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A recently introduced numerical approach to quantum systems is ana-
lyzed. The basis of a Fock space is restricted and represented in an algebraic
program. Convergence with increasing size of basis is proved and the dif-
ference between discrete and continuous spectrum is stressed. In particular
a new scaling low for nonlocalized states is obtained. Exact solutions for
several cases as well as general properties of the method are given.

PACS numbers: 11.10.Kk, 04.06.Kz

1. Introduction

Recently an attractive possibility of modeling M-theory through rela-
tively simple quantum mechanical systems [1] has occurred. They emerge
from the dimensional reduction of supersymmetric gauge theories and pro-
vide a simple laboratory to study many properties of supersymmetry [2,3].
It follows from [1] that there is a strong connection between M-theory and
SU(N. — o0) supersymmetric Yang-Mills quantum mechanics (SYMQM).
However, supersymmetric quantum mechanics have much longer history.
Various schemes have been analyzed to try to solve the hierarchy prob-
lem including the idea of breaking SUSY. This was the reason why SUSY
was first studied in the simplest case of quantum mechanics (SUSYQM)[2].
Apart from its physical meaning SUSYQM gave also a deeper understanding
of why certain potentials are analytically solvable and others are not [4]. The
SYMQM gauge systems were studied for the first time in [3] where the exact
spectrum including the ground state of SYMQM D = 2 was given. Later
on the extension for arbitrary SU(N) gauge group was also obtained [5].
SUSYQM is known to have continuous spectrum due to the fermion—boson
cancellation [6]. According to BFSS hypothesis there should be a bound
state at the threshold of the spectrum. However, since there are no exact
solutions one is forced to use numerical methods.

(2393)
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In this paper we discuss in details a numerical approach of solving quan-
tum mechanical systems proposed in [7,8] and already investigated in [9-13].
Next section contains a formulation of the method as well as its general prop-
erties. We introduce a cutoff as the restriction of the number of quanta NV,
and by means of an algebraic program analyze a complete dependence of the
spectrum of “cut” Hamiltonians on the cutoff. We prove that the eigenval-
ues of such Hamiltonians converge towards exact (i.e. in the infinite Hilbert
space) spectrum. In Sec. 3 we give the exact spectrum of the momentum
and coordinate operators at arbitrary finite V. The asymptotic behavior
with N — o0 is derived in Sec. 4 where a new scaling law, required to
recover the infinite Hilbert space limit, is formulated. The scaling and its
universality is discussed in Sec. 5 by giving the exact spectrum of a free par-
ticle in quantum mechanics. Interestingly, this solution differs only a little
in comparison with the eigenvalues of the Hamiltonian for D = 2 supersym-
metric Yang—Mills quantum mechanics at finite cutoff [14]. We prove that
the continuum spectrum in quantum mechanics gives rise to the power-like
dependence on the cutoff. This result is important in studying supersymmet-
ric systems where the distinction between continuum and discrete spectra
is an important issue. In Sec. 6 we use numerical data in order to verify
the theoretical results. The implementation of the approach in Mathematica
code will be discussed there in details.

2. A cut Fock space

Every quantum Hamiltonian can be represented in the eigenbasis of

a harmonic oscillator
= _aTn 0 N (1)
n , nE ,
{’ ) vn! 0} }

where a,al are the normalized annihilation and creation operators, respec-
tively. The correspondence between a,a and @Q, P (coordinate and momen-
tum operators, respectively) reads

Q:%(a+aT), P:%(acﬁ). (2)

Since this basis is countable it is very convenient to use it in numerical
applications. One can limit (1), e.g. n < N, then calculate the finite matrix
representation of any Hamiltonian and numerically diagonalize above finite
matrix to obtain a complete spectrum and the eigenstates of the system!.

! We are considering here Hamiltonians with potentials being polynomials in vari-
able @). Other types of potential functions (e.g. (1/r)) may be analyzed as well by
introducing coordinate representation, however, numerically it is more time consum-
ing.
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The procedure is simple and essentially numerical, however, a number of
theoretical questions arises while analyzing it. They will be discussed in this

paper.
We denote

as operator H in a cut Fock space (cutoff = N), EXY and ¢™),, = [N,
where j=1,..., N+1,m=1,2,..., N + 1 as eigenvalues and eigenvectors
of HN) respectively, E,, and ¢,, = [cn]7 as eigenvalues and eigenvectors
of H, respectively. In other words

HWM N — pN)(N) and He,, = Epcm . (3)

m m

The main aim of the present work is to understand the dependence of
the spectrum of HN) on N.

3. The spectrum of cut momentum and coordinate operators

Matrix elements of the P and ) operators in the occupation number

basis read
k k+1
(n|Qlk) = \/;5n,k—1 4/ T5n,k+1»
1 /k 1 /k+1
<n ‘ P‘k> - ;\/;6714,]61—’_; T5n7k+1. (4)

In the Hilbert space limited to maximum of N quanta the eigenvalues of e.g.
momentum are given by zeros of the determinant

-n V1 0
V1 - V2
Iny = 0 V2 ) " |, where n=14v2X. (5)
-n_ VN
VN g

Determinant (5) is evaluated by solving recursion relation following from the
Laplace expansion. Making a change of variables Jy = (1/N!)Iy we obtain

(N+2)JIni2+nIvi1—JIn=0, Ji=-n, Jo=3%@n*+1).(6)
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This recursion may be solved using the generating function method. Let us
define series with coefficients Jy

F(z) = Jix + Jpa® + Joa® + Tzt + ... = ) Iya™. (7)
N=1

It follows from (6) that F'(x) satisfies
(—z+n)F() +1) = —F'(z), (8)

with the boundary condition F(0) = 0. The solution reads

F(z) = exp (%Q—xn> 1= i% (z%)N (9)

N=1

where Hy(z) stands for N-th Hermite polynomial. Since F'(z) is analytic
at x = 0, the expansion (9) is unambiguous so

I.N Hy (Z%)

TN

Then

In = (—1)N272 N Hy(N). (10)
It is clear now that the spectrum of operator P in a cut Fock space is given
exactly by zeros of Hermite polynomials. Therefore, denoting pY as the
m-th eigenvalue of cut momentum PW), we get
2D where  Hyy (V) =0, m=1,2,...,N+1. (11)

N _
pm_ m

This result will be used here several times below.

Calculation for coordinate operator @) is very similar. Recursion relation
is slightly different but initial conditions change also. Those two differences
cancel each other and finally we obtain the same result as for P. Therefore,
denoting ¢Y as the m-th eigenvalue of cut coordinate QW) we obtain

¢¥ = 2D where  Hyoy (zﬁnN“)):o, m=1,2,....N+1. (12)

Since roots of Hermite polynomials are symmetric around 0, we consider
only positive ones for which we introduce the following enumeration

0=p) <pl¥ <py...<pl <...<pN, N —even (13)
2

PN <pd L <pN <. <pNo, N—odd (14)
2
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4. The continuum limit — scaling

Because of the continuum limit it is particularly interesting to analyze
the behavior of roots of Hermite polynomials when N — oo. It is possible
to obtain the asymptotic relation (details are given in Appendix B)

2,02 _ 3
N ™m m2m? — 3 4
= 14+ + O(N ,
bm = AN ¥ 3 3(2N + 3)2 ( )
N
m = 1,...,5 for N — even, (15)
L 2 1y2 _ 3
m(m— 3 m2(m—5)2 —2
PN = ( 3) 14 ( 3) 2 +O(N—*),
ON + 3 3(2N + 3)
N+1
m:1,...,TJr for N — odd. (16)

If one naively evaluates the limit N — oo for fixed m one obtains
A}im p,Nn = 0. This is unacceptable, because we know that A}im p,]X =p
= =

m fixed continuum

with p # 0 and p # oco. It is clear now that m has to depend on N as follows

m=——p+b. (17)

A prescription which guarantees existence of the continuum limit

. N o
Nhinoopm(N) = const. , (18)

is called scaling. The dependence (17) is universal, that is for a large class of
observables one obtains nontrivial values when N — oo. Substituting (17)

into (16) and ordering the resulting expression with respect to powers of N
we get

. (b—%)w 1 1 T 1

M= e S0P s - B0 Dk (19

Notice that b has no influence on the result obtained in the continuum limit.
Nevertheless, it is clear that taking b = % gives the best convergence. More-
over, one can put
V2 c
— —

VN +b+ —,
p \/N

(20)

m =
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providing another parameter which controls the convergence. Now Eq. (19)
is modified to

CcT

1 1
A N (\/5+Ep(p23))ﬁ
T 1 1
+m<b§>(p21)ﬁ+.... (21)

The procedure may by continued but the optimal values of the coefficients
b, c are not universal, i.e. if we take another observable they will be different.
We can see this already in the example (19) where coefficient b depends on
parity of N. Nevertheless the limit (18) is valid for different observables.

It is interesting to deal with the problem of cardinality of the spectrum of
the momentum operator. For all V the spectrum of cut operators consists
of finite number of eigenvalues but we know that in the continuum limit
there has to be an uncountable set of eigenvalues. How those two facts
can be brought together? According to (15), (16) for large N, there are N
eigenvalues (IN/2 positive ones and N/2 negative ones, or (N — 1)/2 positive
ones and (N — 1)/2 negative ones for N even or odd, respectively) separated
by the distance O(1/v/N). Tt means that the spectrum becomes denser so
that it is possible to chose such m(N) that

VpeR ]\}Enoop%(zv) =D (22)

Therefore, the set of all roots of all Hermite polynomials Z = (JX_; spec-
trum (p(N)) is dense in R. However, it is not equal to R because Z is
countable due to the fact that there is countable amount of Hermite poly-
nomials. In other words elements of Z behave similarly to rational numbers
in R. It looks as if there was something wrong because the spectrum of
operator P should be continuous. In order to solve this paradox we use the
scaling (17). Now any real number p can be obtained in the continuum limit
so that all elements of R are reproduced.

5. The spectrum of the cut kinetic energy

In order to calculate the eigenvalues of a free particle we introduce the
cut parity operator

1 0 0
0 —1

»(V) = y . (23)
0 (-~

N+1 columns
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A straightforward calculation shows that [(p?)¢
so that (p?)V) as well as HV) = (p(V))?

2 gplit into two blocks.

N) (V)

Y

2399

J=[(p™)2,=M]=0
, represented in an eigenbasis of

Let N be an odd number. In this case the matrices (p?)™) and (ptN))?
contain two blocks {(N +1)/2} x {(N + 1)/2} each. We have?

1 2
2 (V) —
2 (p )
where
1 V12
1 1
_ V12 5
A&M) — 4 .4
- 0 -
[ 3 _ V23
4 4
_ V23 7
AM) 4 ‘4
. O -
and
[ 1 _ V12
1 4
_ V12 5
B-(&-M) —_ 4 .4
- 0 -
[ 3 _ V23
4 4
_ V23 7
B(_M) —_ 4 .4
- 0 -

- N+l
A? 0
NFT ’
0 A_?
- Nt1
B.? 0
NF+T ’
i 0 B_ 2
0
AM—7 A/ (@2M-3)-(2M—2)
4 7]
(2M —3)-(2M —2) 4M—3
4 7]
0
4M—5 V(@M -2)-2M-1)
4 7]
(2M—-2)-(2M 1) 4M—1
1 7]
0
4AM—7 _ V(2M-3)-(2M —-2)
7] 7]
v (2M-3)-(2M —2) 4M-3
4 4
0
4M-5 _ V/(2M-2)-(2M-1)
4 4
V(2M-2)-(2M-1) AM—1 _ 2M
1 7] 4

(25)

(27)

(28)

2 The dimensions of those blocks are equal in this case because for odd N the rank
of the matrix ) is N + 1 — even. Therefore, it contains the same number of +1

and —1.
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Since ASFM) = BSFM) (the “+” sign corresponds to odd m) therefore,

EN = (%p2)z = % (p,]\,[b)2 where m =1,3,...,N for N — odd. (29)
When N is even, the analogous procedure gives

EN = (%pQ)Z = %(p,]\fn)2 where m=2,4,...,N for N — even. (30)

Now it is useful to present the eigenvalues (29), (30) in the following table.
For example for N <4, m <5

N=0 N=1 N=2 N=3

B =t Bl=1(p})? F=7 Bl=1(}

We prove that fields filled with question-marks in (31) are equal to their
neighbors on the right.
Let N be an odd number. We have already shown that matrix (%p2)(N)

contains two blocks (24). Now, if we increase N — N + 1 we obtain

N+1
A? 0 0
1 (N+1) °
<§p ) =170 0 e 0 , (32)
N+1
0 A2

N+1
so that the block A_% does not change®. It means that in the N + 1 cutoff,
eigenvalues from this block remain untouched. This block corresponds to
even m, therefore, we have

EWNFD — EWN) for m=24,..., N+1 N — odd. (33)

3 The matrix A2 becomes larger because the increment N — N + 1 produces new
state with parity ¥ = +1. Next increment (i.e. N +1 — N + 2) will produce new
state with parity ¥ = —1 etc.
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When N is even an analogous procedure gives

Er(nNJrl) _ Er(nN) for m=1,3,...,N N — even. (34)

That completes the whole spectrum of (%pQ)(N). The first few exemplary
values are:

0.25 0.25 0.137 0.137 0.095 0.095
— 075 075 0459 0459 0.333
— —  1.362 1.362 0.892 0.892
— — — 2.040 2.040 1.400

— 2.762  2.762
— 3.516

Above numbers were obtained from a program described in next section and
indeed confirm (33), (34). According to (15), (16) formulas (29), (30), (33), (34)

give

EWN) ~ %2% N —odd, m — odd, (35)
EWM ~ %22]\?”1 = N —odd, m—even, (36)
EW) ~ %2% N —even, m — odd, (37)
EWN) ~ %22]\771 3 N —even, m — even. (38)

Note that (17) applied to (35)-(38) separately gives the expected limit
(p?/2). Moreover, we see that the dependence of spectrum on N is power-like
i.e. slow.

6. Applications

The analytic results discussed above we use to verify the method intro-
duced in [7,8]. Tt consists of numerical diagonalization of finite matrices and
extrapolation of results to N — oo. Practically, when one deals with fast
convergence of eigenvalues it is sufficient to stop the calculations for rela-
tively low cutoff N (in the case of one dimensional nonrelativistic quantum
mechanics the results for N = 50 are already very accurate). Nevertheless,
a problem may occur when the convergence is slow (polynomial), or when
numerical calculations are time consuming even for low V.

One of the aims of this work is a better understanding of the case of
a free particle which has the former feature. The later situation occurs
every time when there are higher dimensions. Models discussed in [7,8| have
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both of those difficulties, therefore, it is crucial to understand analytically
the asymptotics of the spectrum for large N. We expect that the power-like
behavior in IV is characteristic not only for the spectrum of a free particle
but also it occurs in every scattering problem because in those cases the
asymptotics of wave functions is the same as for a free particle so that the
asymptotic momentum may be properly defined.

6.1. Quantum mechanics on a computer

Let us discuss in details the implementation of the method |7,8] in the
computer code. Consider quantum system with D degrees of freedom with D
creation and annihilation operators. One can construct the whole orthogonal
basis from the vacuum state | 0)

Il
o
S~

| n1,m2,...,np) (39)

Each state in a cut Fock space, decomposed in this basis, is represented as
a list in Mathematica program

p
19) = Y ar [ nfnb,nb) — {p e a),
k=1

{{nhnb,. . nb} And nd. o onbh (nfond, b 1 (40)

The first element of this list specifies the number of basis vectors used in
decomposition of the state | ¥). The second element of the list is a list of
coefficients of this decomposition. Basis vectors are represented in the third
element of this list. For example

al0,1) +b]1,0)+¢|1,1) — {3, {a,b,c}, {{0,1},{1,0}, {1, 1}} }.
The creation and annihilation operators
ag: Qg | ni,n2,... Nk, ...,np) =/ng | n1,ne,...,nx —1,...,np), (41)

a};: a}; | ni,m2, ..oy Ny ..o ynp)=vng + 1| ny,ng, ... g, ... .np). (42)

have the following action in the list representation

a | v) — {p,{\/n}cal,...,\/ngan},{{n%,...,n,{,—1,...,n}3},

...,{nll),...,ni—1,...,n%}}}, (43)
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and

a, | ) — {p,{\/n,{,+1a1,...,\/ni+1ap},{{n%,...,n,chrl,...,n})},
...,{TLI{,...,TLZJFJ_,...,TLIZ)}}}. (44)

In order to evaluate the matrix representation of any observable we define
procedures which add and multiply on arbitrary state by a complex number
as well as scalar multiply states. For example

v) — {24121, {{0,03, {0. 11} }.

¢) — {2AL 1L {{0.21.{0, 11} }.

then
[ 9)+ | ¢) — {3.41,3,1},{{0,0},{0, 1}, {0,2}} }

2| ¢) — {24221, {{0, 2, {0, 1}} |

and

Wl¢)—2.

Adding lists is simply adding those coefficients of the decomposition (40),
that have the same basis vectors. If decompositions of | 1) and | ¢) have
different basis vectors then the sublist consisting of basis vectors has to be
extended accordingly.

The procedure of multiplying the state by a number reduces to multi-
plying the list of coefficients by this number.

Scalar multiplication (¢ | ¢) reduces to a search for common basis vectors
occurring in decomposition of | 1) and | ¢). Afterwards proper coefficients
and their complex conjugations have to be multiplied.

These rules allow to represent automatically any operator in a cut ba-
sis (39).

6.2. Numerical diagonalization

Here we compare numerical data and analytic results of Sec. 3 for (al)
— cigenvalues of POY) evaluated by the program described in Sec. 6.1.
(according to Sec. 3 they are exactly the roots of Hermite polynomials),
(a2) — the asymptotic form (16).
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Fig. 1 presents the comparison of cases (al) and (a2) for m = 1,2, 3.
The approximate value is obtained from (16) by taking only the leading term

1
N~ ™ (m—3)
" V2N +1
We see that there is a good agreement between exact and approximate values

even for low N, and it gets worse for higher m where next terms of the
expansion of (16) are important.

(45)

pN pN
0.7 ¢ al 2"'=2* ¢ al
0.6 * a2 1.8 * a2
0.5 * 1.6 ¢ «
. 1.4
0.4 1.2 T
. N P S oN
>4 e Y8 0.8 ¥ 8,1
pNn‘FB
3.5 =* ¢ al
3 * a2
*
25 , "
2.4, 6 8 oM
1.5 0’:****

Fig. 1. Asymptotic (x), and exact (¢), behavior of p%v) form=1,2,3.

6.3. Continuum limit on a computer

Here we want to obtain dispersion relation that is the dependence of the
energy on momentum E(p). Obviously we know that E(p) = p?/2 but it is
only because we are able to solve Schrédinger equation for a free particle.
However, one has to put himself in a situation where there is a certain
set of eigenvalues EY and no information about the dispersion relation is
available. In other words the question is how to obtain unknown a priori
function E(p) by means of eigenvalues EXN? In order to do this one has to
make m dependent on N : m = m(N,p) such that the limit

lim EN(MP) = E(p), (46)

m
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is not trivial that is F(p) < oo and E(p) # 0. Note that (46) automatically
requires the set {EY : m, N € N} to be dense in E(R). In case of a free
particle (E(R) = [0,00)) we can even construct this set (squares of roots of
Hermite polynomials) however, it is a general property of any operator with
continuous spectrum. This is exactly the reason why EN depends on N as
a power rather than exponentially.

Let us emphasize that we do not have to know the dependence E(p)
to evaluate m(IN). This is because the relation m(N) was established on
grounds of the condition that there has to exist the continuum limit for the
momentum, so that any other operator commuting with P will have the same
scaling. We will analyze in details the case of a free particle in nonrelativistic
quantum mechanics but another example may be Dirac equation where we
expect that the scaling law (18) will give F(p) = v/ M? + p?. Therefore, the
scaling in (46) has to be the same as for momentum operator, that is

m(N,p) = p+=. (47)

However, in formula (47) we have to introduce a certain change

V2N

m(N,p) — 2m(N,p) =2——p+1, (48)
T
because the scaling (48) is meant for positive eigenvalues of operator P
only. Let us consider an example of N = 7. The spectrum of operator
P®) consists of roots of Hg(z), so that we have 8 roots where 4 of them are
positive and 4 are negative.

jos Sk Sk Sk
0 0 0 0

Now, if we square them the spectrum becomes positive and the numer-
ation of eigenvalues changes as follows:*

P
L
L
L
L

For example, the eigenvalue which we used to number as the first one
will now have the index m = 2, the eigenvalue which we used to number as
the second one will now have the index m = 4, etc. Therefore, the formula
(47) has to be rescaled as in (48).

* Since roots of H,(z) are symmetric around the origin, their squares will give double
degeneracy. Hence for the free particle dots and stars should be on the same point
however, in general it is not the case.
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According to (48), eigenvalues EY are analyzed by fixing any momentum

value p and writing down the value Eﬁ?}@’;ﬂ ) where Ny ax is the highest

N in computer calculations (in our case Npax = 190). Then we change
the momentum value and repeat the procedure. In this way one obtains an
approximate (because of limited value of N') dependence E(p), which should
reproduce (p?/2) for a free particle. However, the problem concerning the
formula m(N,p) occurs because m is not a natural number. We circumvent
this by taking an integer part (INT) of Eq. (48), so that the matrix index
is INT(m(Nmax,p)). The convergence of those elements was checked in
Mathematica for p = 1,2,3,...,10 (e.g. Fig. 2).

ENn p=1 ENn p=10
1 9
058 s
0.6
NN~ 60
0.4 gg
0.2 30
N N
50 100 150 50 100 150

Fig.2. The convergence of EI]Y\IT( ) for p =1 and p = 10, respectively.

M (Nmax,p

This behavior can be understood as follows. If one plots the dependence
of B on N (p is fixed), one obtains (35)—(38) a hyperbola. The lower index
m=1 specifies the first eigenvalue. The upper index enumerates the cutoff.
If we plot the dependence of EY on N, we get another hyperbola etc. Finally
the plot of EX is a set of hyperbolas on a plane (see Fig. 3). The scaling
that we have used previously means that from each hyperbola we are taking
only one point in such way that in the limit of large N a constant value is
reproduced. Why on those figures we see cut hyperbolas instead of points?
This is because we had to introduce the INT procedure which is equivocal.
In a consequence it is possible that for different cutoffs (say N and N’) there
is INT(m(N,p)) = INT(m(N’, p)). It means that points (N, INT(m(N,p)))
and (N’,INT(m(N’,p))) are on the same hyperbola. Eventually N will be
large enough so that the INT operation notices the difference and the point
“jumps” to next hyperbola. Let us also note that the scaling (18) is an
asymptotic law hence for low N the behavior of Eﬁ (N,p) Ay vary for different
values of p. This effect accounts for the different behavior in Fig. 2.

The dispersion relation extracted in this way is presented in Fig. 4 for
Npax = 190, 150,100. This result has no error because all eigenvalues are
precisely evaluated hence any statistical interpretation is meaningless. The
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ENm

g OanN g wa

50 100 150 200

Fig.3. The convergence of EII;[\IT(M(N

_

maop)) 0T P =1

tangent coefficients for Ny, = 100, 150, 190 are 1.20,1.12,1.10, respectively.
They differ from 1 but we did expect that because it is a numerical result
obtained on grounds of limited cutoff. Moreover, we had to introduce the
INT operation. In a consequence we had to choose only one point from cut
hyperbolas. It is a source of a new error which gets smaller while the cutoff
increases. Note that the coefficient gets better as Ny ax increases.

Therefore, Fig. 4 confirms that we can obtain the dispersion relation
from the spectrum of a cut Hamiltonian.

2E P!
121 « Nyay=190 b
10 } A Nyax=150 g
8t & Nrraleoo g
e
6 £
&
4 &
&
2t &
&
" " " " " P
2 4 6 8 10

Fig.4. Reproduced dispersion relation.
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7. Bound states versus scattering states

In this section we stress the difference between localized and nonlocalized
states. It follows from simple algebra (see Appendix A) that®

N 00 .
Z1 j %ﬂ i
N J=1 J=
En—EQ) =T —, (49)
> ijc*(N)fn
=1

which means that the spectrum of cut operators converges towards the spec-
trum of operators in infinite Hilbert space. Moreover, one can tell how
fast is the convergence because from (49) it is clear that the convergence

EM -, [N — oo]E,, is governed by the behavior of the ¢}, at large j.
Note that in (49) ¢}, are the exact components of eigenvectors of H. This
is exactly the result we were anticipating because the difference between
localized and non-localized states lies in components cJ,. Therefore, one
can numerically judge weather the state is bound or not on grounds of the
behavior of the eigenvalues of cut operators only.

For the case of a free particle one can obtain c}, exactly

= k)= [dotn| o) ) = [deoi@et, (50)

R R

where HO stands for harmonic oscillator

1Ow) = e Hlw)e 2, 51

Integral (50) is evaluated with the aid of some analytic properties of Hermite
polynomials, what is presented in Appendix C. The result is®

= V2 i yHO (k). (52)

5 The notation is explained in Sec. 2

5 Eq. (52) can be obtained independently in a shorter way. Notice that ¢} is a Fourier
transform of ¢5°(z) which is the solution for Hamiltonian H = ip® 4+ 22°. The
Fourier transformation switches x with p but H is symmetric in those variables so
the Schrédinger equation in momentum representation is the same as in coordinate
representation. Therefore, the solution for harmonic oscillator in momentum rep-
resentation is of the same form (up to a multiplication factor) as the solution for
harmonic oscillator in coordinate representation. The connection between those two
solutions is given by Fourier transform hence coefficients cp are of a form (52).



Quantum Mechanics in a Cut Fock Space 2409

Fig. 5. Components of the eigenvector (E = 1000) for free particle.

Fig. 5 is an example of (52) for F = k?/2 = 1000. Asymptotic behavior

of the envelope is (see Appendix C) | ¢ |~ {/-2 which is indeed power-

like. Similar calculations for discrete spectrum are not known, so one is left
with numerical data instead. Fig. 6 presents components of eigenvector
corresponding to the first (the lowest) eigenvalue of anharmonic oscillator,
as well as the convergence of the first eigenvalue.

i N
c! ENm
10 2
0.75 1.75
0.5 1.5
0.25 1.25
. : 1
o 5l TTEOTTTTAGTTTED 80! 0.75
_0. 5 O 5 ................................................
-1 10 20 30 40 50N

Fig.6. Components of the eigenvector (cJ ) and the convergence of eigenvalues

m=1
(EN_,) for anharmonic oscillator.

In this case the behavior of ¢/, is completely different from one shown in
Fig. 5. One sees that EY varies in the same (exponential) way as cp,. In
other words, the behavior of eigenvalues EY with the cutoff N distinguishes
whether the state is bound or not.
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8. Conclusions

The main purpose of this paper was to prove that the method proposed
in |7,8] enables one to distinguish numerically weather the state is local-
ized or not. This aim and related problems have already been investigated
[9-13]. This distinction is an important issue while studying supersymmetric
models (D = 10 SYMQM) where bound states exist among dense number
of scattering ones [1]. Therefore, one has to reanalyze quantum systems
from the very beginning in a new manner. Starting from the calculation of
spectrum of cut operators Q). PV) one realizes that eigenvalues of those
operators are exactly equal to the roots of Hermite polynomials. Next, we
conclude that in order to recover the continuum limit one has to introduce
the scaling m(N). The validity of the scaling law in the Hamiltonian of a
free particle was rigorously proven in Sec. 5 and numerically tested in Sec.
6. As a result one reproduces the dispersion relation from an information
about a spectrum of a cut Hamiltonian. It is expected that the same scaling
may be applied for a set of Hamiltonians commuting with P or under weaker
assumptions, namely those for which P can be defined asymptotically.

The scaling in higher dimensions is important because of the occurrence
of scattering states (e.g. SYMQM D = 2 systems). The formula (18) is
expected to be valid in those cases because they are described by quantum
mechanics of a free particle in color dimensions. In this case the coefficient
in (17) may be different, however, (18) is claimed to be applicable all the
time. In particular D = 2, SU(2) SYMQM [10] is free and it has been found
[14] that the system requires precisely (17) to recover the continuum limit.
Recently a new possibility to speed up the numerical approach in D = 4 has
occurred [11]. The naive diagonalization of the Hamiltonian in the whole
cut Hilbert space was abandoned and replaced by the language of rotational
invariance. The new approach can be extended to higher dimensions as well.

I am very grateful to my supervisor Prof. Jacek Wosiek for priceless ad-
vices and comments concerning this paper. This work was supported by the
Polish State Committee for Scientific Research under grants no. PB 2P03B
09622 and no. PB 1P03B 02427.
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Here we derive the formula (49). Let us start with eigen equation He,, =
FEpc where H is an operator and c¢,, its eigenvector. Writing it in the

matrix form

HW)

hi N+1

hn N+1

hnt11

hnt1 N hNg1 N41 -

1) !
Cm Cm

N | _ N
¢m | =Em | o
N+1 N+1
m m

and rewriting for first N components only, one obtains

00 N
Z hy N-i—icm+z
i=1

00 N
Z hy N-&-icm+z
=t

» (53)

Now complex conjugate (54) and multiply it by ¢(™),, from the right side

00

Nt

+ Z h*laN-Hﬁc*m—H
i=1

so that

)1
n
[ c*%n c*% ]H(N) :
M
N M
) ) Z h*N,N—&-iC*%—i_i :
i=1 N
R
!
=En[ ¢ el ,
M
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or
N
(B B89 3ol =3 5 e 67)
i=1 i=1 j=N+1
J i
it is non trivial to realize that above equation means that > ¢*7 ¢N)) —
i=1
Omn thus one can omit the n index and write
N 00 .
> 2 lijem
D (58)
> ijc*(N)fn
i=1

Of course, this derivation is for the case with discrete spectrum (discrete
index m) nevertheless for continuous spectrum the same calculations give

(=) 3ol =3 5 e

(59)
i=1 j=N+1
where

H(N)C(N)E' C(EN) and Hcg = Ecg,

=g
This case is discussed in details in Secs

FeR.
.6 and 7.

10. Appendix B

In this appendix we derive the asymptotic form of the zeros g, of the
Hermite polynomial H,,(z). When n is an even number they may be obtained
using the following relation [15]

n _1
H,(z)=(-1)22" %n! L.? (22) ,

(61)
2
where n is an even number, LS (

) are the generalized Laguerre polynomials
with parameter « (in our case a = —1/2). Let 2%, t3 o and j,, o denote the
m-th positive root of Hy(2), Lz®(2) and Jo(z). One has [15]

2 2 2
5 Jm,«a 2(0( - 1) + Im,«a -5
ta = = 1 ’ 0] 62
o = T ( PR somT), (@)
where
n o+l
k:%’a:—
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For « = —% we obtain J_1(z) = /2 cos(z), therefore, jo, = m(m — 3)
2

n —_n_ 1
—andk%,a—2+4so

where m =1,2..., 3

Let us define (m is fixed)

2 2
f(n):ZWQ(m_%) (1+7r2(m_%) _%):E+i+%+m (65)

2n + 1 3(2n + 1) n n?
we have
= VI 06 = Ty 1+ 20
=~ /f(n)(1+0(n%), (66)
o = V) + V)0 (07 = Vi) + 0 (') . (67)
finally
n _ M 772(7"*%)2*% —4.5
S o) 1+ 3@ 1 1) +0 (n™") . (68)

When n is an odd number there are [15] analogous relations

n=1_, (N — 1 1 2
) = e (U e () (©)
2
and
nd ]m a2 2(0[2 - 1) Jr]m a2 -5
tmla = : 1 : 0, 70
m,o 4kn771 ( + 48kn_—12 + (TL )7 ( )
2 2
where ) ) B
hny =4 2 i and (2 0)° = twla - (71)
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In this case J,(2) 1
1,2..., 01 Z

2 . . N
\/ = sin(z) 80 jam = wm where

= m
S5 and kny =5+ %. Analogous calculations give
2
n _ m 1+ mm? — % + O( 74.5) (72)
) 32nt+ 12 OV

11. Appendix C
Here we evaluate the integral

I,(k) = / doH,, (z)e " 12 ke (73)
R

It follows from three properties of Hermite polynomials [15] that

e +9) = 5o Z( (V) (V)

(74)
H,(z) \/—%Zdt(:p+it)”e_t , (75)
/ dzHy(2)Hm(z)e ™ = 2"nl\/T8pm . (76)
R

After substituting (75) to (73) and changing the variables © — = + ik we
get

I,(k) = \/—_ 9™ e k2124 "/dte /dz: <ﬂ+m> .

Using (75) once again we obtain

n t+k
I, (k) = o k?/2 2?i”/dtet2Hn <—) ) 78
(k) / 7 (78)

Finally substituting (74) to (78) and using (76) we get

(77)

(k) = e ¥ /22 "\H, . (k)2"m!\\/76,,
(1) = VRS () e (27 T
e K12y 2" Hy (k) ,
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therefore )
g ={(nlk)= \/ﬁ[n(k) =Vvari" Eo(k)- (80)

It is straightforward now to estimate components c'.

1 1 1
cpl=——|1I(k) | —= | I,(0) | —=V27 | H,(0) | . (81
6p] = e | ) 1€ o [ 1(0) |< V27 | Ho(0) |- (81)

Since Ha,11(0) = 0, | 2™ |= 0. On the other hand Ho,(0) = (71)”@

n!
therefore, | c2 |< Va2yent ”nf,n)' Finally according to Stirling formula one ob-

) 2
tains
2
L ey p— 82
‘CE‘N ™ (82)
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