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QUANTUM MECHANICS IN A CUT FOCK SPACEMaiej TrzetrzelewskiM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: trzetrzelewski�th.if.uj.edu.pl(Reeived July 15, 2004; Revised version reeived September 14, 2004)A reently introdued numerial approah to quantum systems is ana-lyzed. The basis of a Fok spae is restrited and represented in an algebraiprogram. Convergene with inreasing size of basis is proved and the dif-ferene between disrete and ontinuous spetrum is stressed. In partiulara new saling low for nonloalized states is obtained. Exat solutions forseveral ases as well as general properties of the method are given.PACS numbers: 11.10.Kk, 04.06.Kz1. IntrodutionReently an attrative possibility of modeling M-theory through rela-tively simple quantum mehanial systems [1℄ has ourred. They emergefrom the dimensional redution of supersymmetri gauge theories and pro-vide a simple laboratory to study many properties of supersymmetry [2,3℄.It follows from [1℄ that there is a strong onnetion between M-theory andSU(Nc −→ ∞) supersymmetri Yang�Mills quantum mehanis (SYMQM).However, supersymmetri quantum mehanis have muh longer history.Various shemes have been analyzed to try to solve the hierarhy prob-lem inluding the idea of breaking SUSY. This was the reason why SUSYwas �rst studied in the simplest ase of quantum mehanis (SUSYQM)[2℄.Apart from its physial meaning SUSYQM gave also a deeper understandingof why ertain potentials are analytially solvable and others are not [4℄. TheSYMQM gauge systems were studied for the �rst time in [3℄ where the exatspetrum inluding the ground state of SYMQM D = 2 was given. Lateron the extension for arbitrary SU(N) gauge group was also obtained [5℄.SUSYQM is known to have ontinuous spetrum due to the fermion�bosonanellation [6℄. Aording to BFSS hypothesis there should be a boundstate at the threshold of the spetrum. However, sine there are no exatsolutions one is fored to use numerial methods.(2393)



2394 M. TrzetrzelewskiIn this paper we disuss in details a numerial approah of solving quan-tum mehanial systems proposed in [7,8℄ and already investigated in [9�13℄.Next setion ontains a formulation of the method as well as its general prop-erties. We introdue a uto� as the restrition of the number of quanta N ,and by means of an algebrai program analyze a omplete dependene of thespetrum of �ut� Hamiltonians on the uto�. We prove that the eigenval-ues of suh Hamiltonians onverge towards exat (i.e. in the in�nite Hilbertspae) spetrum. In Se. 3 we give the exat spetrum of the momentumand oordinate operators at arbitrary �nite N . The asymptoti behaviorwith N −→ ∞ is derived in Se. 4 where a new saling law, required toreover the in�nite Hilbert spae limit, is formulated. The saling and itsuniversality is disussed in Se. 5 by giving the exat spetrum of a free par-tile in quantum mehanis. Interestingly, this solution di�ers only a littlein omparison with the eigenvalues of the Hamiltonian for D = 2 supersym-metri Yang�Mills quantum mehanis at �nite uto� [14℄. We prove thatthe ontinuum spetrum in quantum mehanis gives rise to the power-likedependene on the uto�. This result is important in studying supersymmet-ri systems where the distintion between ontinuum and disrete spetrais an important issue. In Se. 6 we use numerial data in order to verifythe theoretial results. The implementation of the approah in Mathematiaode will be disussed there in details.2. A ut Fok spaeEvery quantum Hamiltonian an be represented in the eigenbasis ofa harmoni osillator
{
| n〉 =

a†n√
n!

| 0〉, n ∈ N

}
, (1)where a, a† are the normalized annihilation and reation operators, respe-tively. The orrespondene between a, a† and Q, P (oordinate and momen-tum operators, respetively) reads

Q =
1√
2

(
a+ a†

)
, P =

1√
2i

(
a− a†

)
. (2)Sine this basis is ountable it is very onvenient to use it in numerialappliations. One an limit (1), e.g. n 6 N , then alulate the �nite matrixrepresentation of any Hamiltonian and numerially diagonalize above �nitematrix to obtain a omplete spetrum and the eigenstates of the system1.

1 We are onsidering here Hamiltonians with potentials being polynomials in vari-able Q. Other types of potential funtions (e.g. (1/r)) may be analyzed as well byintroduing oordinate representation, however, numerially it is more time onsum-ing.



Quantum Mehanis in a Cut Fok Spae 2395The proedure is simple and essentially numerial, however, a number oftheoretial questions arises while analyzing it. They will be disussed in thispaper.We denote
H(N) = [H]i,j = hi,j i, j = 1, . . . , N + 1as operator H in a ut Fok spae (cutoff = N), E(N)

m and c(N)
m = [c(N)]jm ,where j = 1, . . . , N + 1, m = 1, 2, . . . , N + 1 as eigenvalues and eigenvetorsof H(N), respetively, Em and cm = [cm]j as eigenvalues and eigenvetorsof H, respetively. In other words

H(N)c(N)
m = E(N)

m c(N)
m and Hcm = Emcm . (3)The main aim of the present work is to understand the dependene ofthe spetrum of H(N) on N .3. The spetrum of ut momentum and oordinate operatorsMatrix elements of the P and Q operators in the oupation numberbasis read

〈n | Q | k〉 =

√
k

2
δn,k−1 +

√
k + 1

2
δn,k+1 ,

〈n | P | k〉 =
1

i

√
k

2
δn,k−1 +

1

i

√
k + 1

2
δn,k+1 . (4)In the Hilbert spae limited to maximum of N quanta the eigenvalues of e.g.momentum are given by zeros of the determinant

IN+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

−η
√

1 0 . . .

−
√

1 −η
√

2 . . .

0 −
√

2 −η . . .
. . . . . .

. . . . −η
√
N

. . . . −
√
N −η

∣∣∣∣∣∣∣∣∣∣∣∣

, where η = i
√

2λ . (5)
Determinant (5) is evaluated by solving reursion relation following from theLaplae expansion. Making a hange of variables JN = (1/N !)IN we obtain
(N + 2)JN+2 + ηJN+1 − JN = 0 , J1 = −η , J2 = 1

2

(
η2 + 1

)
. (6)



2396 M. TrzetrzelewskiThis reursion may be solved using the generating funtion method. Let usde�ne series with oe�ients JN

F (x) = J1x+ J2x
2 + J3x

3 + J4x
4 + . . . =

∞∑

N=1

JNx
N . (7)It follows from (6) that F (x) satis�es

(−x+ η)(F (x) + 1) = −F ′(x) , (8)with the boundary ondition F (0) = 0. The solution reads
F (x) = exp

(
x2

2
− xη

)
− 1 =

∞∑

N=1

HN

(
i η√

2

)

N !

(
i
x√
2

)N

, (9)where HN (x) stands for N -th Hermite polynomial. Sine F (x) is analytiat x = 0, the expansion (9) is unambiguous so
JN = 2−

N

2 iN
HN

(
i η√

2

)

N !
.Then

IN = (−1)N2−
N

2 iN HN(λ) . (10)It is lear now that the spetrum of operator P in a ut Fok spae is givenexatly by zeros of Hermite polynomials. Therefore, denoting pN
m as the

m-th eigenvalue of ut momentum P (N), we get
pN

m = z(N+1)
m , where HN+1(z

(N+1)
m ) = 0 , m = 1, 2, . . . , N + 1 . (11)This result will be used here several times below.Calulation for oordinate operator Q is very similar. Reursion relationis slightly di�erent but initial onditions hange also. Those two di�erenesanel eah other and �nally we obtain the same result as for P . Therefore,denoting qN

m as the m-th eigenvalue of ut oordinate Q(N), we obtain
qN
m = z(N+1)

m , where HN+1

(
z(N+1)
m

)
= 0 , m = 1, 2, . . . , N + 1 . (12)Sine roots of Hermite polynomials are symmetri around 0, we onsideronly positive ones for whih we introdue the following enumeration

0 = pN
0 < pN

1 < pN
2 . . . < pN

m < . . . < pN
N

2

, N � even (13)
pN
1 < pN

2 . . . < pN
m < . . . < pN

N+1
2

, N � odd. (14)



Quantum Mehanis in a Cut Fok Spae 23974. The ontinuum limit � salingBeause of the ontinuum limit it is partiularly interesting to analyzethe behavior of roots of Hermite polynomials when N → ∞. It is possibleto obtain the asymptoti relation (details are given in Appendix B)
pN

m =
πm√

2N + 3

√

1 +
π2m2 − 3

2

3(2N + 3)2
+O(N−4.5) ,

m = 1, . . . ,
N

2
for N � even , (15)

pN
m =

π
(
m− 1

2

)
√

2N + 3

√

1 +
π2(m− 1

2)2 − 3
2

3(2N + 3)2
+O(N−4.5) ,

m = 1, . . . ,
N + 1

2
for N � odd. (16)If one naively evaluates the limit N → ∞ for �xed m one obtains

lim
N→∞︸ ︷︷ ︸
m fixed

pN
m = 0. This is unaeptable, beause we know that lim

N→∞︸ ︷︷ ︸
continuum

pN
m = pwith p 6= 0 and p 6= ∞. It is lear now that m has to depend on N as follows

m =

√
2N

π
p+ b . (17)A presription whih guarantees existene of the ontinuum limit

lim
N−→∞

pN
m(N) = const. , (18)is alled saling. The dependene (17) is universal, that is for a large lass ofobservables one obtains nontrivial values when N → ∞. Substituting (17)into (16) and ordering the resulting expression with respet to powers of Nwe get

pN
m = p+

(b− 1
2 )π√
2

1√
N

+
1

12
p (p2−3)

1

N
+

π

4
√

2
(b− 1

2)(p2−1)
1

N
3
2

+. . . . (19)Notie that b has no in�uene on the result obtained in the ontinuum limit.Nevertheless, it is lear that taking b = 1
2 gives the best onvergene. More-over, one an put

m =

√
2

π
p
√
N + b+

c√
N
, (20)



2398 M. Trzetrzelewskiproviding another parameter whih ontrols the onvergene. Now Eq. (19)is modi�ed to
pN

m = p+

(
b− 1

2

)
π√

2

1√
N

+

(
cπ√

2
+

1

12
p
(
p2 − 3

)) 1

N

+
π

4
√

2

(
b− 1

2

)(
p2 − 1

) 1

N
3
2

+ . . . . (21)The proedure may by ontinued but the optimal values of the oe�ients
b, c are not universal, i.e. if we take another observable they will be di�erent.We an see this already in the example (19) where oe�ient b depends onparity of N . Nevertheless the limit (18) is valid for di�erent observables.It is interesting to deal with the problem of ardinality of the spetrum ofthe momentum operator. For all N the spetrum of ut operators onsistsof �nite number of eigenvalues but we know that in the ontinuum limitthere has to be an unountable set of eigenvalues. How those two fatsan be brought together? Aording to (15), (16) for large N , there are Neigenvalues (N/2 positive ones and N/2 negative ones, or (N − 1)/2 positiveones and (N − 1)/2 negative ones for N even or odd, respetively) separatedby the distane O(1/

√
N). It means that the spetrum beomes denser sothat it is possible to hose suh m(N) that

∀p∈R : lim
N→∞

pN
m(N) = p . (22)Therefore, the set of all roots of all Hermite polynomials Z =

⋃∞
N=1 spe-trum (P̂ (N)) is dense in R. However, it is not equal to R beause Z isountable due to the fat that there is ountable amount of Hermite poly-nomials. In other words elements of Z behave similarly to rational numbersin R. It looks as if there was something wrong beause the spetrum ofoperator P should be ontinuous. In order to solve this paradox we use thesaling (17). Now any real number p an be obtained in the ontinuum limitso that all elements of R are reprodued.5. The spetrum of the ut kineti energyIn order to alulate the eigenvalues of a free partile we introdue theut parity operator

Σ(N) =





1 0 0
0 −1 . . .
0 (−1)N





︸ ︷︷ ︸
N+1 olumns . (23)



Quantum Mehanis in a Cut Fok Spae 2399A straightforward alulation shows that [(p2)(N),Σ(N)]= [(p(N))2,Σ(N)]=0so that (p2)(N) as well as H(N) ≡ (p(N))2, represented in an eigenbasis of
Σ(N), split into two bloks.Let N be an odd number. In this ase the matries (p2)(N) and (p(N))2ontain two bloks {(N + 1)/2} × {(N + 1)/2} eah. We have2

(
1

2
p2

)(N)

=

[
A

N+1
2

+ 0

0 A
N+1

2
−

]

,

1

2

(
p(N)

)2
=

[
B

N+1
2

+ 0

0 B
N+1

2
−

]
, (24)where

A
(M)
+ =





1
4 −

√
1·2
4 0

−
√

1·2
4

5
4

. . .. . . 4M−7
4 −

√
(2M−3)·(2M−2)

4

0 −
√

(2M−3)·(2M−2)

4
4M−3

4




, (25)

A
(M)
− =





3
4 −

√
2·3
4 0

−
√

2·3
4

7
4

. . .. . . 4M−5
4 −

√
(2M−2)·(2M−1)

4

0 −
√

(2M−2)·(2M−1)

4
4M−1

4




, (26)and

B
(M)
+ =





1
4 −

√
1·2
4 0

−
√

1·2
4

5
4

. . .. . . 4M−7
4 −

√
(2M−3)·(2M−2)

4

0 −
√

(2M−3)·(2M−2)

4
4M−3

4




, (27)

B
(M)
− =





3
4 −

√
2·3
4 0

−
√

2·3
4

7
4

. . .. . . 4M−5
4 −

√
(2M−2)·(2M−1)

4

0 −
√

(2M−2)·(2M−1)

4
4M−1

4 − 2M
4




. (28)

2 The dimensions of those bloks are equal in this ase beause for odd N the rankof the matrix Σ(N) is N + 1 � even. Therefore, it ontains the same number of +1and −1.



2400 M. TrzetrzelewskiSine A(M)
+ = B

(M)
+ (the �+� sign orresponds to odd m) therefore,

EN
m ≡

(
1
2p

2
)N
m

= 1
2

(
pN

m

)2 where m = 1, 3, . . . , N for N � odd. (29)When N is even, the analogous proedure gives
EN

m ≡
(

1
2p

2
)N
m

= 1
2(pN

m)2 where m = 2, 4, . . . , N for N � even. (30)Now it is useful to present the eigenvalues (29), (30) in the following table.For example for N < 4, m < 5

-
N = 0 N = 1 N = 2 N = 3

?

m = 1

m = 2

m = 3

m = 4





E0
1 = ? E1

1 = 1
2(p1

1)
2 E2

1 = ? E3
1 = 1

2(p3
1)

2

− E1
2 = ? E2

2 = 1
2 (p2

2)
2 E3

2 = ?
− − E2

3 = ? E3
3 = 1

2(p3
3)

2

− − − E3
4 = ?





. (31)
We prove that �elds �lled with question-marks in (31) are equal to theirneighbors on the right.Let N be an odd number. We have already shown that matrix (1

2p
2
)(N)ontains two bloks (24). Now, if we inrease N −→ N + 1 we obtain

(
1

2
p2

)(N+1)

=





...
A

N+1
2

+ 0 0
•

0 . . . 0 • 0

0 A
N+1

2
−





, (32)
so that the blok AN+1

2
− does not hange3. It means that in the N +1 uto�,eigenvalues from this blok remain untouhed. This blok orresponds toeven m, therefore, we have

E(N+1)
m = E(N)

m for m = 2, 4, . . . , N + 1 N � odd. (33)
3 The matrix AN+1

2 beomes larger beause the inrement N −→ N + 1 produes newstate with parity Σ = +1. Next inrement (i.e. N + 1 −→ N + 2) will produe newstate with parity Σ = −1 et.



Quantum Mehanis in a Cut Fok Spae 2401When N is even an analogous proedure gives
E(N+1)

m = E(N)
m for m = 1, 3, . . . , N N � even . (34)That ompletes the whole spetrum of (1

2p
2
)(N). The �rst few exemplaryvalues are:

∣∣∣∣∣∣∣∣∣∣∣∣

0.25 0.25 0.137 0.137 0.095 0.095
− 0.75 0.75 0.459 0.459 0.333
− − 1.362 1.362 0.892 0.892
− − − 2.040 2.040 1.400
− − − − 2.762 2.762
− − − − − 3.516

∣∣∣∣∣∣∣∣∣∣∣∣

.Above numbers were obtained from a program desribed in next setion andindeed on�rm (33), (34). Aording to (15), (16) formulas (29), (30), (33), (34)give
E(N)

m ≈ π2

2

(m− 1
2 )2

2N + 3
N � odd , m � odd , (35)

E(N)
m ≈ π2

2

m2

2N + 5
N � odd , m � even , (36)

E(N)
m ≈ π2

2

(m− 1
2 )2

2N + 5
N � even , m � odd , (37)

E(N)
m ≈ π2

2

m2

2N + 3
N � even , m � even . (38)Note that (17) applied to (35)�(38) separately gives the expeted limit

(p2/2). Moreover, we see that the dependene of spetrum onN is power-likei.e. slow. 6. AppliationsThe analyti results disussed above we use to verify the method intro-dued in [7,8℄. It onsists of numerial diagonalization of �nite matries andextrapolation of results to N → ∞. Pratially, when one deals with fastonvergene of eigenvalues it is su�ient to stop the alulations for rela-tively low uto� N (in the ase of one dimensional nonrelativisti quantummehanis the results for N = 50 are already very aurate). Nevertheless,a problem may our when the onvergene is slow (polynomial), or whennumerial alulations are time onsuming even for low N .One of the aims of this work is a better understanding of the ase ofa free partile whih has the former feature. The later situation oursevery time when there are higher dimensions. Models disussed in [7,8℄ have



2402 M. Trzetrzelewskiboth of those di�ulties, therefore, it is ruial to understand analytiallythe asymptotis of the spetrum for large N . We expet that the power-likebehavior in N is harateristi not only for the spetrum of a free partilebut also it ours in every sattering problem beause in those ases theasymptotis of wave funtions is the same as for a free partile so that theasymptoti momentum may be properly de�ned.6.1. Quantum mehanis on a omputerLet us disuss in details the implementation of the method [7,8℄ in theomputer ode. Consider quantum system withD degrees of freedom with Dreation and annihilation operators. One an onstrut the whole orthogonalbasis from the vauum state | 0〉

| n1, n2, . . . , nD〉 =
(â†1)

n1

√
n1!

(â†2)
n2

√
n2!

. . .
(â†D)nD

√
nD!

| 0〉 . (39)Eah state in a ut Fok spae, deomposed in this basis, is represented asa list in Mathematia program
| ψ〉 =

p∑

k=1

ak | nk
1, n

k
2 , . . . , n

k
D〉 −→

{
p, {a1, a2, . . . , ap},

{{n1
1, n

1
2, . . . , n

1
D}, {n2

1, n
2
2, . . . , n

2
D}, . . . ,{np

1, n
p
2, . . . , n

p
D}}

}
. (40)The �rst element of this list spei�es the number of basis vetors used indeomposition of the state | ψ〉. The seond element of the list is a list ofoe�ients of this deomposition. Basis vetors are represented in the thirdelement of this list. For example

a | 0, 1〉 + b | 1, 0〉 + c | 1, 1〉 −→
{

3, {a, b, c}, {{0, 1}, {1, 0}, {1, 1}}
}
.The reation and annihilation operators

âk : âk | n1, n2, . . . , nk, . . . , nD〉 =
√
nk | n1, n2, . . . , nk − 1, . . . , nD〉, (41)

â†k : â†k | n1, n2, . . . , nk, . . . , nD〉=
√
nk + 1 | n1, n2, . . . , nk+1, . . . ,nD〉. (42)have the following ation in the list representation

âk | ψ〉 −→
{
p,
{√

n1
ka1, . . . ,

√
np

kan

}
, {{n1

1, . . . , n
1
k − 1, . . . , n1

D},

. . . , {np
1, . . . , n

p
k − 1, . . . , np

D}}
}
, (43)



Quantum Mehanis in a Cut Fok Spae 2403and
â†k | ψ〉 −→

{

p,

{√
n1

k +1a1, . . . ,
√
np

k + 1ap

}
,
{{
n1

1, . . . , n
1
k + 1, . . . , n1

D

}
,

. . . ,
{
np

1, . . . , n
p
k + 1, . . . , np

D

}}
}

. (44)In order to evaluate the matrix representation of any observable we de�neproedures whih add and multiply on arbitrary state by a omplex numberas well as salar multiply states. For example
| ψ〉 −→

{
2, {1, 2}, {{0, 0}, {0, 1}}

}
,

| φ〉 −→
{

2, {1, 1}, {{0, 2}, {0, 1}}
}
,then

| ψ〉+ | φ〉 −→
{
3, {1, 3, 1}, {{0, 0}, {0, 1}, {0, 2}}

}
,

2 | φ〉 −→
{
2, {2, 2}, {{0, 2}, {0, 1}}

}
,and

〈ψ | φ〉 −→ 2 .Adding lists is simply adding those oe�ients of the deomposition (40),that have the same basis vetors. If deompositions of | ψ〉 and | φ〉 havedi�erent basis vetors then the sublist onsisting of basis vetors has to beextended aordingly.The proedure of multiplying the state by a number redues to multi-plying the list of oe�ients by this number.Salar multipliation 〈ψ | φ〉 redues to a searh for ommon basis vetorsourring in deomposition of | ψ〉 and | φ〉. Afterwards proper oe�ientsand their omplex onjugations have to be multiplied.These rules allow to represent automatially any operator in a ut ba-sis (39). 6.2. Numerial diagonalizationHere we ompare numerial data and analyti results of Se. 3 for (a1)� eigenvalues of P (N) evaluated by the program desribed in Se. 6.1.(aording to Se. 3 they are exatly the roots of Hermite polynomials),(a2) � the asymptoti form (16).



2404 M. TrzetrzelewskiFig. 1 presents the omparison of ases (a1) and (a2) for m = 1, 2, 3.The approximate value is obtained from (16) by taking only the leading term
pN

m ≈ π
(
m− 1

2

)
√

2N + 1
. (45)We see that there is a good agreement between exat and approximate valueseven for low N , and it gets worse for higher m where next terms of theexpansion of (16) are important.

2 4 6 8 10N

0.4
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pNm=1
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2 4 6 8 10N
0.8
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1.4
1.6
1.8
2

pNm=2

a2

a1

2 4 6 8 10N

1.5

2.5

3

3.5
pNm=3

a2

a1

Fig. 1. Asymptoti (⋆), and exat (�), behavior of p(N)
m for m = 1, 2, 3.6.3. Continuum limit on a omputerHere we want to obtain dispersion relation that is the dependene of theenergy on momentum E(p). Obviously we know that E(p) = p2/2 but it isonly beause we are able to solve Shrödinger equation for a free partile.However, one has to put himself in a situation where there is a ertainset of eigenvalues EN

m and no information about the dispersion relation isavailable. In other words the question is how to obtain unknown a priorifuntion E(p) by means of eigenvalues EN
m? In order to do this one has tomake m dependent on N : m = m(N, p) suh that the limit

lim
N→∞

EN
m(N,p) = E(p) , (46)



Quantum Mehanis in a Cut Fok Spae 2405is not trivial that is E(p) <∞ and E(p) 6= 0. Note that (46) automatiallyrequires the set {EN
m : m,N ∈ N} to be dense in E(R). In ase of a freepartile (E(R) = [0,∞)) we an even onstrut this set (squares of roots ofHermite polynomials) however, it is a general property of any operator withontinuous spetrum. This is exatly the reason why EN

m depends on N asa power rather than exponentially.Let us emphasize that we do not have to know the dependene E(p)to evaluate m(N). This is beause the relation m(N) was established ongrounds of the ondition that there has to exist the ontinuum limit for themomentum, so that any other operator ommuting with P will have the samesaling. We will analyze in details the ase of a free partile in nonrelativistiquantum mehanis but another example may be Dira equation where weexpet that the saling law (18) will give E(p) =
√
M2 + p2. Therefore, thesaling in (46) has to be the same as for momentum operator, that is

m(N, p) =

√
2N

π
p+

1

2
. (47)However, in formula (47) we have to introdue a ertain hange

m(N, p) −→ 2m(N, p) = 2

√
2N

π
p+ 1 , (48)beause the saling (48) is meant for positive eigenvalues of operator P (N)only. Let us onsider an example of N = 7. The spetrum of operator

P (8) onsists of roots of H8(x), so that we have 8 roots where 4 of them arepositive and 4 are negative.
-∗ ∗ ∗ ∗ 0 r r r rNow, if we square them the spetrum beomes positive and the numer-ation of eigenvalues hanges as follows:4
-0 ∗ r ∗ r ∗ r ∗ rFor example, the eigenvalue whih we used to number as the �rst onewill now have the index m = 2, the eigenvalue whih we used to number asthe seond one will now have the index m = 4, et. Therefore, the formula(47) has to be resaled as in (48).

4 Sine roots of Hn(x) are symmetri around the origin, their squares will give doubledegeneray. Hene for the free partile dots and stars should be on the same pointhowever, in general it is not the ase.



2406 M. TrzetrzelewskiAording to (48), eigenvalues EN
m are analyzed by �xing any momentumvalue p and writing down the value ENmax

m(Nmax,p) where Nmax is the highest
N in omputer alulations (in our ase Nmax = 190). Then we hangethe momentum value and repeat the proedure. In this way one obtains anapproximate (beause of limited value of N) dependene E(p), whih shouldreprodue (p2/2) for a free partile. However, the problem onerning theformula m(N, p) ours beause m is not a natural number. We irumventthis by taking an integer part (INT) of Eq. (48), so that the matrix indexis INT(m(Nmax, p)). The onvergene of those elements was heked inMathematia for p = 1, 2, 3, . . . , 10 (e.g. Fig. 2).

50 100 150
N

0.2
0.4
0.6
0.8

1
EN

m p=1

50 100 150
N

45
50
55
60
65
70
75
80

EN
m p=10

Fig. 2. The onvergene of EN
INT(m(Nmax,p)) for p = 1 and p = 10, respetively.This behavior an be understood as follows. If one plots the dependeneof EN

1 on N (p is �xed), one obtains (35)�(38) a hyperbola. The lower index
m=1 spei�es the �rst eigenvalue. The upper index enumerates the uto�.If we plot the dependene of EN

2 on N, we get another hyperbola et. Finallythe plot of EN
m is a set of hyperbolas on a plane (see Fig. 3). The salingthat we have used previously means that from eah hyperbola we are takingonly one point in suh way that in the limit of large N a onstant value isreprodued. Why on those �gures we see ut hyperbolas instead of points?This is beause we had to introdue the INT proedure whih is equivoal.In a onsequene it is possible that for di�erent uto�s (say N and N ′) thereis INT(m(N, p)) = INT(m(N ′, p)). It means that points (N, INT(m(N, p)))and (N ′, INT(m(N ′, p))) are on the same hyperbola. Eventually N will belarge enough so that the INT operation noties the di�erene and the point�jumps� to next hyperbola. Let us also note that the saling (18) is anasymptoti law hene for low N the behavior of EN

m(N,p) may vary for di�erentvalues of p. This e�et aounts for the di�erent behavior in Fig. 2.The dispersion relation extrated in this way is presented in Fig. 4 for
Nmax = 190, 150, 100. This result has no error beause all eigenvalues arepreisely evaluated hene any statistial interpretation is meaningless. The
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50 100 150 200
N

0.5

1

1.5

2

2.5

3

3.5

ENm

Fig. 3. The onvergene of EN
INT(m(Nmax,p)) for p = 1.tangent oe�ients forNmax = 100, 150, 190 are 1.20, 1.12, 1.10, respetively.They di�er from 1 but we did expet that beause it is a numerial resultobtained on grounds of limited uto�. Moreover, we had to introdue theINT operation. In a onsequene we had to hoose only one point from uthyperbolas. It is a soure of a new error whih gets smaller while the uto�inreases. Note that the oe�ient gets better as Nmax inreases.Therefore, Fig. 4 on�rms that we an obtain the dispersion relationfrom the spetrum of a ut Hamiltonian.

2 4 6 8 10
P

2

4

6

8

10

12

2E P-1

Nmax=100

Nmax=150

Nmax=190

Fig. 4. Reprodued dispersion relation.



2408 M. Trzetrzelewski7. Bound states versus sattering statesIn this setion we stress the di�erene between loalized and nonloalizedstates. It follows from simple algebra (see Appendix A) that5
Em − E(N)

m =

N∑
j=1

∞∑
j=N+1

hijc
j
m

N∑
i=1

cjmc∗(N)j
m

, (49)whih means that the spetrum of ut operators onverges towards the spe-trum of operators in in�nite Hilbert spae. Moreover, one an tell howfast is the onvergene beause from (49) it is lear that the onvergene
E

(N)
m → [N −→ ∞]Em is governed by the behavior of the cjm at large j.Note that in (49) cjm are the exat omponents of eigenvetors of H. Thisis exatly the result we were antiipating beause the di�erene betweenloalized and non-loalized states lies in omponents cjm. Therefore, onean numerially judge weather the state is bound or not on grounds of thebehavior of the eigenvalues of ut operators only.For the ase of a free partile one an obtain cnE exatly

cnE = 〈n | k〉 =

∫

R

dx〈n | x〉〈x | k〉 =

∫

R

dxψHO
n (x)eikx , (50)where HO stands for harmoni osillator

ψHO
n (x) =

1√
2nn!π

Hn(x)e−x2/2 . (51)Integral (50) is evaluated with the aid of some analyti properties of Hermitepolynomials, what is presented in Appendix C. The result is6
cnE =

√
2π in ψHO

n (k) . (52)
5 The notation is explained in Se. 2
6 Eq. (52) an be obtained independently in a shorter way. Notie that cnE is a Fouriertransform of ψHO

n (x) whih is the solution for Hamiltonian H = 1
2
p2 + 1

2
x2. TheFourier transformation swithes x with p but H is symmetri in those variables sothe Shrödinger equation in momentum representation is the same as in oordinaterepresentation. Therefore, the solution for harmoni osillator in momentum rep-resentation is of the same form (up to a multipliation fator) as the solution forharmoni osillator in oordinate representation. The onnetion between those twosolutions is given by Fourier transform hene oe�ients cnE are of a form (52).
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2000 4000 6000 8000 10000

j

-2·10242

-1·10242

1·10242

2·10242

cjE

Fig. 5. Components of the eigenvetor (E = 1000) for free partile.Fig. 5 is an example of (52) for E = k2/2 = 1000. Asymptoti behaviorof the envelope is (see Appendix C) | cnE |≈ 4

√
2

πn whih is indeed power-like. Similar alulations for disrete spetrum are not known, so one is leftwith numerial data instead. Fig. 6 presents omponents of eigenvetororresponding to the �rst (the lowest) eigenvalue of anharmoni osillator,as well as the onvergene of the �rst eigenvalue.
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0.75

1
cjm

10 20 30 40 50
N
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2
ENm

Fig. 6. Components of the eigenvetor (cjm=1) and the onvergene of eigenvalues(EN
m=1) for anharmoni osillator.In this ase the behavior of cjm is ompletely di�erent from one shown inFig. 5. One sees that EN

m varies in the same (exponential) way as cjm. Inother words, the behavior of eigenvalues EN
m with the uto� N distinguisheswhether the state is bound or not.



2410 M. Trzetrzelewski8. ConlusionsThe main purpose of this paper was to prove that the method proposedin [7,8℄ enables one to distinguish numerially weather the state is loal-ized or not. This aim and related problems have already been investigated[9�13℄. This distintion is an important issue while studying supersymmetrimodels (D = 10 SYMQM) where bound states exist among dense numberof sattering ones [1℄. Therefore, one has to reanalyze quantum systemsfrom the very beginning in a new manner. Starting from the alulation ofspetrum of ut operators Q(N), P (N) one realizes that eigenvalues of thoseoperators are exatly equal to the roots of Hermite polynomials. Next, weonlude that in order to reover the ontinuum limit one has to introduethe saling m(N). The validity of the saling law in the Hamiltonian of afree partile was rigorously proven in Se. 5 and numerially tested in Se.6. As a result one reprodues the dispersion relation from an informationabout a spetrum of a ut Hamiltonian. It is expeted that the same salingmay be applied for a set of Hamiltonians ommuting with P or under weakerassumptions, namely those for whih P an be de�ned asymptotially.The saling in higher dimensions is important beause of the ourreneof sattering states (e.g. SYMQM D = 2 systems). The formula (18) isexpeted to be valid in those ases beause they are desribed by quantummehanis of a free partile in olor dimensions. In this ase the oe�ientin (17) may be di�erent, however, (18) is laimed to be appliable all thetime. In partiular D = 2, SU(2) SYMQM [10℄ is free and it has been found[14℄ that the system requires preisely (17) to reover the ontinuum limit.Reently a new possibility to speed up the numerial approah in D = 4 hasourred [11℄. The naive diagonalization of the Hamiltonian in the wholeut Hilbert spae was abandoned and replaed by the language of rotationalinvariane. The new approah an be extended to higher dimensions as well.I am very grateful to my supervisor Prof. Jaek Wosiek for prieless ad-vies and omments onerning this paper. This work was supported by thePolish State Committee for Sienti� Researh under grants no. PB 2P03B09622 and no. PB 1P03B 02427.



Quantum Mehanis in a Cut Fok Spae 24119. Appendix AHere we derive the formula (49). Let us start with eigen equation Hcm =
Emcm where H is an operator and cm its eigenvetor. Writing it in thematrix form




h1 N+1 . . .

H(N) ... · · ·
hN N+1 . . .

hN+1 1 . . . hN+1 N hN+1 N+1 . . .... ... ... ... ...








c1m...
cNm
cN+1
m...




=Em





c1m...
cNm
cN+1
m...




, (53)and rewriting for �rst N omponents only, one obtains

H(N)




c1m...
cNm



+





∞∑
i=1

h1 N+ic
N+i
m...

∞∑
i=1

hN N+ic
N+i
m




= Em




c1m...
cNm



 . (54)Now omplex onjugate (54) and multiply it by c(N)
n from the right side

[
c∗1

m . . . c∗N
m

]
H(N)




c(N)1

n...
c(N)N

n





+

[ ∞∑
i=1

h∗1,N+ic
∗N+i
m , . . . ,

∞∑
i=1

h∗N,N+ic
∗N+i
m

]



c(N)1

n...
c(N)N

n





= Em

[
c∗1

m . . . c∗N
m

]



c(N)1

n...
c(N)N

n



 , (55)so that
E(N)

m

N∑

i=1

c∗j
mc

(N)j
n +

N∑

i=1

∞∑

j=N+1

h∗ijc
∗j
n = Em

N∑

i=1

c∗j
mc

(N)j
n , (56)
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(
Em − E(N)

n

) N∑

i=1

c∗j
m c(N)j

n =
N∑

i=1

∞∑

j=N+1

h∗ij c
∗j
n , (57)it is non trivial to realize that above equation means that N∑

i=1
c∗j

mc
(N)j

n −→
δmn thus one an omit the n index and write

Em − E(N)
m =

N∑
i=1

∞∑
j=N+1

hijc
j
m

N∑
i=1

cjmc∗(N)j
m

. (58)Of ourse, this derivation is for the ase with disrete spetrum (disreteindex m) nevertheless for ontinuous spetrum the same alulations give
(
E −E(N)

n

) N∑

i=1

c∗j
Ec

(N)j
n =

N∑

i=1

∞∑

j=N+1

h∗ijc
∗j
E , (59)where

H(N)c(N)
E = E

(N)
E c

(N)
E and HcE = EcE , E ∈ R . (60)This ase is disussed in details in Ses. 6 and 7.10. Appendix BIn this appendix we derive the asymptoti form of the zeros qn

m of theHermite polynomialHn(z). When n is an even number they may be obtainedusing the following relation [15℄
Hn(z) = (−1)

n

2 2n 1
2n!L

− 1
2

n

2
(z2) , (61)where n is an even number, Lα

n(z2) are the generalized Laguerre polynomialswith parameter α (in our ase α = −1/2). Let zn
m, tn

2
m,α and jm,α denote the

m-th positive root of Hn(z), Ln

2

α(z) and Jα(z). One has [15℄
t

n

2
m,α =

jm,α
2

4kn

2

(
1 +

2(α2 − 1) + jm,α
2

48kn

2

2

)
+O(n−5) , (62)where

kn

2
,α =

n

2
+
α+ 1

2
and (zn

m,α)2 = t
n

2
m,α . (63)
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2 we obtain J− 1

2
(z) =

√
2
πz cos(z), therefore, jα,m = π(m − 1

2)where m = 1, 2 . . . , n
2 and kn

2
,α = n

2 + 1
4 so

(zn
m)2 =

π2(m− 1
2)2

4(n
2 + 1

4)

(

1 +
π2(m− 1

2 )2 − 3
2

48(n
2 + 1

4)2

)

+O(n−5)

=
π2(m− 1

2)2

2n + 1

(

1 +
π2(m− 1

2)2 − 3
4

3(2n + 1)2

)

+O(n−5) . (64)Let us de�ne (m is �xed)
f(n) :=

π2
(
m− 1

2

)2

2n + 1

(

1 +
π2
(
m− 1

2

)2 − 3
4

3(2n + 1)2

)

=
a

n
+

b

n2
+

c

n3
+ . . . (65)we have

zn
m =

√
f(n) +O(n−5) =

√
f(n)

√

1 +
O(n−5)

f(n)

∼=
√
f(n)

(
1 +O

(
n−4

))
, (66)so

zn
m =

√
f(n) +

√
f(n)O

(
n−4

)
=
√
f(n) +O

(
n−4.5

)
, (67)�nally

zn
m =

π
(
m− 1

2

)
√

2n+ 1

√

1 +
π2(m− 1

2 )2 − 3
2

3(2n + 1)2
+O

(
n−4.5

)
. (68)When n is an odd number there are [15℄ analogous relations

Hn(z) = (−1)
n−1

2 2n

(
n− 1

2

)
! zL

1
2
n−1

2

(
z2
)
, (69)and

t
n−1

2
m,α =

jm,α
2

4kn−1
2

(
1 +

2(α2 − 1) + jm,α
2

48kn−1
2

2

)
+O(n−5), (70)where

kn−1
2

,α =
n− 1

2
+
α+ 1

2
and (zn−1

m,α )2 = t
n−1

2
m,α . (71)



2414 M. TrzetrzelewskiIn this ase Jα(z) = J 1
2
(z) =

√
2
πz sin(z) so jα,m = πm where m =

1, 2 . . . , n−1
2 and kn−1

2
,α = n

2 + 1
4 . Analogous alulations give

zn
m =

πm√
2n + 1

√

1 +
π2m2 − 3

2

3(2n + 1)2
+O(n−4.5) . (72)11. Appendix CHere we evaluate the integral

In(k) =

∫

R

dxHn(x)e−x2/2 eikx . (73)It follows from three properties of Hermite polynomials [15℄ that
Hn(x+ y) =

1

2n/2

n∑

m=0

(
n

m

)
Hm(

√
2x)Hn−m(

√
2y) , (74)

Hn(x) =
2n

√
π

∫

R

dt(x+ it)ne−t2 , (75)
∫

R

dxHn(x)Hm(x)e−x2
= 2nn!

√
πδnm . (76)After substituting (75) to (73) and hanging the variables x −→ x+ ik weget

In(k) =
1√
π

2
3n+1

2 e−k2/2in
∫

R

dt e−t2
∫

R

dx e−x2

(
t+ k√

2
+ ix

)n

. (77)Using (75) one again we obtain
In(k) = e−k2/2 2

n+1
2 in

∫

R

dt e−t2Hn

(
t+ k√

2

)
. (78)Finally substituting (74) to (78) and using (76) we get

In(k) = e−k2/2
√

2in
n∑

m=0

(
n

m

)
Hn−m(k)2mm!

√
πδm0

= e−k2/2
√

2πinHn(k) , (79)
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cnE = 〈n | k〉 =

1√
2n n!π

In(k) =
√

2π in ψHO
n (k). (80)It is straightforward now to estimate omponents cnE .

|cnE | =
1√

2nn!π
| In(k) |≤ 1√

2nn!π
| In(0) |≤ 1√

2nn!π

√
2π | Hn(0) | . (81)Sine H2n+1(0) = 0, | c2n+1

E |= 0. On the other hand H2n(0) = (−1)n (2n)!
n!therefore, | c2n

E |≤
√

2
√

(2n)!

2nn! . Finally aording to Stirling formula one ob-tains
∣∣c2n

E

∣∣ / 4

√
2

πn
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