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ON THE PROPAGATION OF NON STATIONARYPRESSURE WAVES IN STELLAR INTERIORSPatryk Ma
hM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: ma
h�th.if.uj.edu.pl(Re
eived June 21, 2004)An analysis of the propagation of non stationary waves in the adia-bati
 region of stellar interior is presented. An equation of motion withan e�e
tive potential is derived, similar to the Zerilli equation known inthe propagation of gravitational waves. The Huyghens prin
iple is violatedin this 
ase and the energy di�usion outward null 
ones is expe
ted. Nu-meri
al 
al
ulations demonstrate that the di�usion is weak for the 
ase ofstandard Solar model; thus no signi�
ant e�e
t 
orresponding to quasinor-mal modes 
an be expe
ted. The likely reason for the absen
e of strongerfeatures is the restri
tion of our analysis to adiabati
 regions only, wherethe breakdown of the Huyghens prin
iple is insigni�
ant.PACS numbers: 96.60.Ly, 97.10.Sj1. MotivationIn the standard helioseismology (or asteroseismology, to be more gen-eral) one usually deals with stationary perturbations of the gas pressure (ordensity) in stellar interiors. This issue has been well investigated so far, bothfrom the theoreti
al and observational side (see e.g. [2℄). Here, by stationaryapproa
h we understand posing a hydrodynami
al boundary problem lead-ing to some 
hara
teristi
 frequen
ies that 
an be subsequently 
omparedwith the frequen
ies of observed stellar os
illations. There is no reason,however, why not to 
onsider the propagation of non stationary waves instellar interiors. It is known that waves propagating in an inhomogeneousmedium 
an produ
e some non stationary e�e
ts su
h as, for instan
e, ap-pearan
e of the quasinormal modes (for an example taken from the theoryof perturbations of the S
hwarzs
hild spa
e�time see [6℄). These are espe-
ially important from the observational point of view as their frequen
ies(2479)
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hand damping 
oe�
ients are independent of the wave pro�le but depend onthe 
hara
teristi
s of the medium. It is also known that in some 
ases thequasinormal modes 
an dominate [4℄.In this paper we perform a simpli�ed analysis of the problem whi
happears in the astrophysi
s of stellar interiors. The order of this work isas follows. In Se
tion 2 we re
all some basi
 formalism 
ommonly usedin the theory of stellar os
illations. Se
tion 3 gives the des
ription of thepropagation of non stationary waves in the adiabati
 region of the stellarinterior together with the derivation of the exa
t form of the equation ofmotion. We transform this equation to the form of the Zerilli equation[7,8℄ whi
h one en
ounters in the theory of gravitational waves propagatingin the S
hwarzs
hild ba
kground metri
 (a 
ase known to give signi�
antquasinormal modes). The Lagrangian formulation of the problem is givenin Se
tion 4 while in Se
tion 5 we deal with the Noether's energy densityand its di�usion through the 
hara
teristi
s. In Se
tion 6 we present thee�e
tive potential o

urring in the equation of motion, obtained for the
ase of standard solar model. Finally Se
tion 7 shows the results of somenumeri
al 
al
ulation of the propagation of non stationary pressure wavesin the Sun. Some �nal remarks and 
on
lusions are given in Se
tion 8.2. The formalismIn this se
tion we shall remind some basi
 equations known from theNewtonian theory of stellar os
illations (or asteroseismology). We will notgive any pre
ise derivation here as it 
an be easily found in other papers.In turn, we will try to fo
us our attention mainly on putting down all theassumptions leading to the mentioned equations and we will explain all thenotation we use.We will 
onsider the motion of gas in the star ruled by the Euler equation
̺∂tv + ̺v∇v = −∇p+ ̺g (1)together with the 
ontinuity equation

∂t̺+ ∇(v̺) = 0 . (2)Here ̺ denotes the density, p the pressure and v the velo
ity �eld of the gas.The term g in the equation (1) stands for the gravitational a

eleration. Infurther 
onsiderations it will be, however, mu
h more 
onvenient to use thegravitational potential Φ instead of g . We shall assume that a non minus
onvention g = ∇Φ holds. Then, the potential Φ satis�es Poisson's equationof the form
∇2

Φ = −4πG̺ . (3)



On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 2481The above set of equations should be 
ompleted with one more, namelyenergy 
onservation equation (or the �rst law of thermodynami
s)
dq

dt
=

1

̺(Γ3 − 1)

(

dp

dt
− Γ1p

̺

d̺

dt

)

. (4)Here q denotes spe
i�
 heat (i.e. heat per unit mass) and we have usedstandard thermodynami
 notation (see e.g. [3℄)
Γ1 =

(

∂ ln p

∂ ln ̺

)

S

, Γ3 − 1 =

(

∂ lnT

∂ ln ̺

)

S

.The next step is to derive a set of linearized equations des
ribing evolu-tion of small perturbations of the equilibrium stru
ture of the star. Underassumptions of adiabati
ity of the motion and the spheri
al symmetry of theundisturbed medium one may obtain:
̺0∂

2
t ξ = −∂rp

′ + ̺0∂rΦ
′ − ̺′g0 , (5)

−∂2
t

(

̺′ +
1

r2
∂r(r

2̺0ξ)

)

= −∇2
hp

′ + ̺0∇2
hΦ

′ , (6)
̺′ =

̺0

Γ1,0p0
p′ + ̺0ξ

(

1

Γ1,0

d ln p0

dr
− d ln ̺0

dr

)

, (7)
1

r2
∂r(r

2∂rΦ
′) + ∇2

hΦ
′ = −4πG̺′ . (8)The notation used here requires some explanation. The primed quantitiesdenote Eulerian perturbations and are fun
tions of both position r andtime t, whereas quantities with zero indi
es des
ribe undisturbed medium(i.e. an equilibrium stru
ture of the star) and are only fun
tions of thedistan
e from the 
enter of the star, due to the spheri
al symmetry we haveassumed. Thus, for instan
e

̺(r , t) = ̺0(r) + ̺′(r , t) ,

p(r , t) = p0(r) + p′(r , t), . . . . (9)By ξ we have denoted the radial part of the gas displa
ement, i.e.
δr = ξer + ξh , (10)where er stands for the unit ve
tor in the radial dire
tion and ξh is a hor-izontal part of the displa
ement ve
tor. Finally ∇h denotes the horizontalpart of the gradient operator. The reader interested in rigorous derivationof the above equations may 
onsult [2℄.
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h3. Non stationary perturbations, e�e
tive potentialThe equations introdu
ed in the pre
eding se
tion possess a 
lass of sta-tionary solutions, whi
h is a
tually one of the main interests of the theoryof stellar os
illations. We may, however, try to look for the non stationarysolutions that 
ould, in fa
t, have some physi
al meaning. The aim of thisse
tion is to derive some simpli�ed equations in the form suitable for furthernumeri
al sear
h for su
h solutions.We pro
eed with the separation of variables. All perturbations of ourinterest, su
h as ξ, p′, ̺′ may be expanded in the series of spheri
al harmon-i
s. To simplify the notation we will drop the adequate spheri
al harmoni
sindi
es in the amplitudes. Due to the linearity of the obtained equations itis su�
ient to write
ξ(r, θ, φ, t) = ξ̃(r, t)Ylm(θ, φ) ,

p′(r, θ, φ, t) = p̃(r, t)Ylm(θ, φ) , . . . .Taking into a

ount that
∇2

hYl = − l(l + 1)

r2
Yl ,and substituting the above expressions to equations (5)�(7) and (8) we get

̺0∂
2
t ξ̃ = −∂rp̃+ ̺0∂rΦ̃ − ˜̺g0 , (11)

−∂2
t ˜̺− 1

r2
∂r(r

2̺0∂
2
t ξ̃) =

l(l + 1)

r2
(p̃− ̺0Φ̃) , (12)

1

r2
∂r(r

2∂rΦ̃) − l(l + 1)

r2
Φ̃ = −4πG ˜̺ (13)and
˜̺ =

̺0

Γ1,0p0
p̃+ ̺0ξ̃

(

1

Γ1,0

d ln p0

dr
− d ln ̺0

dr

)

. (14)The mentioned stationary solutions 
an now be obtained by setting
f̃(r, t) = f̂(r)e−iωtfor ea
h amplitude f̃(r, t) of a hydrodynami
al variable f . By 
ompletingordinary di�erential equations obtained this way with the suitable boundary
onditions we 
an determine 
hara
teristi
 frequen
ies ω of the os
illationmodes.We will, however, try to pro
eed in a di�erent way. Instead of posing aneigenvalue, boundary problem, we will try to formulate some Cau
hy prob-lem with just one, se
ond order, partial di�erential equation, des
ribing the



On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 2483time evolution of an initial perturbation. Additionally, we will not 
onsiderany boundary 
onditions and thus we will treat a star as a formally in�nitelydistributed medium. Of 
ourse, we will not 
onsider the propagation of theperturbations beyond the assumed radius of the star.We shall now formulate two important, simplifying assumptions:1. We will put Φ̃ ≡ 0 everywhere. This assumption was examined for the�rst time by Cowling. It means simply negle
ting the 
hanges in thegravitational �eld that arise due to small perturbations of the densityin the star.2. We will assume that the medium is adiabati
, i.e.
1

Γ1,0

d ln p0

dr
− d ln ̺0

dr
= 0 . (15)With this assumption we eliminate the propagation of the internalgravity waves, fo
using attention only on the pressure waves in thestar. Now, of 
ourse, we will have to examine whether the star region inwhi
h the perturbation propagates is indeed adiabati
. The 
onve
tivezone in the stellar atmosphere 
an serve as an example of su
h region.Under above assumptions the 
onsidered set of equations redu
es to thefollowing form

−∂2
t ˜̺− 1

r2
∂r(r

2̺0∂
2
t ξ̃) =

l(l + 1)

r2
p̃ , (16)

̺0∂
2
t ξ̃ = −∂rp̃− ˜̺g0 , (17)
˜̺ =

̺0

Γ1,0p0
p̃ . (18)We may now put equation (18) into equation (16) to obtain

− ̺0

Γ1,0p0
∂2

t p̃−
1

r2
∂r(r

2̺0∂
2
t ξ̃) =

l(l + 1)

r2
p̃ .The term ∂2

t ξ̃ in the last equation 
an be subsequently eliminated using (17).Taking into a

ount that −g0̺0 = dp0/dr and remembering the 
ondition(15) we get after some 
al
ulations
− ̺0

Γ1,0p0
∂2

t p̃+ ∂2
r p̃+

(

2

r
− d ln ̺0

dr

)

∂rp̃

−
(

2

r

d ln ̺0

dr
+
d2 ln ̺0

dr2
+
l(l + 1)

r2

)

p̃ = 0 .
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hWe 
an now get rid of the term 
ontaining the derivative ∂r p̃ by introdu
inga new dynami
al variable P , de�ned with the equation
p̃ =

√
̺0

r
P .Indeed, after some 
al
ulations we obtain an equation of the form

− 1

c2(r)
∂2

t P + ∂2
rP − V (r)P = 0 , (19)where

c2(r) =
Γ1,0p0

̺0
. (20)By V we have denoted here a fun
tion playing the role of an e�e
tive po-tential

V (r) =
1

r

d ln ̺0

dr
+

1

2

d2 ln ̺0

dr2
+

1

4

(

d ln ̺0

dr

)2

+
l(l + 1)

r2
. (21)Equation (19) 
an be still transformed into even more 
onvenient form. Wewill eliminate the term c−2 standing before the time derivative of P byintrodu
ing a new 
oordinate

r∗ =

r
∫

0

dr′

c(r′)
. (22)Thus an obvious relation

dr∗

dr
=

1

c(r)holds and equation (19) may be written as
−∂2

t P + ∂2
r∗P − d ln c

dr∗
∂r∗P − c2V P = 0 .We will get rid of the term proportional to ∂r∗P in a way similar to that wehad used before. We de�ne a fun
tion Π with a relation

P =
√
cΠto derive the �nal version of our equation of motion

−∂2
t Π + ∂2

r∗Π − ṼΠ = 0 (23)in whi
h a new e�e
tive potential
Ṽ = c2V +

1

4

(

d ln c

dr∗

)2

− 1

2

d2 ln c

dr∗2
(24)has been introdu
ed.



On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 24854. Lagrangian des
ription, energyOne may noti
e that the equation (23) 
an be obtained from the varia-tional prin
iple
δΠS = 0by taking an a
tion S of the form

S =

∫

Ldtdr∗ = −1

2

∫

(

(∂tΠ )2 − (∂r∗Π )2 − ṼΠ
2
)

dtdr∗. (25)The equation (23) appears then as the Euler�Lagrange equation for theLagrangian density L, i.e.
∂ΠL − ∂t

∂L
∂∂tΠ

− ∂r∗
∂L

∂∂r∗Π
= 0 . (26)We 
an now make use of the �rst Noether theorem applied to the a
tion(25), what should allow us to de�ne an energy for the Π amplitudes. We willpresent this issue in a little detail due to some subtle matters that appearhere.We begin with 
onsidering an in�nitesimal time translation of some do-main Ω

ψ: R2 ⊃ Ω ∋ (t, r) 7→ (t′, r) = (t− ε, r) ∈ R
2,whi
h will be assumed to be a symmetry whi
h means that a variation of thea
tion (25) 
aused by this transformation vanishes in the domain Ω . If inaddition we assume that the motion happens to be real (the Euler�Lagrangeequation (26) is satis�ed) than after some 
al
ulations we obtain

δS = ε

∫

∂Ω

((

L − ∂L
∂∂tΠ

∂tΠ

)

dr∗ −
(

∂L
∂∂r∗Π

∂tΠ

)

dt

)

= 0 . (27)The amplitude Π is de�ned in a half plane r∗ > 0. As a domain Ω , overwhi
h we pro
eed with integration we may now take a part of that half planeen
losed between to 
onstant time lines, given by the equations t = t1 and
t = t2.Let us noti
e, that the amplitudes Π have appeared in the separationof variables in the (3 + 1) dimensional problem and, therefore, have to sat-isfy some additional 
onditions. In parti
ular p̃ needs to be �nite in itsdomain and thus also at r∗ = r = 0. It follows simply that an equality
Π (r∗ = 0, t) = 0, and so ∂tΠ (r∗ = 0, t) = 0 must hold. Therefore, for the
Ω 
hosen above we have

∫

∂Ω

(

∂L
∂∂r∗Π

)

dt =

t2
∫

t1

(

∂L
∂∂r∗Π

∂tΠ

)

r∗=0

dt = 0 .
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hFinally it follows that a quantity
∞
∫

0

(

L − ∂L
∂∂tΠ

∂tΠ

)

dr∗is 
onserved, i.e. 
onstant in time. The expression
E = L − ∂L

∂∂tΠ
∂tΠ =

1

2

(

(∂tΠ )2 + (∂r∗Π )2 + ṼΠ
2
) (28)
an thus be interpreted as an energy density.In 
onsisten
y with the 
omment made earlier, we have assumed herethat a medium in whi
h the waves propagate is in�nite and all perturbationsvanish at least at in�nity. 5. Energy di�usionLet us 
onsider now γ, being a part of the in
oming 
hara
teristi
 ofthe equation (23), with an origin in the point with the 
oordinates r∗ = r1,

t = t1. The 
hara
teristi
 γ divides domain Ω en
losed between two 
onstanttime lines t = t1 and t = t2 into two subdomains: the inner one Ω1 and theouter one Ω2 (Fig. 1). Let us 
onsider next a point with the 
oordinate
r∗ = R lying on the γ. The expression

j(R, t) = (−∂R + ∂t)

∞
∫

R

Edr∗ (29)may be interpreted as a rate of energy 
hange along γ. A straightforward
al
ulation making use of equation (28) and of the motion equation (23)shows that
j(R, t) =

1

2

(

(∂tΠ − ∂r∗Π )2 + ṼΠ
2
)

r∗=R
.Cal
ulations leading to the above result may be simpli�ed even more bynoti
ing that

∂t
1

2

∞
∫

R

Edr∗ =

(

− ∂L
∂∂r∗Π

∂tΠ

)

r∗=R

,what in fa
t we had obtained earlier by writing formula (27).
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1 
2


t = t1
t = t2

r�
t

Fig. 1. An illustration of the s
attering pro
ess 
onsidered in this paper.The whole energy ∆E, that di�used from a domain Ω1 to the domain
Ω2 during a time between t1 and t2 may be 
al
ulated as an integral of theexpression (29) over γ

∆E =

t2
∫

t1

j(R, t)R=−t+r1+t1dt

=

t2
∫

t1

1

2

(

(∂tΠ − ∂r∗Π )2 + Ṽ Π
2
)

r∗=−t+r1+t1
dt . (30)Let us now imagine that an in
oming perturbation of 
ompa
t supporten
losed initially in the domain Ω1 moves along the 
hara
teristi
 γ. Thequantity ∆E given by the expression (30) would represent the whole energys
attered outwards (into the domain Ω2) during the period between t1 and

t2. This s
attering is mathemati
ally due to the non-vanishing potential
Ṽ and, to be more pre
ise to a potential that di�ers from a single termproportional to the l(l + 1)/r2 whi
h will always arise from the separationof variables in the wave problem of spheri
al symmetry.Experien
e tells us that robust energy di�usion signals the presen
e ofquasinormal modes. Sin
e quasinormal modes are rather di�
ult to be foundnumeri
ally, we prefer to deal with examining the energy di�usion instead [4℄.In the next se
tions of this paper we will 
on
ern ourselves with ex-amining su
h energy s
attering for a realisti
 
ase, namely standard solarmodel.
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h6. E�e
tive potential for a standard solar modelWe will now apply the results of the pre
eding se
tions to a standardsolar model. We have already stated, that a fundamental assumption ofour simpli�ed model is that of adiabati
ity of the region in whi
h the wavespropagate, and that validity of this assumption need to be 
arefully exam-ined. The standard solar model have been 
hosen be
ause of the existen
eof the 
onve
tive zone in whi
h the 
ondition (15) is satis�ed up to a highdegree.All our numeri
al 
al
ulations were made on the basis of a standardsolar model 
omputed by Bah
all, Pinsonneault & Basin [1℄. The obtainedrelation between the variable r∗ and the radius r is shown in Fig. 2. Itshould be noti
ed here, that the r∗ variable was normalized in su
h a waythat it 
hanges between the values 0 and 1 for the used data range. Next,the fun
tion
N2

g0
=

1

Γ1,0

d ln p0

dr
− d ln ̺0

dris plotted versus r∗ in Fig. 3. We have adopted the notation N2/g0 here, as
N 
orresponds to the well known Brunt�Väisälä frequen
y. This plot shows,that we may regard the area with approximately r∗ ' 0.58 as satisfying ourassumption of adiabati
ity. The e�e
tive potential, i.e. Ṽ for l = 0 is, inturn, plotted in Fig. 4. Unfortunately the only one interesting feature of thispotential, that is a 
lear peak at r∗ ∼ 0.5, remains outside the adiabati
ityarea. Therefore we 
an not 
onsider any e�e
ts 
aused by the existen
e ofthis peak as being physi
ally meaningful.

r
r�

10.90.80.70.60.50.40.30.20.10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0Fig. 2. The r∗ 
oordinate plotted versus radius r. The r values are expressed inthe radius of the Sun units, while r∗ is just arbitrarily normalized.
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r�
N2 =g 0[R�1 �℄

10.90.80.70.60.50.40.30.20.10

3.5

3

2.5

2

1.5

1

0.5

0

-0.5Fig. 3. The values of N2/g0, N being the Brunt�Väisälä frequen
y, obtained forthe used solar model and plotted versus r∗.
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20
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0

-5Fig. 4. The e�e
tive potential Ṽ0 for the used solar model plotted as a fun
tion of r∗.One remark should be made here 
on
erning the �gures presented inthis se
tion. It is not possible to di�erentiate the data presented by Bah
allet al. in any straightforward way to obtain any smooth enough fun
tionsand therefore some smoothing pro
edure appears to be ne
essary. A slightmodi�
ation of the so 
alled Savitzky�Golay �lter (see e.g. [5℄) was usedhere to obtain presented result.
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h7. Example of some numeri
al 
al
ulationsFinally it was possible to examine, how an initially in
oming wave pa
k-age evolves. Fig. 5 presents an example result of the numeri
al experimentexplained in Se
tion 5.

time t
dE=dt

0.350.30.250.20.150.10.050

0.0018

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0

-0.0002Fig. 5. The time derivative of the energy s
attered ba
kwards. Here energy isexpressed in the units of total energy of the initial perturbation, whi
h is a
tually
onserved, as des
ribed in Se
tion 4.For simpli
ity, only a spheri
ally symmetri
 perturbation i.e. the 
asewith l = 0 is 
onsidered here. Propagation of all other modes may beexamined in exa
tly the same way by taking the potential Ṽ for an arbitrary
l number.Here, the 
hara
teristi
 γ was 
hosen to originate at r∗ = 0.845 andthe initial (i.e. for t = 0), purely in
oming perturbation was taken to be afun
tion of the shape de�ned by

Π (r∗, t = 0) =

{

A sin2
(

π(r∗−a)
b−a

)

, if r∗ ∈ [a, b] ,

0, otherwise ,thus being just one, bell like part of the squared sine fun
tion, 
entered ona 
ompa
t support [a, b]. This is, of 
ourse, a 
ontinuous and di�erentiablefun
tion.We have also examined the 
ase with an initial perturbation in the formof standard C∞ 
lass fun
tion of a 
ompa
t support. Su
h fun
tion may be
onstru
ted in a well known way with an use of the exponential fun
tion.It has also a bell like shape but it gives lower FWHM to support length



On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 2491ratio. It appears that the squared sine fun
tion is mu
h more useful for ourpurpose as, basi
ally, the amount of a s
attered energy in
reases with anin
rease of the FWHM of the initial perturbation.In the presented 
ase, a and b were given the values a = 0.73 and b =
0.845 whi
h 
orrespond to the initial data support lying entirely in the Ω1domain (see Fig. 1). The plot presented in Fig. 5 shows the time derivativeof the energy that has di�used from the domain Ω1 to the outside domain
Ω2 divided by of the whole initial perturbation energy. The variable r∗ andthe units of t (approximately 2500 s per unit) are de�ned in su
h a way thatthe sound speed expressed in these 
oordinates equals unity. Thus, lookingat Fig. 5 it is easy to see how far 
ould the initial perturbation arrive for agiven time. Clearly, the large peak in the s
attered energy 
orresponds tothe mentioned bump in the e�e
tive potential whi
h, as it has been alreadystated, 
annot be 
onsidered in a 
onvin
ing way as giving any results ofphysi
al meaning. It is, however, a good example of e�e
ts that may arisein the propagation of the non stationary waves due to the inhomogeneity ofthe medium.In our 
onsiderations we are of 
ourse restri
ted to the area where theadiabati
ity assumption is satis�ed. In fa
t, even in this area some di�usionof energy does o

ur but on a negligible s
ale. Fig. 6 shows the energy thathas di�used through the 
hara
teristi
 as a fun
tion of time. These are infa
t the same data whi
h we have already plotted in Fig. 5 but this timerestri
ted to the times lower than 0.2 what 
orresponds to the propagationin the adiabati
 zone.

time t
E scatt[10�5 E

to
t

℄

0.20.150.10.050

3.5

3

2.5

2

1.5

1

0.5

0Fig. 6. The energy Escatt s
attered through the 
hara
teristi
 expressed as a fun
-tion of time t for t < 0.2. Here Etot denotes total initial energy of the wavepa
kage.
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h8. Final remarksIt is already well known that non stationary waves 
an 
arry inter-esting information about an inhomogeneous medium in whi
h they prop-agate [4, 6�8℄. In this paper we have examined the propagation of su
hwaves in Solar 
onve
tive zone by looking at the energy di�usion pro
ess.It appears that the energy s
attering o

ur with rather negligible e�
ien
yand, 
onsequently, we expe
t the quasinormal modes to be absent. Thismay, however, follow from the fa
t that we have restri
ted ourselves to the,perhaps not interesting, simpli�ed 
ase of adiabati
 mediums. It is possiblethat the investigation of the full model whi
h takes into a

ount all impor-tant physi
al aspe
ts would lead to some positive results. It is also possiblethat positive results 
an be obtained by repeating the 
al
ulations presentedin this paper for the models of some other stars.I wish to thank Professor Edward Male
 for showing me the issue of nonstationary waves e�e
ts and his great help in doing this work.REFERENCES[1℄ J.N. Bah
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