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NESTED MULTI-SOLITON SOLUTIONSWITH ARBITRARY HOPF INDEXA. Wereszzy«skiMarian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandwereszz�alphas.if.uj.edu.pl(Reeived May 25, 2004; Revised version reeived July 15, 2004)Generalized Aratyn�Ferreira�Zimerman O(3) nonlinear sigma modelwith a partiular symmetry breaking term, so-alled dieletri funtion,is disussed. Stati multi-soliton on�gurations with �nite energy and non-trivial Hopf index are found. We show that suh on�gurations onsist ofnested toroidal solitons. Moreover, nontrivial sphaleron-like solutions i.e.on�gurations with zero total topologial harge are also presented.PACS numbers: 11.10.Lm, 05.45.Yv1. IntrodutionIt is widely believed that toroidal knotted topologial solitons so-alledhop�ons play a very important role in the temporary physis. In fat, theyseem to give a natural language of desribing partile exitations in thelow energy setor of the quantum gluodynamis i.e. famous glueball states.This idea, proposed and developed by Faddeev, Niemi [1, 2℄ and Cho [3℄,provides an elegant framework where masses as well as other physial prop-erties an be understood in terms of topologial harateristis of solutions1.In partiular, the well-known Vakulenko�Kapitansky inequality [4℄ gives thefollowing spetrum of the glueballs E ∼ 1500 MeV|QH|

3

4 , where QH = 1, 2...is Hopf index. Moreover, it has been also observed that the spetrum shouldpossess right�left degeneray [5℄. It follows from the observation that energyof the topologial solutions does not depend on the sign of the topologialharge.Unfortunately, in ase of the Faddeev�Niemi model only numerial so-lutions have been found [6�8℄. However, there exist models whih allow
1 For other appliations of knotted solitons see [17℄.(2367)



2368 A. Wereszzy«skius to learn something more about the mathematial struture and behav-ior of toroidal solutions [9℄. They an be regarded as a toy models wherewe an test some ideas borrowed from the standard soliton theory in twospae dimensions. In fat, the Aratyn�Ferreira�Zimerman [10℄ model isa widely disussed example of a theory where exat soliton solutions witharbitrary Hopf number have been obtained. Moreover, some generalizationsto N -interating Aratyn�Ferreira�Zimerman-like models [11℄ or inludinga symmetry breaking term have been disussed and analytially solutions ob-tained [12℄. In partiular, the problem of the existene of hop�ons in modelswith broken O(3) global symmetry seems to play the important role in theontext of gluodynamis. It follows from the fat that the Faddeev�Niemimodel admits massless exitations being an e�et of the spontaneous O(3)symmetry breaking. This pathologial behavior an be ured by adding someexpliitly symmetry breaking terms in the ation, see for example [13�16℄.In general suh modi�ed Faddeev�Niemi Lagrangian has the form
L = −

σ1(~n)

4

[

~n · (∂µ~n × ∂ν~n)
]2

+
σ2(~n)

2
(∂µ~n)2 , (1)where two so-alled dieletri funtions σ1 and σ2 have been introdued.Moreover, one an also inlude a potential term for ~n. Obviously this mod-i�ation makes the original model even more ompliated and, so far, noanalytial alulations have been presented.In the present work we would like to ontinue the investigation of hop�onsin models with broken global O(3) symmetry. In order to do it, we will takeadvantage of the Aratyn�Ferreira�Zimerman model [10℄ with a partiularsymmetry breaking dieletri funtion [12℄.The main aim of our work is to analyze multi-soliton on�gurations inthis toy model. We are espeially interested in onstrution of sphaleron-likesolutions i.e. on�gurations with zero total topologial harge but non-trivialloal topologial struture. Suh solutions might be helpful in �nding ofa time depending topologial soliton i.e. breather, whih in general onsistsof one-soliton and one antisoliton omponent. Additionally, it would give usalso a hane to investigate the deay and sattering of hop�ons.Due to the fat that the symmetry breaking is realized in the samemanner as in the QCD motivated model (1) our work might be regardedus the �rst step in analytial investigation of the sattering and deay ofglueballs as well as in �nding of the breather whih an hange the spetrumof the glueballs.



Nested Multi-Soliton Solutions with Arbitrary Hopf Index 23692. Multi-soliton on�gurationIn this paper we will look for toroidal topologially nontrivial on�gu-rations in (3 + 1) Minkowski spae�time for the following Lagrangian den-sity [12, 18℄
L = σ (~n)

[

[~n · (∂µ~n × ∂ν~n)]2
]

3

4

, (2)where the symmetry breaking dieletri funtion σ, so-alled dieletri fun-tion, is hosen in a very speial form whih provides analytial solutions
σ(~n) =

1
(

1 − (n3)2
) 3

4

. (3)
~n = (n1, n2, n3) is a unit three-omponent vetor �eld. As it was shownin [12℄ suh a model belongs to a wide family of integrable theories. Here,integrability is understood in the sense that in�nitely many onserved ur-rents exist [19, 20℄.In order to �nd stati soliton solutions we take advantage of the stereo-graphi projetion

~n =
1

1 + |u|2
(

u + u∗,−i(u − u∗), |u|2 − 1
) (4)and introdue toroidal oordinates

x =
a

q
sinh η cos φ ,

y =
a

q
sinh η sin φ ,

z =
a

q
sin ξ , (5)where q = cosh η−cos ξ and a > 0 is a onstant of dimension of length �xingthe sale in the oordinates. Moreover, we use Aratyn�Ferreira�ZimermanAnsatz [10℄

u(η, ξ, φ) ≡ f(η)ei(mξ+nφ) , (6)where m, n are integers.Then the stati equation of motion reads as follows [12℄
∂η ln

σ2/3ff ′

(1 + f2)2
= −

2m2 sinh2 η − n2

m2 sinh2 η + n2

cosh η

sinh η
. (7)



2370 A. Wereszzy«skiIt an be integrated and we �nd
σ2/3ff ′

(1 + f2)2
=

k1

|m|3
sinh η

(

n2−m2

m2 + cosh2 η
)3/2

, (8)where k1 is a onstant. In ase of the previously introdued dieletri fun-tion this equation an be rewritten as
∫

1

(1 + f2)
df =

−k1

|m|(m2 − n2)

cosh η
(

n2−m2

m2 + cosh2 η
)1/2

−
k2

2
(9)and integrated. We obtain the general solution

arctan f =
−k1

|m|(m2 − n2)

cosh η
(

n2−m2

m2 + cosh2 η
)1/2

−
k2

2
, (10)where k2 is a seond integration onstant. To �x the value of the integrationonstants one has to speify the asymptoti onditions. They an be hosenas

~n → (0, 0,−1) i.e. f → 0 as η → 0 (11)and
~n → (0, 0, 1) i.e. f → ∞ as η → ∞ . (12)Then, after some algebra one gets

arctan f =
π

2

(2l + 1)

|m| − |n|






|m| − |n|

cosh η
(

n2

m2 + sinh2 η
)1/2






. (13)In other words, we have obtained a whole family of solutions of the Eq. (9)whih ful�ll the assumed asymptoti onditions. This family is labelled bythe positive and integer parameter l = 0, 1, 2... . Thus, our solutions aregiven by the formula

f = tan







π

2

(2l + 1)

|m| − |n|






|m| − |n|

cosh η
(

n2

m2 + sinh2 η
)1/2












. (14)This orresponds with the following formula for the n3 omponent of theunit �eld

n3 = 1 −
2

1 + tan2

[

π
2

(2l+1)
|m|−|n|

(

|m| − |n| cosh η
“

n2

m2
+sinh2 η

”1/2

)] . (15)



Nested Multi-Soliton Solutions with Arbitrary Hopf Index 2371One an see that n3 starts in −1 and tends to +1. Additionally, it �ips 2l+1times between −1 and +1. The points, where n3 = −1 de�ne the positionsof the solitons. More preisely, the solution desribes a soliton if n3 inreasesfrom −1 to +1. Analogously, antisoliton appears when n3 dereases from
+1 to −1. Thus, there are 2l + 1 nested toroidal solitons.Let us now �nd the energy orresponding to the solutions. One obtains
E ≡

∫

d3xT00 = (2π)28 · 23/4

∞
∫

0

dη sinh η

(1 + f2)3

(

m2 +
n2

sinh2 η

)
3

4

f
3

2 f ′ 3
2 σ(f) .(16)Inserting our solutions into (16) we �nd that the energy is �nite and givenby the expression

El
m,n = (2π)24 · 21/4(2l + 1)3/2

√

|m||n|(|m| + |n|). (17)The behavior of n3 and distribution of the energy density in ase of m = 2,
n = 1 is shown in Figs. 1 and 2.
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Fig. 1. n3(η) for l = 0, 1, 2 � solid, dashed, dot-dashed lines, respetively.
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Fig. 2. Energy density for l = 0, 1, 2 � solid, dashed, dot-dashed lines, respetively.



2372 A. Wereszzy«skiIt is straightforward to see that also the following asymptoti onditionsan lead to multi-soliton on�gurations
~n → (0, 0,−1) i.e. f → 0 as η → 0 (18)and

~n → (0, 0,−1) i.e. f → 0 as η → ∞. (19)Here, in ontradition to the ase disussed above, the value of n3 in theenter of the torus and in the spatial in�nity is idential. One an hek thatsolutions form a family also labelled by positive integer number k = 0, 1, 2...

n3 = 1 −
2

1 + tan2

[

π
2

2k
|m|−|n|

(

|m| − |n| cosh η
“

n2

m2 +sinh2 η
”1/2

)] . (20)
Now, n3 �ips 2k times between +1. It means that there are even numbers ofthe nested toroidal solitons and, as we prove it below, the total topologialharge vanishes. Suh solutions possess the following total energy

Em,n = (2π)24 · 21/4(2k)3/2
√

|m||n|(|m| + |n|). (21)In Figs. 3 and 4 the energy density for m = 2, n = 1 and n3 are shown.Let us now alulate the Hopf index of the obtained solutions. It an bedone using the method presented in [10℄. We introdue new funtions
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Fig. 3. n3(η) for k = 0, 1, 2 � solid, dashed, dot-dashed lines, respetively.
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Fig. 4. Energy density for k = 0, 1, 2 � solid, dashed, dot-dashed lines, respetively.
Φ(1

2)
=

(

f
√

f2 + 1

)

×
(

cos mξ
sinmξ

) (22)and
Φ(3

4)
=

(

1
√

f2 + 1

)

×
(

cos nφ
− sinnφ

)

, (23)whih are onneted with the unit vetor �eld by the relation ni = Z†σiZ,where ~σ are well-known Pauli matries. Here
Z =

(

Z1

Z2

)

, Z† = (Z∗
1 , Z∗

2 ) (24)and
Z1 = Φ1 + iΦ2, Z2 = Φ3 + iΦ4. (25)Beause of the fat that Hopf index is de�ned by means of the Abelian vetor�eld and its derivatives

QH =
1

4π2

∫

d3x ~A · ~B, (26)where ~B = ~∇× ~A, we have to �nd ~A as a funtion of the primary unit �eld.It an be done and we get
Ai =

i

2

(

Z†∂iZ − ∂iZ
†Z
)

. (27)



2374 A. Wereszzy«skiThen, Hopf index an be evaluated and reads
QH =

nm

2

l
∑

i=0

[

(Φ2
1 + Φ2

2)
2 − (Φ2

3 + Φ2
4)

2
]ηi+1

ηi

, (28)where, for odd i ηi is i-th singular point of the funtion f (14) whereas foreven value of i ηi is i-th zero of the funtion f . Of ourse, one an introdueHopf index for all soliton omponents of the solution. Namely,
Qi

H =
nm

2

[

(Φ2
1 + Φ2

2)
2 − (Φ2

3 + Φ2
4)

2
]ηi+1

ηi

= (−1)imn , (29)where
η2i+1 = ar sinh



1 +
(

|n|
|m| − 1

)

2i+1
2l+1

√

1 −
((

1 − |m|
|n|

)

2i+1
2l+1 + |m|

|n|

)2









,and
η2i = ar sinh



1 +
(

|n|
|m| − 1

)

2i
2l+1

√

1 −
((

1 − |m|
|n|

)

2i
2l+1 + |m|

|n|

)2









,with i = 0, 1...l.Finally we obtain
QH = −mn . (30)This result shows that the obtained solution (14) indeed onsists of oddnumber of the toroidal solutions with nontrivial topologial harge. Eah ofthe solitons orresponds to the same absolute value of Hopf index, whereasthe sign osillates. The total topologial harge is onstant and does notdepend on the number of osillations.Analogously, solution (20) is made of even numbers of toroidal solitonswith zero total topologial harge.3. ConlusionsIn the present paper, a Lorentz invariant model based on the unit, three-omponent vetor �eld has been investigated. This model onsists of twoparts multiplying eah other. Namely, the �rst part, symmetri under theglobal O(3) rotations and the seond whih breaks this symmetry. The vio-lating funtion (dieletri funtion) has been hosen in the speial form (3).It has been proved that suh de�ned model possesses not only standardtoroidal solutions with arbitrary topologial harge known from reent work



Nested Multi-Soliton Solutions with Arbitrary Hopf Index 2375but also multi-soliton on�gurations. Exat solutions, their energies andvalues of the Hopf index have been obtained. In general, the solutions anbe divided into two lasses with nonzero or zero total topologial harge.The solutions with nontrivial total Hopf index onsist of odd numbers nestedtoroidal solitons with a partial harge ±Q whereas on�gurations with zerototal Hopf index are build of even numbers of suh nested solitons. It hasto be stressed that only the most nested soliton i.e. loated at η = 0 isa line-like objet. Remaining hop�ons are a little bit pathologial. They aretwo dimensional toruses with the topologial harge homogeneously spreadon their surfae.Of ourse, beause of the fat that all multi-soliton on�gurations, withonstant total Hopf index, have larger energy than the standard one-solitonsolution, we an expet that they are unstable. Due to the Vakulenko�Kapitansky inequality one an immediately see that all single solitons wouldattrat eah other. Our knotted multi-soliton solution unties leading to thestable one-soliton state. Nonetheless, the multi-soliton solutions obtained (inpartiular the soliton�antisoliton state) may give a hane to �nd a breather-like state i.e. osillating soliton with vanishing total topologial harge.It should be notied that, as it was proved in [12℄, investigated model isvery unusual. It follows from the observation that all dieletri funtions σgive the same spetrum of the solitons i.e. their masses and total topologialharges are idential and do not depend on the form of σ. The dieletri fun-tion in�ets only the shape of the hop�on. It is true also in the ase of hereanalyzed model, but only in the one-soliton setor that is k = l = 0. Nestedhop�ons di�er a lot from standard Aratyn�Ferreira�Zimerman solutions. Inaddition to di�erent shapes they possess di�erent total energy. Moreover,sine they onsist of many solitons and antisolitons, the topologial ontentsof obtained on�gurations is also dissimilar.However, beause of the previously mentioned fat that one-soliton setoris idential for all σ [12℄, one an suppose that suh equivalene an be validfor multi-soliton setor as well. If this onjeture were true then multi-solitonsolutions (and in partiular sphalerons) should be observed in ase of morerealisti dieletri funtions [16℄.To onlude, the existene of the multi-hop�ons (sphaleron-like) solu-tions, at least in the toy model, is very promising. In partiular, the problemof the breathers seems to be important in the ontext of the Faddeev�Niemimodel of glueballs where suh time-depending breathers ould probably in-�uene the spetrum of the solutions i.e. expeted spetrum of the glueballstates. We would like to address this problem in the forthoming paper.This work is partially supported by the Foundation for Polish Siene(FNP) and ESF �COSLAB� programme.
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