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QUANTUM MECHANICS IN A CUT FOCK SPACEMa
iej TrzetrzelewskiM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: trzetrzelewski�th.if.uj.edu.pl(Re
eived July 15, 2004; Revised version re
eived September 14, 2004)A re
ently introdu
ed numeri
al approa
h to quantum systems is ana-lyzed. The basis of a Fo
k spa
e is restri
ted and represented in an algebrai
program. Convergen
e with in
reasing size of basis is proved and the dif-feren
e between dis
rete and 
ontinuous spe
trum is stressed. In parti
ulara new s
aling low for nonlo
alized states is obtained. Exa
t solutions forseveral 
ases as well as general properties of the method are given.PACS numbers: 11.10.Kk, 04.06.Kz1. Introdu
tionRe
ently an attra
tive possibility of modeling M-theory through rela-tively simple quantum me
hani
al systems [1℄ has o

urred. They emergefrom the dimensional redu
tion of supersymmetri
 gauge theories and pro-vide a simple laboratory to study many properties of supersymmetry [2,3℄.It follows from [1℄ that there is a strong 
onne
tion between M-theory andSU(Nc −→ ∞) supersymmetri
 Yang�Mills quantum me
hani
s (SYMQM).However, supersymmetri
 quantum me
hani
s have mu
h longer history.Various s
hemes have been analyzed to try to solve the hierar
hy prob-lem in
luding the idea of breaking SUSY. This was the reason why SUSYwas �rst studied in the simplest 
ase of quantum me
hani
s (SUSYQM)[2℄.Apart from its physi
al meaning SUSYQM gave also a deeper understandingof why 
ertain potentials are analyti
ally solvable and others are not [4℄. TheSYMQM gauge systems were studied for the �rst time in [3℄ where the exa
tspe
trum in
luding the ground state of SYMQM D = 2 was given. Lateron the extension for arbitrary SU(N) gauge group was also obtained [5℄.SUSYQM is known to have 
ontinuous spe
trum due to the fermion�boson
an
ellation [6℄. A

ording to BFSS hypothesis there should be a boundstate at the threshold of the spe
trum. However, sin
e there are no exa
tsolutions one is for
ed to use numeri
al methods.(2393)



2394 M. TrzetrzelewskiIn this paper we dis
uss in details a numeri
al approa
h of solving quan-tum me
hani
al systems proposed in [7,8℄ and already investigated in [9�13℄.Next se
tion 
ontains a formulation of the method as well as its general prop-erties. We introdu
e a 
uto� as the restri
tion of the number of quanta N ,and by means of an algebrai
 program analyze a 
omplete dependen
e of thespe
trum of �
ut� Hamiltonians on the 
uto�. We prove that the eigenval-ues of su
h Hamiltonians 
onverge towards exa
t (i.e. in the in�nite Hilbertspa
e) spe
trum. In Se
. 3 we give the exa
t spe
trum of the momentumand 
oordinate operators at arbitrary �nite N . The asymptoti
 behaviorwith N −→ ∞ is derived in Se
. 4 where a new s
aling law, required tore
over the in�nite Hilbert spa
e limit, is formulated. The s
aling and itsuniversality is dis
ussed in Se
. 5 by giving the exa
t spe
trum of a free par-ti
le in quantum me
hani
s. Interestingly, this solution di�ers only a littlein 
omparison with the eigenvalues of the Hamiltonian for D = 2 supersym-metri
 Yang�Mills quantum me
hani
s at �nite 
uto� [14℄. We prove thatthe 
ontinuum spe
trum in quantum me
hani
s gives rise to the power-likedependen
e on the 
uto�. This result is important in studying supersymmet-ri
 systems where the distin
tion between 
ontinuum and dis
rete spe
trais an important issue. In Se
. 6 we use numeri
al data in order to verifythe theoreti
al results. The implementation of the approa
h in Mathemati
a
ode will be dis
ussed there in details.2. A 
ut Fo
k spa
eEvery quantum Hamiltonian 
an be represented in the eigenbasis ofa harmoni
 os
illator
{
| n〉 =

a†n√
n!

| 0〉, n ∈ N

}
, (1)where a, a† are the normalized annihilation and 
reation operators, respe
-tively. The 
orresponden
e between a, a† and Q, P (
oordinate and momen-tum operators, respe
tively) reads

Q =
1√
2

(
a+ a†

)
, P =

1√
2i

(
a− a†

)
. (2)Sin
e this basis is 
ountable it is very 
onvenient to use it in numeri
alappli
ations. One 
an limit (1), e.g. n 6 N , then 
al
ulate the �nite matrixrepresentation of any Hamiltonian and numeri
ally diagonalize above �nitematrix to obtain a 
omplete spe
trum and the eigenstates of the system1.

1 We are 
onsidering here Hamiltonians with potentials being polynomials in vari-able Q. Other types of potential fun
tions (e.g. (1/r)) may be analyzed as well byintrodu
ing 
oordinate representation, however, numeri
ally it is more time 
onsum-ing.



Quantum Me
hani
s in a Cut Fo
k Spa
e 2395The pro
edure is simple and essentially numeri
al, however, a number oftheoreti
al questions arises while analyzing it. They will be dis
ussed in thispaper.We denote
H(N) = [H]i,j = hi,j i, j = 1, . . . , N + 1as operator H in a 
ut Fo
k spa
e (cutoff = N), E(N)

m and c(N)
m = [c(N)]jm ,where j = 1, . . . , N + 1, m = 1, 2, . . . , N + 1 as eigenvalues and eigenve
torsof H(N), respe
tively, Em and cm = [cm]j as eigenvalues and eigenve
torsof H, respe
tively. In other words

H(N)c(N)
m = E(N)

m c(N)
m and Hcm = Emcm . (3)The main aim of the present work is to understand the dependen
e ofthe spe
trum of H(N) on N .3. The spe
trum of 
ut momentum and 
oordinate operatorsMatrix elements of the P and Q operators in the o

upation numberbasis read

〈n | Q | k〉 =

√
k

2
δn,k−1 +

√
k + 1

2
δn,k+1 ,

〈n | P | k〉 =
1

i

√
k

2
δn,k−1 +

1

i

√
k + 1

2
δn,k+1 . (4)In the Hilbert spa
e limited to maximum of N quanta the eigenvalues of e.g.momentum are given by zeros of the determinant

IN+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

−η
√

1 0 . . .

−
√

1 −η
√

2 . . .

0 −
√

2 −η . . .
. . . . . .

. . . . −η
√
N

. . . . −
√
N −η

∣∣∣∣∣∣∣∣∣∣∣∣

, where η = i
√

2λ . (5)
Determinant (5) is evaluated by solving re
ursion relation following from theLapla
e expansion. Making a 
hange of variables JN = (1/N !)IN we obtain
(N + 2)JN+2 + ηJN+1 − JN = 0 , J1 = −η , J2 = 1

2

(
η2 + 1

)
. (6)



2396 M. TrzetrzelewskiThis re
ursion may be solved using the generating fun
tion method. Let usde�ne series with 
oe�
ients JN

F (x) = J1x+ J2x
2 + J3x

3 + J4x
4 + . . . =

∞∑

N=1

JNx
N . (7)It follows from (6) that F (x) satis�es

(−x+ η)(F (x) + 1) = −F ′(x) , (8)with the boundary 
ondition F (0) = 0. The solution reads
F (x) = exp

(
x2

2
− xη

)
− 1 =

∞∑

N=1

HN

(
i η√

2

)

N !

(
i
x√
2

)N

, (9)where HN (x) stands for N -th Hermite polynomial. Sin
e F (x) is analyti
at x = 0, the expansion (9) is unambiguous so
JN = 2−

N

2 iN
HN

(
i η√

2

)

N !
.Then

IN = (−1)N2−
N

2 iN HN(λ) . (10)It is 
lear now that the spe
trum of operator P in a 
ut Fo
k spa
e is givenexa
tly by zeros of Hermite polynomials. Therefore, denoting pN
m as the

m-th eigenvalue of 
ut momentum P (N), we get
pN

m = z(N+1)
m , where HN+1(z

(N+1)
m ) = 0 , m = 1, 2, . . . , N + 1 . (11)This result will be used here several times below.Cal
ulation for 
oordinate operator Q is very similar. Re
ursion relationis slightly di�erent but initial 
onditions 
hange also. Those two di�eren
es
an
el ea
h other and �nally we obtain the same result as for P . Therefore,denoting qN

m as the m-th eigenvalue of 
ut 
oordinate Q(N), we obtain
qN
m = z(N+1)

m , where HN+1

(
z(N+1)
m

)
= 0 , m = 1, 2, . . . , N + 1 . (12)Sin
e roots of Hermite polynomials are symmetri
 around 0, we 
onsideronly positive ones for whi
h we introdu
e the following enumeration

0 = pN
0 < pN

1 < pN
2 . . . < pN

m < . . . < pN
N

2

, N � even (13)
pN
1 < pN

2 . . . < pN
m < . . . < pN

N+1
2

, N � odd. (14)



Quantum Me
hani
s in a Cut Fo
k Spa
e 23974. The 
ontinuum limit � s
alingBe
ause of the 
ontinuum limit it is parti
ularly interesting to analyzethe behavior of roots of Hermite polynomials when N → ∞. It is possibleto obtain the asymptoti
 relation (details are given in Appendix B)
pN

m =
πm√

2N + 3

√

1 +
π2m2 − 3

2

3(2N + 3)2
+O(N−4.5) ,

m = 1, . . . ,
N

2
for N � even , (15)

pN
m =

π
(
m− 1

2

)
√

2N + 3

√

1 +
π2(m− 1

2)2 − 3
2

3(2N + 3)2
+O(N−4.5) ,

m = 1, . . . ,
N + 1

2
for N � odd. (16)If one naively evaluates the limit N → ∞ for �xed m one obtains

lim
N→∞︸ ︷︷ ︸
m fixed

pN
m = 0. This is una

eptable, be
ause we know that lim

N→∞︸ ︷︷ ︸
continuum

pN
m = pwith p 6= 0 and p 6= ∞. It is 
lear now that m has to depend on N as follows

m =

√
2N

π
p+ b . (17)A pres
ription whi
h guarantees existen
e of the 
ontinuum limit

lim
N−→∞

pN
m(N) = const. , (18)is 
alled s
aling. The dependen
e (17) is universal, that is for a large 
lass ofobservables one obtains nontrivial values when N → ∞. Substituting (17)into (16) and ordering the resulting expression with respe
t to powers of Nwe get

pN
m = p+

(b− 1
2 )π√
2

1√
N

+
1

12
p (p2−3)

1

N
+

π

4
√

2
(b− 1

2)(p2−1)
1

N
3
2

+. . . . (19)Noti
e that b has no in�uen
e on the result obtained in the 
ontinuum limit.Nevertheless, it is 
lear that taking b = 1
2 gives the best 
onvergen
e. More-over, one 
an put

m =

√
2

π
p
√
N + b+

c√
N
, (20)



2398 M. Trzetrzelewskiproviding another parameter whi
h 
ontrols the 
onvergen
e. Now Eq. (19)is modi�ed to
pN

m = p+

(
b− 1

2

)
π√

2

1√
N

+

(
cπ√

2
+

1

12
p
(
p2 − 3

)) 1

N

+
π

4
√

2

(
b− 1

2

)(
p2 − 1

) 1

N
3
2

+ . . . . (21)The pro
edure may by 
ontinued but the optimal values of the 
oe�
ients
b, c are not universal, i.e. if we take another observable they will be di�erent.We 
an see this already in the example (19) where 
oe�
ient b depends onparity of N . Nevertheless the limit (18) is valid for di�erent observables.It is interesting to deal with the problem of 
ardinality of the spe
trum ofthe momentum operator. For all N the spe
trum of 
ut operators 
onsistsof �nite number of eigenvalues but we know that in the 
ontinuum limitthere has to be an un
ountable set of eigenvalues. How those two fa
ts
an be brought together? A

ording to (15), (16) for large N , there are Neigenvalues (N/2 positive ones and N/2 negative ones, or (N − 1)/2 positiveones and (N − 1)/2 negative ones for N even or odd, respe
tively) separatedby the distan
e O(1/

√
N). It means that the spe
trum be
omes denser sothat it is possible to 
hose su
h m(N) that

∀p∈R : lim
N→∞

pN
m(N) = p . (22)Therefore, the set of all roots of all Hermite polynomials Z =

⋃∞
N=1 spe
-trum (P̂ (N)) is dense in R. However, it is not equal to R be
ause Z is
ountable due to the fa
t that there is 
ountable amount of Hermite poly-nomials. In other words elements of Z behave similarly to rational numbersin R. It looks as if there was something wrong be
ause the spe
trum ofoperator P should be 
ontinuous. In order to solve this paradox we use thes
aling (17). Now any real number p 
an be obtained in the 
ontinuum limitso that all elements of R are reprodu
ed.5. The spe
trum of the 
ut kineti
 energyIn order to 
al
ulate the eigenvalues of a free parti
le we introdu
e the
ut parity operator

Σ(N) =





1 0 0
0 −1 . . .
0 (−1)N





︸ ︷︷ ︸
N+1 
olumns . (23)



Quantum Me
hani
s in a Cut Fo
k Spa
e 2399A straightforward 
al
ulation shows that [(p2)(N),Σ(N)]= [(p(N))2,Σ(N)]=0so that (p2)(N) as well as H(N) ≡ (p(N))2, represented in an eigenbasis of
Σ(N), split into two blo
ks.Let N be an odd number. In this 
ase the matri
es (p2)(N) and (p(N))2
ontain two blo
ks {(N + 1)/2} × {(N + 1)/2} ea
h. We have2

(
1

2
p2

)(N)

=

[
A

N+1
2

+ 0

0 A
N+1

2
−

]

,

1

2

(
p(N)

)2
=

[
B

N+1
2

+ 0

0 B
N+1

2
−

]
, (24)where

A
(M)
+ =





1
4 −

√
1·2
4 0

−
√

1·2
4

5
4

. . .. . . 4M−7
4 −

√
(2M−3)·(2M−2)

4

0 −
√

(2M−3)·(2M−2)

4
4M−3

4




, (25)

A
(M)
− =





3
4 −

√
2·3
4 0

−
√

2·3
4

7
4

. . .. . . 4M−5
4 −

√
(2M−2)·(2M−1)

4

0 −
√

(2M−2)·(2M−1)

4
4M−1

4




, (26)and

B
(M)
+ =





1
4 −

√
1·2
4 0

−
√

1·2
4

5
4

. . .. . . 4M−7
4 −

√
(2M−3)·(2M−2)

4

0 −
√

(2M−3)·(2M−2)

4
4M−3

4




, (27)

B
(M)
− =





3
4 −

√
2·3
4 0

−
√

2·3
4

7
4

. . .. . . 4M−5
4 −

√
(2M−2)·(2M−1)

4

0 −
√

(2M−2)·(2M−1)

4
4M−1

4 − 2M
4




. (28)

2 The dimensions of those blo
ks are equal in this 
ase be
ause for odd N the rankof the matrix Σ(N) is N + 1 � even. Therefore, it 
ontains the same number of +1and −1.



2400 M. TrzetrzelewskiSin
e A(M)
+ = B

(M)
+ (the �+� sign 
orresponds to odd m) therefore,

EN
m ≡

(
1
2p

2
)N
m

= 1
2

(
pN

m

)2 where m = 1, 3, . . . , N for N � odd. (29)When N is even, the analogous pro
edure gives
EN

m ≡
(

1
2p

2
)N
m

= 1
2(pN

m)2 where m = 2, 4, . . . , N for N � even. (30)Now it is useful to present the eigenvalues (29), (30) in the following table.For example for N < 4, m < 5

-
N = 0 N = 1 N = 2 N = 3

?

m = 1

m = 2

m = 3

m = 4





E0
1 = ? E1

1 = 1
2(p1

1)
2 E2

1 = ? E3
1 = 1

2(p3
1)

2

− E1
2 = ? E2

2 = 1
2 (p2

2)
2 E3

2 = ?
− − E2

3 = ? E3
3 = 1

2(p3
3)

2

− − − E3
4 = ?





. (31)
We prove that �elds �lled with question-marks in (31) are equal to theirneighbors on the right.Let N be an odd number. We have already shown that matrix (1

2p
2
)(N)
ontains two blo
ks (24). Now, if we in
rease N −→ N + 1 we obtain

(
1

2
p2

)(N+1)

=





...
A

N+1
2

+ 0 0
•

0 . . . 0 • 0

0 A
N+1

2
−





, (32)
so that the blo
k AN+1

2
− does not 
hange3. It means that in the N +1 
uto�,eigenvalues from this blo
k remain untou
hed. This blo
k 
orresponds toeven m, therefore, we have

E(N+1)
m = E(N)

m for m = 2, 4, . . . , N + 1 N � odd. (33)
3 The matrix AN+1

2 be
omes larger be
ause the in
rement N −→ N + 1 produ
es newstate with parity Σ = +1. Next in
rement (i.e. N + 1 −→ N + 2) will produ
e newstate with parity Σ = −1 et
.



Quantum Me
hani
s in a Cut Fo
k Spa
e 2401When N is even an analogous pro
edure gives
E(N+1)

m = E(N)
m for m = 1, 3, . . . , N N � even . (34)That 
ompletes the whole spe
trum of (1

2p
2
)(N). The �rst few exemplaryvalues are:

∣∣∣∣∣∣∣∣∣∣∣∣

0.25 0.25 0.137 0.137 0.095 0.095
− 0.75 0.75 0.459 0.459 0.333
− − 1.362 1.362 0.892 0.892
− − − 2.040 2.040 1.400
− − − − 2.762 2.762
− − − − − 3.516

∣∣∣∣∣∣∣∣∣∣∣∣

.Above numbers were obtained from a program des
ribed in next se
tion andindeed 
on�rm (33), (34). A

ording to (15), (16) formulas (29), (30), (33), (34)give
E(N)

m ≈ π2

2

(m− 1
2 )2

2N + 3
N � odd , m � odd , (35)

E(N)
m ≈ π2

2

m2

2N + 5
N � odd , m � even , (36)

E(N)
m ≈ π2

2

(m− 1
2 )2

2N + 5
N � even , m � odd , (37)

E(N)
m ≈ π2

2

m2

2N + 3
N � even , m � even . (38)Note that (17) applied to (35)�(38) separately gives the expe
ted limit

(p2/2). Moreover, we see that the dependen
e of spe
trum onN is power-likei.e. slow. 6. Appli
ationsThe analyti
 results dis
ussed above we use to verify the method intro-du
ed in [7,8℄. It 
onsists of numeri
al diagonalization of �nite matri
es andextrapolation of results to N → ∞. Pra
ti
ally, when one deals with fast
onvergen
e of eigenvalues it is su�
ient to stop the 
al
ulations for rela-tively low 
uto� N (in the 
ase of one dimensional nonrelativisti
 quantumme
hani
s the results for N = 50 are already very a

urate). Nevertheless,a problem may o

ur when the 
onvergen
e is slow (polynomial), or whennumeri
al 
al
ulations are time 
onsuming even for low N .One of the aims of this work is a better understanding of the 
ase ofa free parti
le whi
h has the former feature. The later situation o

ursevery time when there are higher dimensions. Models dis
ussed in [7,8℄ have



2402 M. Trzetrzelewskiboth of those di�
ulties, therefore, it is 
ru
ial to understand analyti
allythe asymptoti
s of the spe
trum for large N . We expe
t that the power-likebehavior in N is 
hara
teristi
 not only for the spe
trum of a free parti
lebut also it o

urs in every s
attering problem be
ause in those 
ases theasymptoti
s of wave fun
tions is the same as for a free parti
le so that theasymptoti
 momentum may be properly de�ned.6.1. Quantum me
hani
s on a 
omputerLet us dis
uss in details the implementation of the method [7,8℄ in the
omputer 
ode. Consider quantum system withD degrees of freedom with D
reation and annihilation operators. One 
an 
onstru
t the whole orthogonalbasis from the va
uum state | 0〉

| n1, n2, . . . , nD〉 =
(â†1)

n1

√
n1!

(â†2)
n2

√
n2!

. . .
(â†D)nD

√
nD!

| 0〉 . (39)Ea
h state in a 
ut Fo
k spa
e, de
omposed in this basis, is represented asa list in Mathemati
a program
| ψ〉 =

p∑

k=1

ak | nk
1, n

k
2 , . . . , n

k
D〉 −→

{
p, {a1, a2, . . . , ap},

{{n1
1, n

1
2, . . . , n

1
D}, {n2

1, n
2
2, . . . , n

2
D}, . . . ,{np

1, n
p
2, . . . , n

p
D}}

}
. (40)The �rst element of this list spe
i�es the number of basis ve
tors used inde
omposition of the state | ψ〉. The se
ond element of the list is a list of
oe�
ients of this de
omposition. Basis ve
tors are represented in the thirdelement of this list. For example

a | 0, 1〉 + b | 1, 0〉 + c | 1, 1〉 −→
{

3, {a, b, c}, {{0, 1}, {1, 0}, {1, 1}}
}
.The 
reation and annihilation operators

âk : âk | n1, n2, . . . , nk, . . . , nD〉 =
√
nk | n1, n2, . . . , nk − 1, . . . , nD〉, (41)

â†k : â†k | n1, n2, . . . , nk, . . . , nD〉=
√
nk + 1 | n1, n2, . . . , nk+1, . . . ,nD〉. (42)have the following a
tion in the list representation

âk | ψ〉 −→
{
p,
{√

n1
ka1, . . . ,

√
np

kan

}
, {{n1

1, . . . , n
1
k − 1, . . . , n1

D},

. . . , {np
1, . . . , n

p
k − 1, . . . , np

D}}
}
, (43)



Quantum Me
hani
s in a Cut Fo
k Spa
e 2403and
â†k | ψ〉 −→

{

p,

{√
n1

k +1a1, . . . ,
√
np

k + 1ap

}
,
{{
n1

1, . . . , n
1
k + 1, . . . , n1

D

}
,

. . . ,
{
np

1, . . . , n
p
k + 1, . . . , np

D

}}
}

. (44)In order to evaluate the matrix representation of any observable we de�nepro
edures whi
h add and multiply on arbitrary state by a 
omplex numberas well as s
alar multiply states. For example
| ψ〉 −→

{
2, {1, 2}, {{0, 0}, {0, 1}}

}
,

| φ〉 −→
{

2, {1, 1}, {{0, 2}, {0, 1}}
}
,then

| ψ〉+ | φ〉 −→
{
3, {1, 3, 1}, {{0, 0}, {0, 1}, {0, 2}}

}
,

2 | φ〉 −→
{
2, {2, 2}, {{0, 2}, {0, 1}}

}
,and

〈ψ | φ〉 −→ 2 .Adding lists is simply adding those 
oe�
ients of the de
omposition (40),that have the same basis ve
tors. If de
ompositions of | ψ〉 and | φ〉 havedi�erent basis ve
tors then the sublist 
onsisting of basis ve
tors has to beextended a

ordingly.The pro
edure of multiplying the state by a number redu
es to multi-plying the list of 
oe�
ients by this number.S
alar multipli
ation 〈ψ | φ〉 redu
es to a sear
h for 
ommon basis ve
torso

urring in de
omposition of | ψ〉 and | φ〉. Afterwards proper 
oe�
ientsand their 
omplex 
onjugations have to be multiplied.These rules allow to represent automati
ally any operator in a 
ut ba-sis (39). 6.2. Numeri
al diagonalizationHere we 
ompare numeri
al data and analyti
 results of Se
. 3 for (a1)� eigenvalues of P (N) evaluated by the program des
ribed in Se
. 6.1.(a

ording to Se
. 3 they are exa
tly the roots of Hermite polynomials),(a2) � the asymptoti
 form (16).
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omparison of 
ases (a1) and (a2) for m = 1, 2, 3.The approximate value is obtained from (16) by taking only the leading term
pN

m ≈ π
(
m− 1

2

)
√

2N + 1
. (45)We see that there is a good agreement between exa
t and approximate valueseven for low N , and it gets worse for higher m where next terms of theexpansion of (16) are important.

2 4 6 8 10N

0.4

0.5

0.6

0.7
pNm=1

a2

a1

2 4 6 8 10N
0.8

1.2
1.4
1.6
1.8
2

pNm=2

a2

a1

2 4 6 8 10N

1.5

2.5

3

3.5
pNm=3

a2

a1

Fig. 1. Asymptoti
 (⋆), and exa
t (�), behavior of p(N)
m for m = 1, 2, 3.6.3. Continuum limit on a 
omputerHere we want to obtain dispersion relation that is the dependen
e of theenergy on momentum E(p). Obviously we know that E(p) = p2/2 but it isonly be
ause we are able to solve S
hrödinger equation for a free parti
le.However, one has to put himself in a situation where there is a 
ertainset of eigenvalues EN

m and no information about the dispersion relation isavailable. In other words the question is how to obtain unknown a priorifun
tion E(p) by means of eigenvalues EN
m? In order to do this one has tomake m dependent on N : m = m(N, p) su
h that the limit

lim
N→∞

EN
m(N,p) = E(p) , (46)
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e 2405is not trivial that is E(p) <∞ and E(p) 6= 0. Note that (46) automati
allyrequires the set {EN
m : m,N ∈ N} to be dense in E(R). In 
ase of a freeparti
le (E(R) = [0,∞)) we 
an even 
onstru
t this set (squares of roots ofHermite polynomials) however, it is a general property of any operator with
ontinuous spe
trum. This is exa
tly the reason why EN

m depends on N asa power rather than exponentially.Let us emphasize that we do not have to know the dependen
e E(p)to evaluate m(N). This is be
ause the relation m(N) was established ongrounds of the 
ondition that there has to exist the 
ontinuum limit for themomentum, so that any other operator 
ommuting with P will have the sames
aling. We will analyze in details the 
ase of a free parti
le in nonrelativisti
quantum me
hani
s but another example may be Dira
 equation where weexpe
t that the s
aling law (18) will give E(p) =
√
M2 + p2. Therefore, thes
aling in (46) has to be the same as for momentum operator, that is

m(N, p) =

√
2N

π
p+

1

2
. (47)However, in formula (47) we have to introdu
e a 
ertain 
hange

m(N, p) −→ 2m(N, p) = 2

√
2N

π
p+ 1 , (48)be
ause the s
aling (48) is meant for positive eigenvalues of operator P (N)only. Let us 
onsider an example of N = 7. The spe
trum of operator

P (8) 
onsists of roots of H8(x), so that we have 8 roots where 4 of them arepositive and 4 are negative.
-∗ ∗ ∗ ∗ 0 r r r rNow, if we square them the spe
trum be
omes positive and the numer-ation of eigenvalues 
hanges as follows:4
-0 ∗ r ∗ r ∗ r ∗ rFor example, the eigenvalue whi
h we used to number as the �rst onewill now have the index m = 2, the eigenvalue whi
h we used to number asthe se
ond one will now have the index m = 4, et
. Therefore, the formula(47) has to be res
aled as in (48).

4 Sin
e roots of Hn(x) are symmetri
 around the origin, their squares will give doubledegenera
y. Hen
e for the free parti
le dots and stars should be on the same pointhowever, in general it is not the 
ase.
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ording to (48), eigenvalues EN
m are analyzed by �xing any momentumvalue p and writing down the value ENmax

m(Nmax,p) where Nmax is the highest
N in 
omputer 
al
ulations (in our 
ase Nmax = 190). Then we 
hangethe momentum value and repeat the pro
edure. In this way one obtains anapproximate (be
ause of limited value of N) dependen
e E(p), whi
h shouldreprodu
e (p2/2) for a free parti
le. However, the problem 
on
erning theformula m(N, p) o

urs be
ause m is not a natural number. We 
ir
umventthis by taking an integer part (INT) of Eq. (48), so that the matrix indexis INT(m(Nmax, p)). The 
onvergen
e of those elements was 
he
ked inMathemati
a for p = 1, 2, 3, . . . , 10 (e.g. Fig. 2).

50 100 150
N

0.2
0.4
0.6
0.8

1
EN

m p=1

50 100 150
N

45
50
55
60
65
70
75
80

EN
m p=10

Fig. 2. The 
onvergen
e of EN
INT(m(Nmax,p)) for p = 1 and p = 10, respe
tively.This behavior 
an be understood as follows. If one plots the dependen
eof EN

1 on N (p is �xed), one obtains (35)�(38) a hyperbola. The lower index
m=1 spe
i�es the �rst eigenvalue. The upper index enumerates the 
uto�.If we plot the dependen
e of EN

2 on N, we get another hyperbola et
. Finallythe plot of EN
m is a set of hyperbolas on a plane (see Fig. 3). The s
alingthat we have used previously means that from ea
h hyperbola we are takingonly one point in su
h way that in the limit of large N a 
onstant value isreprodu
ed. Why on those �gures we see 
ut hyperbolas instead of points?This is be
ause we had to introdu
e the INT pro
edure whi
h is equivo
al.In a 
onsequen
e it is possible that for di�erent 
uto�s (say N and N ′) thereis INT(m(N, p)) = INT(m(N ′, p)). It means that points (N, INT(m(N, p)))and (N ′, INT(m(N ′, p))) are on the same hyperbola. Eventually N will belarge enough so that the INT operation noti
es the di�eren
e and the point�jumps� to next hyperbola. Let us also note that the s
aling (18) is anasymptoti
 law hen
e for low N the behavior of EN

m(N,p) may vary for di�erentvalues of p. This e�e
t a

ounts for the di�erent behavior in Fig. 2.The dispersion relation extra
ted in this way is presented in Fig. 4 for
Nmax = 190, 150, 100. This result has no error be
ause all eigenvalues arepre
isely evaluated hen
e any statisti
al interpretation is meaningless. The
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50 100 150 200
N

0.5

1

1.5

2

2.5

3

3.5

ENm

Fig. 3. The 
onvergen
e of EN
INT(m(Nmax,p)) for p = 1.tangent 
oe�
ients forNmax = 100, 150, 190 are 1.20, 1.12, 1.10, respe
tively.They di�er from 1 but we did expe
t that be
ause it is a numeri
al resultobtained on grounds of limited 
uto�. Moreover, we had to introdu
e theINT operation. In a 
onsequen
e we had to 
hoose only one point from 
uthyperbolas. It is a sour
e of a new error whi
h gets smaller while the 
uto�in
reases. Note that the 
oe�
ient gets better as Nmax in
reases.Therefore, Fig. 4 
on�rms that we 
an obtain the dispersion relationfrom the spe
trum of a 
ut Hamiltonian.

2 4 6 8 10
P

2

4

6

8

10

12

2E P-1

Nmax=100

Nmax=150

Nmax=190

Fig. 4. Reprodu
ed dispersion relation.



2408 M. Trzetrzelewski7. Bound states versus s
attering statesIn this se
tion we stress the di�eren
e between lo
alized and nonlo
alizedstates. It follows from simple algebra (see Appendix A) that5
Em − E(N)

m =

N∑
j=1

∞∑
j=N+1

hijc
j
m

N∑
i=1

cjmc∗(N)j
m

, (49)whi
h means that the spe
trum of 
ut operators 
onverges towards the spe
-trum of operators in in�nite Hilbert spa
e. Moreover, one 
an tell howfast is the 
onvergen
e be
ause from (49) it is 
lear that the 
onvergen
e
E

(N)
m → [N −→ ∞]Em is governed by the behavior of the cjm at large j.Note that in (49) cjm are the exa
t 
omponents of eigenve
tors of H. Thisis exa
tly the result we were anti
ipating be
ause the di�eren
e betweenlo
alized and non-lo
alized states lies in 
omponents cjm. Therefore, one
an numeri
ally judge weather the state is bound or not on grounds of thebehavior of the eigenvalues of 
ut operators only.For the 
ase of a free parti
le one 
an obtain cnE exa
tly

cnE = 〈n | k〉 =

∫

R

dx〈n | x〉〈x | k〉 =

∫

R

dxψHO
n (x)eikx , (50)where HO stands for harmoni
 os
illator

ψHO
n (x) =

1√
2nn!π

Hn(x)e−x2/2 . (51)Integral (50) is evaluated with the aid of some analyti
 properties of Hermitepolynomials, what is presented in Appendix C. The result is6
cnE =

√
2π in ψHO

n (k) . (52)
5 The notation is explained in Se
. 2
6 Eq. (52) 
an be obtained independently in a shorter way. Noti
e that cnE is a Fouriertransform of ψHO

n (x) whi
h is the solution for Hamiltonian H = 1
2
p2 + 1

2
x2. TheFourier transformation swit
hes x with p but H is symmetri
 in those variables sothe S
hrödinger equation in momentum representation is the same as in 
oordinaterepresentation. Therefore, the solution for harmoni
 os
illator in momentum rep-resentation is of the same form (up to a multipli
ation fa
tor) as the solution forharmoni
 os
illator in 
oordinate representation. The 
onne
tion between those twosolutions is given by Fourier transform hen
e 
oe�
ients cnE are of a form (52).
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2000 4000 6000 8000 10000

j

-2·10242

-1·10242

1·10242

2·10242

cjE

Fig. 5. Components of the eigenve
tor (E = 1000) for free parti
le.Fig. 5 is an example of (52) for E = k2/2 = 1000. Asymptoti
 behaviorof the envelope is (see Appendix C) | cnE |≈ 4

√
2

πn whi
h is indeed power-like. Similar 
al
ulations for dis
rete spe
trum are not known, so one is leftwith numeri
al data instead. Fig. 6 presents 
omponents of eigenve
tor
orresponding to the �rst (the lowest) eigenvalue of anharmoni
 os
illator,as well as the 
onvergen
e of the �rst eigenvalue.
20 40 60 80

j

-1
-0.75
-0.5
-0.25

0.25
0.5
0.75

1
cjm

10 20 30 40 50
N

0.25
0.5
0.75

1
1.25
1.5
1.75

2
ENm

Fig. 6. Components of the eigenve
tor (cjm=1) and the 
onvergen
e of eigenvalues(EN
m=1) for anharmoni
 os
illator.In this 
ase the behavior of cjm is 
ompletely di�erent from one shown inFig. 5. One sees that EN

m varies in the same (exponential) way as cjm. Inother words, the behavior of eigenvalues EN
m with the 
uto� N distinguisheswhether the state is bound or not.



2410 M. Trzetrzelewski8. Con
lusionsThe main purpose of this paper was to prove that the method proposedin [7,8℄ enables one to distinguish numeri
ally weather the state is lo
al-ized or not. This aim and related problems have already been investigated[9�13℄. This distin
tion is an important issue while studying supersymmetri
models (D = 10 SYMQM) where bound states exist among dense numberof s
attering ones [1℄. Therefore, one has to reanalyze quantum systemsfrom the very beginning in a new manner. Starting from the 
al
ulation ofspe
trum of 
ut operators Q(N), P (N) one realizes that eigenvalues of thoseoperators are exa
tly equal to the roots of Hermite polynomials. Next, we
on
lude that in order to re
over the 
ontinuum limit one has to introdu
ethe s
aling m(N). The validity of the s
aling law in the Hamiltonian of afree parti
le was rigorously proven in Se
. 5 and numeri
ally tested in Se
.6. As a result one reprodu
es the dispersion relation from an informationabout a spe
trum of a 
ut Hamiltonian. It is expe
ted that the same s
alingmay be applied for a set of Hamiltonians 
ommuting with P or under weakerassumptions, namely those for whi
h P 
an be de�ned asymptoti
ally.The s
aling in higher dimensions is important be
ause of the o

urren
eof s
attering states (e.g. SYMQM D = 2 systems). The formula (18) isexpe
ted to be valid in those 
ases be
ause they are des
ribed by quantumme
hani
s of a free parti
le in 
olor dimensions. In this 
ase the 
oe�
ientin (17) may be di�erent, however, (18) is 
laimed to be appli
able all thetime. In parti
ular D = 2, SU(2) SYMQM [10℄ is free and it has been found[14℄ that the system requires pre
isely (17) to re
over the 
ontinuum limit.Re
ently a new possibility to speed up the numeri
al approa
h in D = 4 haso

urred [11℄. The naive diagonalization of the Hamiltonian in the whole
ut Hilbert spa
e was abandoned and repla
ed by the language of rotationalinvarian
e. The new approa
h 
an be extended to higher dimensions as well.I am very grateful to my supervisor Prof. Ja
ek Wosiek for pri
eless ad-vi
es and 
omments 
on
erning this paper. This work was supported by thePolish State Committee for S
ienti�
 Resear
h under grants no. PB 2P03B09622 and no. PB 1P03B 02427.
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e 24119. Appendix AHere we derive the formula (49). Let us start with eigen equation Hcm =
Emcm where H is an operator and cm its eigenve
tor. Writing it in thematrix form




h1 N+1 . . .

H(N) ... · · ·
hN N+1 . . .

hN+1 1 . . . hN+1 N hN+1 N+1 . . .... ... ... ... ...








c1m...
cNm
cN+1
m...




=Em





c1m...
cNm
cN+1
m...




, (53)and rewriting for �rst N 
omponents only, one obtains

H(N)




c1m...
cNm



+





∞∑
i=1

h1 N+ic
N+i
m...

∞∑
i=1

hN N+ic
N+i
m




= Em




c1m...
cNm



 . (54)Now 
omplex 
onjugate (54) and multiply it by c(N)
n from the right side

[
c∗1

m . . . c∗N
m

]
H(N)




c(N)1

n...
c(N)N

n





+

[ ∞∑
i=1

h∗1,N+ic
∗N+i
m , . . . ,

∞∑
i=1

h∗N,N+ic
∗N+i
m

]



c(N)1

n...
c(N)N

n





= Em

[
c∗1

m . . . c∗N
m

]



c(N)1

n...
c(N)N

n



 , (55)so that
E(N)

m

N∑

i=1

c∗j
mc

(N)j
n +

N∑

i=1

∞∑

j=N+1

h∗ijc
∗j
n = Em

N∑

i=1

c∗j
mc

(N)j
n , (56)
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(
Em − E(N)

n

) N∑

i=1

c∗j
m c(N)j

n =
N∑

i=1

∞∑

j=N+1

h∗ij c
∗j
n , (57)it is non trivial to realize that above equation means that N∑

i=1
c∗j

mc
(N)j

n −→
δmn thus one 
an omit the n index and write

Em − E(N)
m =

N∑
i=1

∞∑
j=N+1

hijc
j
m

N∑
i=1

cjmc∗(N)j
m

. (58)Of 
ourse, this derivation is for the 
ase with dis
rete spe
trum (dis
reteindex m) nevertheless for 
ontinuous spe
trum the same 
al
ulations give
(
E −E(N)

n

) N∑

i=1

c∗j
Ec

(N)j
n =

N∑

i=1

∞∑

j=N+1

h∗ijc
∗j
E , (59)where

H(N)c(N)
E = E

(N)
E c

(N)
E and HcE = EcE , E ∈ R . (60)This 
ase is dis
ussed in details in Se
s. 6 and 7.10. Appendix BIn this appendix we derive the asymptoti
 form of the zeros qn

m of theHermite polynomialHn(z). When n is an even number they may be obtainedusing the following relation [15℄
Hn(z) = (−1)

n

2 2n 1
2n!L

− 1
2

n

2
(z2) , (61)where n is an even number, Lα

n(z2) are the generalized Laguerre polynomialswith parameter α (in our 
ase α = −1/2). Let zn
m, tn

2
m,α and jm,α denote the

m-th positive root of Hn(z), Ln

2

α(z) and Jα(z). One has [15℄
t

n

2
m,α =

jm,α
2

4kn

2

(
1 +

2(α2 − 1) + jm,α
2

48kn

2

2

)
+O(n−5) , (62)where

kn

2
,α =

n

2
+
α+ 1

2
and (zn

m,α)2 = t
n

2
m,α . (63)
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2 we obtain J− 1

2
(z) =

√
2
πz cos(z), therefore, jα,m = π(m − 1

2)where m = 1, 2 . . . , n
2 and kn

2
,α = n

2 + 1
4 so

(zn
m)2 =

π2(m− 1
2)2

4(n
2 + 1

4)

(

1 +
π2(m− 1

2 )2 − 3
2

48(n
2 + 1

4)2

)

+O(n−5)

=
π2(m− 1

2)2

2n + 1

(

1 +
π2(m− 1

2)2 − 3
4

3(2n + 1)2

)

+O(n−5) . (64)Let us de�ne (m is �xed)
f(n) :=

π2
(
m− 1

2

)2

2n + 1

(

1 +
π2
(
m− 1

2

)2 − 3
4

3(2n + 1)2

)

=
a

n
+

b

n2
+

c

n3
+ . . . (65)we have

zn
m =

√
f(n) +O(n−5) =

√
f(n)

√

1 +
O(n−5)

f(n)

∼=
√
f(n)

(
1 +O

(
n−4

))
, (66)so

zn
m =

√
f(n) +

√
f(n)O

(
n−4

)
=
√
f(n) +O

(
n−4.5

)
, (67)�nally

zn
m =

π
(
m− 1

2

)
√

2n+ 1

√

1 +
π2(m− 1

2 )2 − 3
2

3(2n + 1)2
+O

(
n−4.5

)
. (68)When n is an odd number there are [15℄ analogous relations

Hn(z) = (−1)
n−1

2 2n

(
n− 1

2

)
! zL

1
2
n−1

2

(
z2
)
, (69)and

t
n−1

2
m,α =

jm,α
2

4kn−1
2

(
1 +

2(α2 − 1) + jm,α
2

48kn−1
2

2

)
+O(n−5), (70)where

kn−1
2

,α =
n− 1

2
+
α+ 1

2
and (zn−1

m,α )2 = t
n−1

2
m,α . (71)
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ase Jα(z) = J 1
2
(z) =

√
2
πz sin(z) so jα,m = πm where m =

1, 2 . . . , n−1
2 and kn−1

2
,α = n

2 + 1
4 . Analogous 
al
ulations give

zn
m =

πm√
2n + 1

√

1 +
π2m2 − 3

2

3(2n + 1)2
+O(n−4.5) . (72)11. Appendix CHere we evaluate the integral

In(k) =

∫

R

dxHn(x)e−x2/2 eikx . (73)It follows from three properties of Hermite polynomials [15℄ that
Hn(x+ y) =

1

2n/2

n∑

m=0

(
n

m

)
Hm(

√
2x)Hn−m(

√
2y) , (74)

Hn(x) =
2n

√
π

∫

R

dt(x+ it)ne−t2 , (75)
∫

R

dxHn(x)Hm(x)e−x2
= 2nn!

√
πδnm . (76)After substituting (75) to (73) and 
hanging the variables x −→ x+ ik weget

In(k) =
1√
π

2
3n+1

2 e−k2/2in
∫

R

dt e−t2
∫

R

dx e−x2

(
t+ k√

2
+ ix

)n

. (77)Using (75) on
e again we obtain
In(k) = e−k2/2 2

n+1
2 in

∫

R

dt e−t2Hn

(
t+ k√

2

)
. (78)Finally substituting (74) to (78) and using (76) we get

In(k) = e−k2/2
√

2in
n∑

m=0

(
n

m

)
Hn−m(k)2mm!

√
πδm0

= e−k2/2
√

2πinHn(k) , (79)
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e 2415therefore
cnE = 〈n | k〉 =

1√
2n n!π

In(k) =
√

2π in ψHO
n (k). (80)It is straightforward now to estimate 
omponents cnE .

|cnE | =
1√

2nn!π
| In(k) |≤ 1√

2nn!π
| In(0) |≤ 1√

2nn!π

√
2π | Hn(0) | . (81)Sin
e H2n+1(0) = 0, | c2n+1

E |= 0. On the other hand H2n(0) = (−1)n (2n)!
n!therefore, | c2n

E |≤
√

2
√

(2n)!

2nn! . Finally a

ording to Stirling formula one ob-tains
∣∣c2n

E

∣∣ / 4

√
2

πn
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