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We write down the spin density matrix of the reaction pp — A4 in the
usual matrix form, its elements are simply given as combinations of the spin
observables, which have been measured at CERN with a polarized proton
target. Then, we show that the standard properties of any density matrix
applied to the matrix obtained allow to carry out a number of interesting,
model independent and non-trivial inequalities on spin observables.

PACS numbers: 24.70.+s, 13.75.Cs, 13.75.Ev, 02.10.Yn

1. Introduction

The strangeness exchange reaction pp — AA at low energies has been
studied by the PS185 Collaboration at CERN and the experimental data
on spin observables with a transverse polarized proton target have been
published recently [1,2|. These provide more important information on the
mechanism of the strangeness production. As it was recalled in Refs. [3-5],
the spin observables measured are not completely independent and must
satisfy a number of inequalities. A great number of these inequalities have
been carried out by Elchikh and Richard [4] in an empirical approach, in
which real and imaginary parts of the amplitudes were taken in a randomly
way; thus the spin observables were generated in a randomly way too by the
use of their explicit expression in terms of the amplitudes. Therefore, pairs
or triplets of spin observables fulfilling certain inequalities are chosen to be
checked by explicit algebraic calculus, for details see the Ref. [4]. But if one
starts from the spin density matrix of the reaction, one can get directly a
great number of the same inequalities just as a consequence of the properties
applied to the spin density matrix elements as it was suggested in Ref. [5].
In this paper, we will briefly recall the interesting properties of any density
matrix, the formalism of 1/2 spin-particles scattering density matrix and
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finally write down explicitly the spin density matrix of the final state in
a simple manner in terms of the spin observables. Then, we can extract
inequalities involving pairs or triplets of the spin observables by the use of
particular relations of the density matrix properties.

2. Density matrix properties

Any density matrix will be referred to by the symbol p. It is well known
from the quantum mechanics that any diagonal element of density matrix is
positive i.e. pj; > 0, the other more interesting relation which will be useful
for usis: piip;; >| pij |2 We restrict ourselves to these two types of relations
which are special cases of the more general positivity conditions as it was
discussed in Ref. [6].

2.1. The density matriz of the initial spin state pp

The density matrix for a polarized set of 1/2 spin-particles along a po-
larization vector P is given by

pPZ%(I-i-?-?), (1a)

where @ being the vector formed by the Pauli matrices: o1, o9 and o3. The
vector polarization P is a transverse to the antiproton beam direction unit-
vector Z, it belongs to the plan which contains the orthogonal unit-vectors
n and 7. Then, it can be written as:

T’):sin¢§:\+cos¢ﬁ, (1b)

where we used the fact that the set of proton targets is completely polarized
SO ]?\ = 1. The antiproton beam p is not polarized then its spin matrix is
simply:

pp=31. @)

The spin density matrix for pp initial state, defined as py ® pp, is then given
by

o = 51©3I+P-7) (3a)

= I®I+sing (I®7-F)+cos¢ (I@n- 7). (3b)

The spins, ¢.e. the Pauli matrices, are projected in the frame of each particle

with the prescription that the T and Zz axis of the proton are opposed to
the antiproton’s which have been chosen in the positive direction, the 7 axis
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being the same in each frame. It follows that we have these abbreviations
for p (and also for A) spin projections:

Oy =2p- 0 =—2-0 =—01, 4a
Op=Np-0 =+4+N-07 =02, (4b
0, =2, 0 =—2-0 =—03 4c

The spin density matrix for the initial pp state given by Eq. (3b) is
rewritten in a usual matrix form:

1 —ie™® 0 0

L] i 1 0 0
=410 o0 1 —ie™® (52)

0 0 e’ 1

which can be given in a condensed manner as:

1 > P(Iea) (5b)

Ppp = 1 [ i),

1=0,z,n

where Py = 1, g = I (the identity matrix). We recall that the o; in Eq. (5b)
are the proton’s spin projections.

2.2. The density matriz of the final spin state AA

Let M be the transition matrix (amplitude) of the reaction pp — AA
which can be given in an independent model parametrization, see for instance
Ref. [4]. Then, the density matrix of the final state A/ is:

1
;W:M%MT:Z > PM(Iga) M (6a)
1=0,z,n

which can also be decomposed in terms of the crossed projected Pauli ma-
trices of A (the first one) and A (the second one) respectively as:

1
pia=gh > | X POy (o0 0) (6b)

7,k=0,z,n,z | 1=0,z,n
with these definitions:

e Iy = (1/4) Tr(M M) which is nothing but the differential cross section
and also correspond to an unpolarized initial state.
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e Oy = Tr[M (I ® 0;) Mt (0 ® o]/ Tr(MMT) which are the spin
observables.

And we get an expression of the final density matrix as for the initial one
given by Eq. (3b) (without the global factor Iy/4):

Pip = ZOOjk (0j®0y)+sin¢ ZOW"? (0j®0})+cos ¢ ZOnjk (0j®0%).
J.k J.k J.k
(6c)

2.8. The symmetries

The strong interaction is the dominating mechanism underlying the re-
action pp — AA. It conserves many discrete symmetries as parity and
charge conjugation, see Appendix A. There is the other geometric sym-
metry by which a rotation of the scattering plane around the 7 axis lets
the matrix transition be invariant, it follows the so-called Bohr-identity
M =o0,0, M o, ® g,. We benefit from these symmetries reducing the
great number of the O;;; observables to a simple set of 21 observables by
imposing many to be identically null or simply related to another observable.
Here, we use these familiar notations: P (polarization), A (asymmetry), C;
(correlation), Djj (spin depolarization) and K (spin transfer) instead of
the O;;r for one or two indices observables, we conserve the symbol O,y
when the three indices subsist, see Appendix A for more details. Then, the
Oj;1 spin observables are filled in three symbolic matrices:

e Cp which contains five Opj;, observables corresponding to an unpolar-
ized proton target (0 for the first index).

e C, which contains eight O;;, observables corresponding to a polarized
proton target in the T direction (z for the first index).

e (), which contains eight O,,;; observables corresponding to a polarized
proton target in the 7 direction (n for the first index).

The above three matrices are written in the usual matrix form:

CO = Zoojk (Uj ®Uk)
7.k
1- sz _sz - ZPn _sz - ZPn _Cnn - Cx:v
_sz + ZPn 1 + sz Cnn - Cx:v sz - an
*sz + ZPn Cnn - Cam 1 + sz C:L"z - 7an
*Cnn - C:L":L" Cacz + 7an C:L"z + 7an 1-— sz
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C, = Zoxjk(aj X Jk)
7.k
7D:EZ JF sz *iOaczn - Dam Kx:r + iOmnz Z(Oxn:r - Omxn)
*D:r:r + iOmzn Dacz JF sz Z(Oxn:r JF Omxn) Kx:r - iOmnz
Kx:r - iOmnz *l(O:rnac JF Omxn) 7D:EZ - K:rz *Dam + iOmzn ’
Z(Oacacn - O:L"nac) me JF iO:rnz *Dam - iOmzn D:L"z - K:rz

(7b)
C, = ZOmk (Uj X Uk)
7.k
An + Ona:a: _Onzx - ann _Ona:z - ann _An - Onxx
N *Onxz + ZKnn An - On:m: An - On:m: Onzx - ZDnn e

*An - Onacac On:rz + lKnn Onzx + ZDnn An + On:m:

Then, we may write down explicitly the final density matrix given by Eq. (6¢)
also in the usual matrix form, which depends obviously on the ¢ angle as:

pZA(¢) = %IO(CO + cos (bcn + Sinfb Cx) . (8)

In particular, we get the matrix form for the unpolarized density:

2
1 1 1
paa(anpol) = —— /PZA(éf))dcf) =10 > Oujk 0 @ 0 = 110Co
0 Jak

and for different values of ¢ as 0, 7 and +7/2 just by setting the correspond-
ing value of ¢ in Eq. (8). We rewrite the explicit matrix forms (without the
global factor Iy/4) as for p;,(unpol):

p74(unpol) = Cp . 9)

Then, we apply the properties of the general density matrix, which have
been recalled at the top of this section, to the above special final density
matrices, which hold for any value of ¢.

2.4. Deduction of the inequalities

From the density matrix p;,(unpol) given by the matrix form of Eq. (9),
the relation p11paa > [p3,] gives:

(1-C..)1+4C.) > |-Cho —iP, > = C% + P2 +C% <1  (10a)
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which leads to these three inequalities:
C2 +P2<1, C:+4+P2<1 and C% +C2 <1. (10b)
Another inequality deduced is
(1+C.2)? 2 (P + Caz). (10c)

The inequalities given by Egs. (10) are very general and do not depend on
the amplitude parametrization of the reaction pp — A4 so, Eqgs. (10) hold
for the exchange reaction pp — nin as an example. Then, we do the same
with the matrix forms of p4,(0) and p;,(7) which mix the elements of the
two symbolic matrices Cy and C),, and we get these two inequalities:

(1 JF An)2 - (On:m: - sz)Q Z (Onzx JF sz)Q JF (Dnn JF Pn)Qv (113)

(1 - An)2 - (On:mc + sz)Q Z (Onzx - 012)2 + (Dnﬂ - Pn)2 (11b)

and then deduce:
0% +02 +C? +P24+D2 +C% <1+ A2 (11c)

so, the sum of particular pairs of the left-hand member of Eq. (11¢), i.e.
the set of {O2,,,0%,.,C2, P2 D2  C2}, may fulfil an inequality such as

Eq. (10b). For instance, Eq. (11c) leads to this new inequality:

To prove that the right-hand member of the last inequality is less than one,
we deal directly with the explicit expression of the spin observables in terms
of the complex amplitude parameters' {a,b,c,d, e, g} to get O2,, + C2, +
P2 A2 — |de + iag|* which is obviously positive or null, then we write down
this new inequality D2, + C2, + O2%,, < 1 which leads to: D%, +02,, <1
and C2, + 02, <1 and to such well-known inequality [3,4]:

D2, +C2, <1. (11e)

Furthermore, we can see from the matrix form of p(0) and p(7) that if we
take p11ps3 > |p35] we get the inequalities of the type of Egs. (11) but with
K, instead of D,,,.

! The full expression of the spin observables in terms of the amplitude parameters are
given, for instance, in Ref. [4]
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2.5. Discussion

The inequalities among pairs or triplets of spin observables deduced here
from special positivity conditions on the spin density matrix constrain and
reduce their allowed value-domain. The spin observables, which are not
directly related to each other by the usual symmetries (C,P) are however not
completely independent because the final density matrix which contains all
the spin quantum-information gives via its positivity conditions a number of
non-trivial and model independent inequalities among the above observables.
For instance, the inequality D2 + C2 + O2,, < 1 means that the three
observables C,,, D,, and O,, are restricted to be found in the inner part
of a unit sphere which is smaller than the cube [—1,1]3 , since each observable
is restricted to be between —1 and 1. The spin observables are related to
the mean-values of the spin projections of the scattered particles (A and A),
which are correlated in a non simple manner.

The inequalities deduced provide consistency checks on the experimental
data. Let us recall that that was the motivation for the paper by Elchikh
and Richard (Ref. [4]). In fact, the earlier data showed some inconsistency
like the negative proportion measured of spin-singlet fraction (see Ref. [7]).
But, the recently published data (Ref. [1|) are better. It is hoped that, in
the future, the density matrix constraints would be included in the Monte
Carlo simulation for a wide class of reactions as well as for phenomenological
models.

3. Conclusion

We have written down the spin density matrix of the reaction pp — A4
in a usual matrix form, as a combination of the spin observables. Then, we
have shown that the general properties of any density matrix applied to the
matrix form found allow to extract inequalities among two or three quadratic
observables. To get simple inequalities involving two or three observables
from the combination of several observables, as obtained in Eq. (11¢), we may
use the “empirical” approach to check which pairs or triplets of observables
are fulfilling simple inequalities, then we can return to the global inequalities
deduced (from the positivity conditions) to prove the “true” pairs or triplets,
so, the two approaches can be viewed as complementary even the density
matrix formalism is powerful and uses standard quantum assumptions.

The author is grateful to J.-M. Richard for his collaboration and thanks
are also due to X. Artru.
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Appendix A

Here, we give the relations obtained from the symmetries restrictions:
e The observables elements of the symbolic matrix Cy given by Eq. (7a):

— Cpo = 1.

— Byj = Pjo = Cyj = Cjo: the polarization which is null except for
j=n.

— Cj; = Cj; for i # 0 and j # 0: the spin correlation coefficient.

e The observables elements of the symbolic matrix C, given by Eq. (7b):

- 14;1c = OacOO =0.

— Ky = Ogyio: the spin-transfer coefficient which vanishes if i = n.

— D,; = Ogoi: the spin-depolarization coefficient which vanishes if
1 =n.

— For Og;;: the following coefficients are all null: Ouzs, Oznn, Ozzz,
Oz, and Oy

e The observables elements of the symbolic matrix C, given by Eq. (7c):

— For Oy;;: the following coefficients are all null: Oy, Oppzy Onzn-
— Two other relations: Opze = —Ohz. and Oppp = Ay

— A, = Opgo: the asymmetry measured.

— K,; = Opn,0: which vanishes except for ¢ = n.

— D,; = Oy0i: which vanishes except for i = n.
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