—Ferreira—Zimerman
Ansatz [10]

u(n, &, ¢) = f(n)emetne) (6)

where m, n are integers.
Then the static equation of motion reads as follows [12]

o?3ff"  2m2sinh?n —n? coshp
(1+f2)2  m2sinh®n+n? sinhp’

Opln
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It can be integrated and we find
Bk sinh7n
22 3 3/2°
(1 + f ) |m’ (anm2 + COSh2 77)

(8)
m2

where k1 is a constant. In case of the previously introduced dielectric func-

tion this equation can be rewritten as

1 —k1 coshn ko
/ . ~2 )
2 2 _ 2 1/2
7 Tl =) (g i )2

and integrated. We obtain the general solution

arctan f = —h cosh - @ (10)

2,2 1/2 )
|m|(m? — n?) (ni;;nz 4 cosh? 77) 2

where ks is a second integration constant. To fix the value of the integration
constants one has to specify the asymptotic conditions. They can be chosen
as

n— (0,0,—1) s.e. f—0asn—0 (11)

and
n— (0,0,1) d.e. f—o00 as n— oco. (12)

Then, after some algebra one gets

m (2l+1)
2 [m| — |n]

coshn

1/2
(;—22 + sinh? n)

m| — |n] (13)

In other words, we have obtained a whole family of solutions of the Eq. (9)
which fulfill the assumed asymptotic conditions. This family is labelled by
the positive and integer parameter [ = 0,1,2.... Thus, our solutions are
given by the formula

m (2l+1)
2 |m| — |n

coshn
1/2
<:L—22 + sinh? 77)

This corresponds with the following formula for the n® component of the
unit field

m| = |n| (14)

(15)

Lot tan? | 500 | ] — | oy
(%Jrsinh2 17)
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One can see that n? starts in —1 and tends to +1. Additionally, it flips 2041
times between —1 and +1. The points, where n? = —1 define the positions
of the solitons. More precisely, the solution describes a soliton if n? increases
from —1 to 4+1. Analogously, antisoliton appears when n? decreases from
41 to —1. Thus, there are 2] 4+ 1 nested toroidal solitons.

. One obtains

Let us now find the energy corresponding to the solutions

=W

= [ 3 _ 2q  3/4 OodUSinhTI 2 n’ ) 8 3
FE= /d xTho (27() 8-2 0/7(1 +f2)3 (m + rnhQn f f O'(f)
(16)

Inserting our solutions into (16) we find that the energy is finite and given

by the expression
Ep = (2m)%4 - 2420+ 172 /lm][n[ (jm] + [n]). (17)

The behavior of n? and distribution of the energy density in case of m = 2,

n = 1 is shown in Figs. 1 and 2.

0.50 NN
"""""" ~T3 2

Fig. 2. Energy density for [ = 0, 1,2 — solid, dashed, dot-dashed lines, respectively.
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It is straightforward to see that also the following asymptotic conditions
can lead to multi-soliton configurations

i — (0,0,—1) de. f—0as n—0 (18)
and

n— (0,0,—1) i.e. f—0 as n— oc. (19)

Here, in contradiction to the case discussed above, the value of n3 in the
center of the torus and in the spatial infinity is identical. One can check that
solutions form a family also labelled by positive integer number £ = 0, 1, 2...

2

1+ tan? %|m|21€|n| im| — |n|-——1—7 cosh Ve
(#+sinh2n>

Now, n3 flips 2k times between +1. It means that there are even numbers of
the nested toroidal solitons and, as we prove it below, the total topological
charge vanishes. Such solutions possess the following total energy

nd=1-

(20)

Epg = (2m)%4 - 214(2k)>2/Im] [ (jm] + |n]). (21)

In Figs. 3 and 4 the energy density for m = 2,n = 1 and n? are shown.
Let us now calculate the Hopf index of the obtained solutions. It can be
done using the method presented in [10]. We introduce new functions

Fig.3. n3(n) for k = 0,1,2 — solid, dashed, dot-dashed lines, respectively.
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Fig.4. Energy density for k£ = 0, 1,2 — solid, dashed, dot-dashed lines, respectively.

D) = (L) < (s 22)

Ve

and
P(3) = <#> < (“omns) (23)

VP

which are connected with the unit vector field by the relation n; = ZT0;2,

where & are well-known Pauli matrices. Here

2=( 7). 2=z (24)

Z3

and
Z1 =D+ 1Py, Ly = P3+ idy. (25)

Because of the fact that Hopf index is defined by means of the Abelian vector

field and its derivatives

where B = V x A, we have to find 4 as a function of the primary unit field.

It can be done and we get

A = % (ZTaiZ - &Z‘LZ) : (27)
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Then, Hopf index can be evaluated and reads

l
MNi+1
Qu="3"3_ [ + 93— (@ + 93] ", (28)
i=0 ‘

where, for odd i n; is i-th singular point of the function f (14) whereas for
even value of ¢ 7; is i-th zero of the function f. Of course, one can introduce
Hopf index for all soliton components of the solution. Namely,

, nm ni+1 .
Q=5 @+ 9’ @+ ] = (-Dimn, (29
where
1+ (- 1) 34
72i+1 = ar sinh ! - = |
Im|\ 2i+1 , |ml|
- (-5 3+ i)
and
L+ (M - ) 21211
79; = ar sinh [l hl = |
[m[) _2i |m|
(e
with i = 0, 1...1.

Finally we obtain
Qu=—mn. (30)

This result shows that the obtained solution (14) indeed consists of odd
number of the toroidal solutions with nontrivial topological charge. Each of
the solitons corresponds to the same absolute value of Hopf index, whereas
the sign oscillates. The total topological charge is constant and does not
depend on the number of oscillations.

Analogously, solution (20) is made of even numbers of toroidal solitons
with zero total topological charge.

3. Conclusions

In the present paper, a Lorentz invariant model based on the unit, three-
component vector field has been investigated. This model consists of two
parts multiplying each other. Namely, the first part, symmetric under the
global O(3) rotations and the second which breaks this symmetry. The vio-
lating function (dielectric function) has been chosen in the special form (3).

It has been proved that such defined model possesses not only standard
toroidal solutions with arbitrary topological charge known from recent work
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but also multi-soliton configurations. Exact solutions, their energies and
values of the Hopf index have been obtained. In general, the solutions can
be divided into two classes with nonzero or zero total topological charge.
The solutions with nontrivial total Hopf index consist of odd numbers nested
toroidal solitons with a partial charge +(Q) whereas configurations with zero
total Hopf index are build of even numbers of such nested solitons. It has
to be stressed that only the most nested soliton i.e. located at n = 0 is
a line-like object. Remaining hopfions are a little bit pathological. They are
two dimensional toruses with the topological charge homogeneously spread
on their surface.

Of course, because of the fact that all multi-soliton configurations, with
constant total Hopf index, have larger energy than the standard one-soliton
solution, we can expect that they are unstable. Due to the Vakulenko—
Kapitansky inequality one can immediately see that all single solitons would
attract each other. Our knotted multi-soliton solution unties leading to the
stable one-soliton state. Nonetheless, the multi-soliton solutions obtained (in
particular the soliton—antisoliton state) may give a chance to find a breather-
like state 1i.e. oscillating soliton with vanishing total topological charge.

It should be noticed that, as it was proved in [12], investigated model is
very unusual. It follows from the observation that all dielectric functions o
give the same spectrum of the solitons i.e. their masses and total topological
charges are identical and do not depend on the form of o. The dielectric func-
tion inflects only the shape of the hopfion. It is true also in the case of here
analyzed model, but only in the one-soliton sector that is k =1 = 0. Nested
hopfions differ a lot from standard Aratyn—Ferreira—Zimerman solutions. In
addition to different shapes they possess different total energy. Moreover,
since they consist of many solitons and antisolitons, the topological contents
of obtained configurations is also dissimilar.

However, because of the previously mentioned fact that one-soliton sector
is identical for all o [12], one can suppose that such equivalence can be valid
for multi-soliton sector as well. If this conjecture were true then multi-soliton
solutions (and in particular sphalerons) should be observed in case of more
realistic dielectric functions [16].

To conclude, the existence of the multi-hopfions (sphaleron-like) solu-
tions, at least in the toy model, is very promising. In particular, the problem
of the breathers seems to be important in the context of the Faddeev—Niemi
model of glueballs where such time-depending breathers could probably in-
fluence the spectrum of the solutions i.e. expected spectrum of the glueball
states. We would like to address this problem in the forthcoming paper.

This work is partially supported by the Foundation for Polish Science
(FNP) and ESF “COSLAB” programme.
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