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NESTED MULTI-SOLITON SOLUTIONSWITH ARBITRARY HOPF INDEXA. Weresz
zy«skiMarian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandweresz
z�alphas.if.uj.edu.pl(Re
eived May 25, 2004; Revised version re
eived July 15, 2004)Generalized Aratyn�Ferreira�Zimerman O(3) nonlinear sigma modelwith a parti
ular symmetry breaking term, so-
alled diele
tri
 fun
tion,is dis
ussed. Stati
 multi-soliton 
on�gurations with �nite energy and non-trivial Hopf index are found. We show that su
h 
on�gurations 
onsist ofnested toroidal solitons. Moreover, nontrivial sphaleron-like solutions i.e.
on�gurations with zero total topologi
al 
harge are also presented.PACS numbers: 11.10.Lm, 05.45.Yv1. Introdu
tionIt is widely believed that toroidal knotted topologi
al solitons so-
alledhop�ons play a very important role in the temporary physi
s. In fa
t, theyseem to give a natural language of des
ribing parti
le ex
itations in thelow energy se
tor of the quantum gluodynami
s i.e. famous glueball states.This idea, proposed and developed by Faddeev, Niemi [1, 2℄ and Cho [3℄,provides an elegant framework where masses as well as other physi
al prop-erties 
an be understood in terms of topologi
al 
hara
teristi
s of solutions1.In parti
ular, the well-known Vakulenko�Kapitansky inequality [4℄ gives thefollowing spe
trum of the glueballs E ∼ 1500 MeV|QH|

3

4 , where QH = 1, 2...is Hopf index. Moreover, it has been also observed that the spe
trum shouldpossess right�left degenera
y [5℄. It follows from the observation that energyof the topologi
al solutions does not depend on the sign of the topologi
al
harge.Unfortunately, in 
ase of the Faddeev�Niemi model only numeri
al so-lutions have been found [6�8℄. However, there exist models whi
h allow
1 For other appli
ations of knotted solitons see [17℄.(2367)
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zy«skius to learn something more about the mathemati
al stru
ture and behav-ior of toroidal solutions [9℄. They 
an be regarded as a toy models wherewe 
an test some ideas borrowed from the standard soliton theory in twospa
e dimensions. In fa
t, the Aratyn�Ferreira�Zimerman [10℄ model isa widely dis
ussed example of a theory where exa
t soliton solutions witharbitrary Hopf number have been obtained. Moreover, some generalizationsto N -intera
ting Aratyn�Ferreira�Zimerman-like models [11℄ or in
ludinga symmetry breaking term have been dis
ussed and analyti
ally solutions ob-tained [12℄. In parti
ular, the problem of the existen
e of hop�ons in modelswith broken O(3) global symmetry seems to play the important role in the
ontext of gluodynami
s. It follows from the fa
t that the Faddeev�Niemimodel admits massless ex
itations being an e�e
t of the spontaneous O(3)symmetry breaking. This pathologi
al behavior 
an be 
ured by adding someexpli
itly symmetry breaking terms in the a
tion, see for example [13�16℄.In general su
h modi�ed Faddeev�Niemi Lagrangian has the form
L = −

σ1(~n)

4

[

~n · (∂µ~n × ∂ν~n)
]2

+
σ2(~n)

2
(∂µ~n)2 , (1)where two so-
alled diele
tri
 fun
tions σ1 and σ2 have been introdu
ed.Moreover, one 
an also in
lude a potential term for ~n. Obviously this mod-i�
ation makes the original model even more 
ompli
ated and, so far, noanalyti
al 
al
ulations have been presented.In the present work we would like to 
ontinue the investigation of hop�onsin models with broken global O(3) symmetry. In order to do it, we will takeadvantage of the Aratyn�Ferreira�Zimerman model [10℄ with a parti
ularsymmetry breaking diele
tri
 fun
tion [12℄.The main aim of our work is to analyze multi-soliton 
on�gurations inthis toy model. We are espe
ially interested in 
onstru
tion of sphaleron-likesolutions i.e. 
on�gurations with zero total topologi
al 
harge but non-triviallo
al topologi
al stru
ture. Su
h solutions might be helpful in �nding ofa time depending topologi
al soliton i.e. breather, whi
h in general 
onsistsof one-soliton and one antisoliton 
omponent. Additionally, it would give usalso a 
han
e to investigate the de
ay and s
attering of hop�ons.Due to the fa
t that the symmetry breaking is realized in the samemanner as in the QCD motivated model (1) our work might be regardedus the �rst step in analyti
al investigation of the s
attering and de
ay ofglueballs as well as in �nding of the breather whi
h 
an 
hange the spe
trumof the glueballs.
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on�gurationIn this paper we will look for toroidal topologi
ally nontrivial 
on�gu-rations in (3 + 1) Minkowski spa
e�time for the following Lagrangian den-sity [12, 18℄
L = σ (~n)

[

[~n · (∂µ~n × ∂ν~n)]2
]

3

4

, (2)where the symmetry breaking diele
tri
 fun
tion σ, so-
alled diele
tri
 fun
-tion, is 
hosen in a very spe
ial form whi
h provides analyti
al solutions
σ(~n) =

1
(

1 − (n3)2
) 3

4

. (3)
~n = (n1, n2, n3) is a unit three-
omponent ve
tor �eld. As it was shownin [12℄ su
h a model belongs to a wide family of integrable theories. Here,integrability is understood in the sense that in�nitely many 
onserved 
ur-rents exist [19, 20℄.In order to �nd stati
 soliton solutions we take advantage of the stereo-graphi
 proje
tion

~n =
1

1 + |u|2
(

u + u∗,−i(u − u∗), |u|2 − 1
) (4)and introdu
e toroidal 
oordinates

x =
a

q
sinh η cos φ ,

y =
a

q
sinh η sin φ ,

z =
a

q
sin ξ , (5)where q = cosh η−cos ξ and a > 0 is a 
onstant of dimension of length �xingthe s
ale in the 
oordinates. Moreover, we use Aratyn�Ferreira�ZimermanAnsatz [10℄

u(η, ξ, φ) ≡ f(η)ei(mξ+nφ) , (6)where m, n are integers.Then the stati
 equation of motion reads as follows [12℄
∂η ln

σ2/3ff ′

(1 + f2)2
= −

2m2 sinh2 η − n2

m2 sinh2 η + n2

cosh η

sinh η
. (7)
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zy«skiIt 
an be integrated and we �nd
σ2/3ff ′

(1 + f2)2
=

k1

|m|3
sinh η

(

n2−m2

m2 + cosh2 η
)3/2

, (8)where k1 is a 
onstant. In 
ase of the previously introdu
ed diele
tri
 fun
-tion this equation 
an be rewritten as
∫

1

(1 + f2)
df =

−k1

|m|(m2 − n2)

cosh η
(

n2−m2

m2 + cosh2 η
)1/2

−
k2

2
(9)and integrated. We obtain the general solution

arctan f =
−k1

|m|(m2 − n2)

cosh η
(

n2−m2

m2 + cosh2 η
)1/2

−
k2

2
, (10)where k2 is a se
ond integration 
onstant. To �x the value of the integration
onstants one has to spe
ify the asymptoti
 
onditions. They 
an be 
hosenas

~n → (0, 0,−1) i.e. f → 0 as η → 0 (11)and
~n → (0, 0, 1) i.e. f → ∞ as η → ∞ . (12)Then, after some algebra one gets

arctan f =
π

2

(2l + 1)

|m| − |n|






|m| − |n|

cosh η
(

n2

m2 + sinh2 η
)1/2






. (13)In other words, we have obtained a whole family of solutions of the Eq. (9)whi
h ful�ll the assumed asymptoti
 
onditions. This family is labelled bythe positive and integer parameter l = 0, 1, 2... . Thus, our solutions aregiven by the formula

f = tan







π

2

(2l + 1)

|m| − |n|






|m| − |n|

cosh η
(

n2

m2 + sinh2 η
)1/2












. (14)This 
orresponds with the following formula for the n3 
omponent of theunit �eld

n3 = 1 −
2

1 + tan2

[

π
2

(2l+1)
|m|−|n|

(

|m| − |n| cosh η
“

n2

m2
+sinh2 η

”1/2

)] . (15)
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an see that n3 starts in −1 and tends to +1. Additionally, it �ips 2l+1times between −1 and +1. The points, where n3 = −1 de�ne the positionsof the solitons. More pre
isely, the solution des
ribes a soliton if n3 in
reasesfrom −1 to +1. Analogously, antisoliton appears when n3 de
reases from
+1 to −1. Thus, there are 2l + 1 nested toroidal solitons.Let us now �nd the energy 
orresponding to the solutions. One obtains
E ≡

∫

d3xT00 = (2π)28 · 23/4

∞
∫

0

dη sinh η

(1 + f2)3

(

m2 +
n2

sinh2 η

)
3

4

f
3

2 f ′ 3
2 σ(f) .(16)Inserting our solutions into (16) we �nd that the energy is �nite and givenby the expression

El
m,n = (2π)24 · 21/4(2l + 1)3/2

√

|m||n|(|m| + |n|). (17)The behavior of n3 and distribution of the energy density in 
ase of m = 2,
n = 1 is shown in Figs. 1 and 2.
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Fig. 1. n3(η) for l = 0, 1, 2 � solid, dashed, dot-dashed lines, respe
tively.
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Fig. 2. Energy density for l = 0, 1, 2 � solid, dashed, dot-dashed lines, respe
tively.
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zy«skiIt is straightforward to see that also the following asymptoti
 
onditions
an lead to multi-soliton 
on�gurations
~n → (0, 0,−1) i.e. f → 0 as η → 0 (18)and

~n → (0, 0,−1) i.e. f → 0 as η → ∞. (19)Here, in 
ontradi
tion to the 
ase dis
ussed above, the value of n3 in the
enter of the torus and in the spatial in�nity is identi
al. One 
an 
he
k thatsolutions form a family also labelled by positive integer number k = 0, 1, 2...

n3 = 1 −
2

1 + tan2

[

π
2

2k
|m|−|n|

(

|m| − |n| cosh η
“

n2

m2 +sinh2 η
”1/2

)] . (20)
Now, n3 �ips 2k times between +1. It means that there are even numbers ofthe nested toroidal solitons and, as we prove it below, the total topologi
al
harge vanishes. Su
h solutions possess the following total energy

Em,n = (2π)24 · 21/4(2k)3/2
√

|m||n|(|m| + |n|). (21)In Figs. 3 and 4 the energy density for m = 2, n = 1 and n3 are shown.Let us now 
al
ulate the Hopf index of the obtained solutions. It 
an bedone using the method presented in [10℄. We introdu
e new fun
tions
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Fig. 3. n3(η) for k = 0, 1, 2 � solid, dashed, dot-dashed lines, respe
tively.
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Fig. 4. Energy density for k = 0, 1, 2 � solid, dashed, dot-dashed lines, respe
tively.
Φ(1

2)
=

(

f
√

f2 + 1

)

×
(

cos mξ
sinmξ

) (22)and
Φ(3

4)
=

(

1
√

f2 + 1

)

×
(

cos nφ
− sinnφ

)

, (23)whi
h are 
onne
ted with the unit ve
tor �eld by the relation ni = Z†σiZ,where ~σ are well-known Pauli matri
es. Here
Z =

(

Z1

Z2

)

, Z† = (Z∗
1 , Z∗

2 ) (24)and
Z1 = Φ1 + iΦ2, Z2 = Φ3 + iΦ4. (25)Be
ause of the fa
t that Hopf index is de�ned by means of the Abelian ve
tor�eld and its derivatives

QH =
1

4π2

∫

d3x ~A · ~B, (26)where ~B = ~∇× ~A, we have to �nd ~A as a fun
tion of the primary unit �eld.It 
an be done and we get
Ai =

i

2

(

Z†∂iZ − ∂iZ
†Z
)

. (27)
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zy«skiThen, Hopf index 
an be evaluated and reads
QH =

nm

2

l
∑

i=0

[

(Φ2
1 + Φ2

2)
2 − (Φ2

3 + Φ2
4)

2
]ηi+1

ηi

, (28)where, for odd i ηi is i-th singular point of the fun
tion f (14) whereas foreven value of i ηi is i-th zero of the fun
tion f . Of 
ourse, one 
an introdu
eHopf index for all soliton 
omponents of the solution. Namely,
Qi

H =
nm

2

[

(Φ2
1 + Φ2

2)
2 − (Φ2

3 + Φ2
4)

2
]ηi+1

ηi

= (−1)imn , (29)where
η2i+1 = ar sinh



1 +
(

|n|
|m| − 1

)

2i+1
2l+1

√

1 −
((

1 − |m|
|n|

)

2i+1
2l+1 + |m|

|n|

)2









,and
η2i = ar sinh



1 +
(

|n|
|m| − 1

)

2i
2l+1

√

1 −
((

1 − |m|
|n|

)

2i
2l+1 + |m|

|n|

)2









,with i = 0, 1...l.Finally we obtain
QH = −mn . (30)This result shows that the obtained solution (14) indeed 
onsists of oddnumber of the toroidal solutions with nontrivial topologi
al 
harge. Ea
h ofthe solitons 
orresponds to the same absolute value of Hopf index, whereasthe sign os
illates. The total topologi
al 
harge is 
onstant and does notdepend on the number of os
illations.Analogously, solution (20) is made of even numbers of toroidal solitonswith zero total topologi
al 
harge.3. Con
lusionsIn the present paper, a Lorentz invariant model based on the unit, three-
omponent ve
tor �eld has been investigated. This model 
onsists of twoparts multiplying ea
h other. Namely, the �rst part, symmetri
 under theglobal O(3) rotations and the se
ond whi
h breaks this symmetry. The vio-lating fun
tion (diele
tri
 fun
tion) has been 
hosen in the spe
ial form (3).It has been proved that su
h de�ned model possesses not only standardtoroidal solutions with arbitrary topologi
al 
harge known from re
ent work
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on�gurations. Exa
t solutions, their energies andvalues of the Hopf index have been obtained. In general, the solutions 
anbe divided into two 
lasses with nonzero or zero total topologi
al 
harge.The solutions with nontrivial total Hopf index 
onsist of odd numbers nestedtoroidal solitons with a partial 
harge ±Q whereas 
on�gurations with zerototal Hopf index are build of even numbers of su
h nested solitons. It hasto be stressed that only the most nested soliton i.e. lo
ated at η = 0 isa line-like obje
t. Remaining hop�ons are a little bit pathologi
al. They aretwo dimensional toruses with the topologi
al 
harge homogeneously spreadon their surfa
e.Of 
ourse, be
ause of the fa
t that all multi-soliton 
on�gurations, with
onstant total Hopf index, have larger energy than the standard one-solitonsolution, we 
an expe
t that they are unstable. Due to the Vakulenko�Kapitansky inequality one 
an immediately see that all single solitons wouldattra
t ea
h other. Our knotted multi-soliton solution unties leading to thestable one-soliton state. Nonetheless, the multi-soliton solutions obtained (inparti
ular the soliton�antisoliton state) may give a 
han
e to �nd a breather-like state i.e. os
illating soliton with vanishing total topologi
al 
harge.It should be noti
ed that, as it was proved in [12℄, investigated model isvery unusual. It follows from the observation that all diele
tri
 fun
tions σgive the same spe
trum of the solitons i.e. their masses and total topologi
al
harges are identi
al and do not depend on the form of σ. The diele
tri
 fun
-tion in�e
ts only the shape of the hop�on. It is true also in the 
ase of hereanalyzed model, but only in the one-soliton se
tor that is k = l = 0. Nestedhop�ons di�er a lot from standard Aratyn�Ferreira�Zimerman solutions. Inaddition to di�erent shapes they possess di�erent total energy. Moreover,sin
e they 
onsist of many solitons and antisolitons, the topologi
al 
ontentsof obtained 
on�gurations is also dissimilar.However, be
ause of the previously mentioned fa
t that one-soliton se
toris identi
al for all σ [12℄, one 
an suppose that su
h equivalen
e 
an be validfor multi-soliton se
tor as well. If this 
onje
ture were true then multi-solitonsolutions (and in parti
ular sphalerons) should be observed in 
ase of morerealisti
 diele
tri
 fun
tions [16℄.To 
on
lude, the existen
e of the multi-hop�ons (sphaleron-like) solu-tions, at least in the toy model, is very promising. In parti
ular, the problemof the breathers seems to be important in the 
ontext of the Faddeev�Niemimodel of glueballs where su
h time-depending breathers 
ould probably in-�uen
e the spe
trum of the solutions i.e. expe
ted spe
trum of the glueballstates. We would like to address this problem in the forth
oming paper.This work is partially supported by the Foundation for Polish S
ien
e(FNP) and ESF �COSLAB� programme.
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