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ON THE PROPAGATION OF NON STATIONARYPRESSURE WAVES IN STELLAR INTERIORSPatryk MahM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: mah�th.if.uj.edu.pl(Reeived June 21, 2004)An analysis of the propagation of non stationary waves in the adia-bati region of stellar interior is presented. An equation of motion withan e�etive potential is derived, similar to the Zerilli equation known inthe propagation of gravitational waves. The Huyghens priniple is violatedin this ase and the energy di�usion outward null ones is expeted. Nu-merial alulations demonstrate that the di�usion is weak for the ase ofstandard Solar model; thus no signi�ant e�et orresponding to quasinor-mal modes an be expeted. The likely reason for the absene of strongerfeatures is the restrition of our analysis to adiabati regions only, wherethe breakdown of the Huyghens priniple is insigni�ant.PACS numbers: 96.60.Ly, 97.10.Sj1. MotivationIn the standard helioseismology (or asteroseismology, to be more gen-eral) one usually deals with stationary perturbations of the gas pressure (ordensity) in stellar interiors. This issue has been well investigated so far, bothfrom the theoretial and observational side (see e.g. [2℄). Here, by stationaryapproah we understand posing a hydrodynamial boundary problem lead-ing to some harateristi frequenies that an be subsequently omparedwith the frequenies of observed stellar osillations. There is no reason,however, why not to onsider the propagation of non stationary waves instellar interiors. It is known that waves propagating in an inhomogeneousmedium an produe some non stationary e�ets suh as, for instane, ap-pearane of the quasinormal modes (for an example taken from the theoryof perturbations of the Shwarzshild spae�time see [6℄). These are espe-ially important from the observational point of view as their frequenies(2479)



2480 P. Mahand damping oe�ients are independent of the wave pro�le but depend onthe harateristis of the medium. It is also known that in some ases thequasinormal modes an dominate [4℄.In this paper we perform a simpli�ed analysis of the problem whihappears in the astrophysis of stellar interiors. The order of this work isas follows. In Setion 2 we reall some basi formalism ommonly usedin the theory of stellar osillations. Setion 3 gives the desription of thepropagation of non stationary waves in the adiabati region of the stellarinterior together with the derivation of the exat form of the equation ofmotion. We transform this equation to the form of the Zerilli equation[7,8℄ whih one enounters in the theory of gravitational waves propagatingin the Shwarzshild bakground metri (a ase known to give signi�antquasinormal modes). The Lagrangian formulation of the problem is givenin Setion 4 while in Setion 5 we deal with the Noether's energy densityand its di�usion through the harateristis. In Setion 6 we present thee�etive potential ourring in the equation of motion, obtained for thease of standard solar model. Finally Setion 7 shows the results of somenumerial alulation of the propagation of non stationary pressure wavesin the Sun. Some �nal remarks and onlusions are given in Setion 8.2. The formalismIn this setion we shall remind some basi equations known from theNewtonian theory of stellar osillations (or asteroseismology). We will notgive any preise derivation here as it an be easily found in other papers.In turn, we will try to fous our attention mainly on putting down all theassumptions leading to the mentioned equations and we will explain all thenotation we use.We will onsider the motion of gas in the star ruled by the Euler equation
̺∂tv + ̺v∇v = −∇p+ ̺g (1)together with the ontinuity equation

∂t̺+ ∇(v̺) = 0 . (2)Here ̺ denotes the density, p the pressure and v the veloity �eld of the gas.The term g in the equation (1) stands for the gravitational aeleration. Infurther onsiderations it will be, however, muh more onvenient to use thegravitational potential Φ instead of g . We shall assume that a non minusonvention g = ∇Φ holds. Then, the potential Φ satis�es Poisson's equationof the form
∇2

Φ = −4πG̺ . (3)



On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 2481The above set of equations should be ompleted with one more, namelyenergy onservation equation (or the �rst law of thermodynamis)
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.The next step is to derive a set of linearized equations desribing evolu-tion of small perturbations of the equilibrium struture of the star. Underassumptions of adiabatiity of the motion and the spherial symmetry of theundisturbed medium one may obtain:
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2∂rΦ
′) + ∇2

hΦ
′ = −4πG̺′ . (8)The notation used here requires some explanation. The primed quantitiesdenote Eulerian perturbations and are funtions of both position r andtime t, whereas quantities with zero indies desribe undisturbed medium(i.e. an equilibrium struture of the star) and are only funtions of thedistane from the enter of the star, due to the spherial symmetry we haveassumed. Thus, for instane

̺(r , t) = ̺0(r) + ̺′(r , t) ,

p(r , t) = p0(r) + p′(r , t), . . . . (9)By ξ we have denoted the radial part of the gas displaement, i.e.
δr = ξer + ξh , (10)where er stands for the unit vetor in the radial diretion and ξh is a hor-izontal part of the displaement vetor. Finally ∇h denotes the horizontalpart of the gradient operator. The reader interested in rigorous derivationof the above equations may onsult [2℄.



2482 P. Mah3. Non stationary perturbations, e�etive potentialThe equations introdued in the preeding setion possess a lass of sta-tionary solutions, whih is atually one of the main interests of the theoryof stellar osillations. We may, however, try to look for the non stationarysolutions that ould, in fat, have some physial meaning. The aim of thissetion is to derive some simpli�ed equations in the form suitable for furthernumerial searh for suh solutions.We proeed with the separation of variables. All perturbations of ourinterest, suh as ξ, p′, ̺′ may be expanded in the series of spherial harmon-is. To simplify the notation we will drop the adequate spherial harmonisindies in the amplitudes. Due to the linearity of the obtained equations itis su�ient to write
ξ(r, θ, φ, t) = ξ̃(r, t)Ylm(θ, φ) ,

p′(r, θ, φ, t) = p̃(r, t)Ylm(θ, φ) , . . . .Taking into aount that
∇2

hYl = − l(l + 1)

r2
Yl ,and substituting the above expressions to equations (5)�(7) and (8) we get
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. (14)The mentioned stationary solutions an now be obtained by setting
f̃(r, t) = f̂(r)e−iωtfor eah amplitude f̃(r, t) of a hydrodynamial variable f . By ompletingordinary di�erential equations obtained this way with the suitable boundaryonditions we an determine harateristi frequenies ω of the osillationmodes.We will, however, try to proeed in a di�erent way. Instead of posing aneigenvalue, boundary problem, we will try to formulate some Cauhy prob-lem with just one, seond order, partial di�erential equation, desribing the



On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 2483time evolution of an initial perturbation. Additionally, we will not onsiderany boundary onditions and thus we will treat a star as a formally in�nitelydistributed medium. Of ourse, we will not onsider the propagation of theperturbations beyond the assumed radius of the star.We shall now formulate two important, simplifying assumptions:1. We will put Φ̃ ≡ 0 everywhere. This assumption was examined for the�rst time by Cowling. It means simply negleting the hanges in thegravitational �eld that arise due to small perturbations of the densityin the star.2. We will assume that the medium is adiabati, i.e.
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= 0 . (15)With this assumption we eliminate the propagation of the internalgravity waves, fousing attention only on the pressure waves in thestar. Now, of ourse, we will have to examine whether the star region inwhih the perturbation propagates is indeed adiabati. The onvetivezone in the stellar atmosphere an serve as an example of suh region.Under above assumptions the onsidered set of equations redues to thefollowing form
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2484 P. MahWe an now get rid of the term ontaining the derivative ∂r p̃ by introduinga new dynamial variable P , de�ned with the equation
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. (21)Equation (19) an be still transformed into even more onvenient form. Wewill eliminate the term c−2 standing before the time derivative of P byintroduing a new oordinate
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∂r∗P − c2V P = 0 .We will get rid of the term proportional to ∂r∗P in a way similar to that wehad used before. We de�ne a funtion Π with a relation
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On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 24854. Lagrangian desription, energyOne may notie that the equation (23) an be obtained from the varia-tional priniple
δΠS = 0by taking an ation S of the form
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dtdr∗. (25)The equation (23) appears then as the Euler�Lagrange equation for theLagrangian density L, i.e.
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= 0 . (26)We an now make use of the �rst Noether theorem applied to the ation(25), what should allow us to de�ne an energy for the Π amplitudes. We willpresent this issue in a little detail due to some subtle matters that appearhere.We begin with onsidering an in�nitesimal time translation of some do-main Ω

ψ: R2 ⊃ Ω ∋ (t, r) 7→ (t′, r) = (t− ε, r) ∈ R
2,whih will be assumed to be a symmetry whih means that a variation of theation (25) aused by this transformation vanishes in the domain Ω . If inaddition we assume that the motion happens to be real (the Euler�Lagrangeequation (26) is satis�ed) than after some alulations we obtain
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= 0 . (27)The amplitude Π is de�ned in a half plane r∗ > 0. As a domain Ω , overwhih we proeed with integration we may now take a part of that half planeenlosed between to onstant time lines, given by the equations t = t1 and
t = t2.Let us notie, that the amplitudes Π have appeared in the separationof variables in the (3 + 1) dimensional problem and, therefore, have to sat-isfy some additional onditions. In partiular p̃ needs to be �nite in itsdomain and thus also at r∗ = r = 0. It follows simply that an equality
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2486 P. MahFinally it follows that a quantity
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) (28)an thus be interpreted as an energy density.In onsisteny with the omment made earlier, we have assumed herethat a medium in whih the waves propagate is in�nite and all perturbationsvanish at least at in�nity. 5. Energy di�usionLet us onsider now γ, being a part of the inoming harateristi ofthe equation (23), with an origin in the point with the oordinates r∗ = r1,

t = t1. The harateristi γ divides domain Ω enlosed between two onstanttime lines t = t1 and t = t2 into two subdomains: the inner one Ω1 and theouter one Ω2 (Fig. 1). Let us onsider next a point with the oordinate
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Fig. 1. An illustration of the sattering proess onsidered in this paper.The whole energy ∆E, that di�used from a domain Ω1 to the domain
Ω2 during a time between t1 and t2 may be alulated as an integral of theexpression (29) over γ
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r∗=−t+r1+t1
dt . (30)Let us now imagine that an inoming perturbation of ompat supportenlosed initially in the domain Ω1 moves along the harateristi γ. Thequantity ∆E given by the expression (30) would represent the whole energysattered outwards (into the domain Ω2) during the period between t1 and

t2. This sattering is mathematially due to the non-vanishing potential
Ṽ and, to be more preise to a potential that di�ers from a single termproportional to the l(l + 1)/r2 whih will always arise from the separationof variables in the wave problem of spherial symmetry.Experiene tells us that robust energy di�usion signals the presene ofquasinormal modes. Sine quasinormal modes are rather di�ult to be foundnumerially, we prefer to deal with examining the energy di�usion instead [4℄.In the next setions of this paper we will onern ourselves with ex-amining suh energy sattering for a realisti ase, namely standard solarmodel.



2488 P. Mah6. E�etive potential for a standard solar modelWe will now apply the results of the preeding setions to a standardsolar model. We have already stated, that a fundamental assumption ofour simpli�ed model is that of adiabatiity of the region in whih the wavespropagate, and that validity of this assumption need to be arefully exam-ined. The standard solar model have been hosen beause of the existeneof the onvetive zone in whih the ondition (15) is satis�ed up to a highdegree.All our numerial alulations were made on the basis of a standardsolar model omputed by Bahall, Pinsonneault & Basin [1℄. The obtainedrelation between the variable r∗ and the radius r is shown in Fig. 2. Itshould be notied here, that the r∗ variable was normalized in suh a waythat it hanges between the values 0 and 1 for the used data range. Next,the funtion
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d ln p0
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dris plotted versus r∗ in Fig. 3. We have adopted the notation N2/g0 here, as
N orresponds to the well known Brunt�Väisälä frequeny. This plot shows,that we may regard the area with approximately r∗ ' 0.58 as satisfying ourassumption of adiabatiity. The e�etive potential, i.e. Ṽ for l = 0 is, inturn, plotted in Fig. 4. Unfortunately the only one interesting feature of thispotential, that is a lear peak at r∗ ∼ 0.5, remains outside the adiabatiityarea. Therefore we an not onsider any e�ets aused by the existene ofthis peak as being physially meaningful.
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-5Fig. 4. The e�etive potential Ṽ0 for the used solar model plotted as a funtion of r∗.One remark should be made here onerning the �gures presented inthis setion. It is not possible to di�erentiate the data presented by Bahallet al. in any straightforward way to obtain any smooth enough funtionsand therefore some smoothing proedure appears to be neessary. A slightmodi�ation of the so alled Savitzky�Golay �lter (see e.g. [5℄) was usedhere to obtain presented result.



2490 P. Mah7. Example of some numerial alulationsFinally it was possible to examine, how an initially inoming wave pak-age evolves. Fig. 5 presents an example result of the numerial experimentexplained in Setion 5.
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-0.0002Fig. 5. The time derivative of the energy sattered bakwards. Here energy isexpressed in the units of total energy of the initial perturbation, whih is atuallyonserved, as desribed in Setion 4.For simpliity, only a spherially symmetri perturbation i.e. the asewith l = 0 is onsidered here. Propagation of all other modes may beexamined in exatly the same way by taking the potential Ṽ for an arbitrary
l number.Here, the harateristi γ was hosen to originate at r∗ = 0.845 andthe initial (i.e. for t = 0), purely inoming perturbation was taken to be afuntion of the shape de�ned by
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, if r∗ ∈ [a, b] ,

0, otherwise ,thus being just one, bell like part of the squared sine funtion, entered ona ompat support [a, b]. This is, of ourse, a ontinuous and di�erentiablefuntion.We have also examined the ase with an initial perturbation in the formof standard C∞ lass funtion of a ompat support. Suh funtion may beonstruted in a well known way with an use of the exponential funtion.It has also a bell like shape but it gives lower FWHM to support length



On the Propagation of Non Stationary Pressure Waves in Stellar Interiors 2491ratio. It appears that the squared sine funtion is muh more useful for ourpurpose as, basially, the amount of a sattered energy inreases with aninrease of the FWHM of the initial perturbation.In the presented ase, a and b were given the values a = 0.73 and b =
0.845 whih orrespond to the initial data support lying entirely in the Ω1domain (see Fig. 1). The plot presented in Fig. 5 shows the time derivativeof the energy that has di�used from the domain Ω1 to the outside domain
Ω2 divided by of the whole initial perturbation energy. The variable r∗ andthe units of t (approximately 2500 s per unit) are de�ned in suh a way thatthe sound speed expressed in these oordinates equals unity. Thus, lookingat Fig. 5 it is easy to see how far ould the initial perturbation arrive for agiven time. Clearly, the large peak in the sattered energy orresponds tothe mentioned bump in the e�etive potential whih, as it has been alreadystated, annot be onsidered in a onvining way as giving any results ofphysial meaning. It is, however, a good example of e�ets that may arisein the propagation of the non stationary waves due to the inhomogeneity ofthe medium.In our onsiderations we are of ourse restrited to the area where theadiabatiity assumption is satis�ed. In fat, even in this area some di�usionof energy does our but on a negligible sale. Fig. 6 shows the energy thathas di�used through the harateristi as a funtion of time. These are infat the same data whih we have already plotted in Fig. 5 but this timerestrited to the times lower than 0.2 what orresponds to the propagationin the adiabati zone.
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2492 P. Mah8. Final remarksIt is already well known that non stationary waves an arry inter-esting information about an inhomogeneous medium in whih they prop-agate [4, 6�8℄. In this paper we have examined the propagation of suhwaves in Solar onvetive zone by looking at the energy di�usion proess.It appears that the energy sattering our with rather negligible e�ienyand, onsequently, we expet the quasinormal modes to be absent. Thismay, however, follow from the fat that we have restrited ourselves to the,perhaps not interesting, simpli�ed ase of adiabati mediums. It is possiblethat the investigation of the full model whih takes into aount all impor-tant physial aspets would lead to some positive results. It is also possiblethat positive results an be obtained by repeating the alulations presentedin this paper for the models of some other stars.I wish to thank Professor Edward Male for showing me the issue of nonstationary waves e�ets and his great help in doing this work.REFERENCES[1℄ J.N. Bahall, M.H. Pinsonneault, S. Basin, Astrophys. J. 555, 990 (2001).[2℄ J. Christensen�Dalsgaard, Leture Notes on Stellar Osillations,http://astro.phys.au.dk/�jd/osilnotes/, 2003.[3℄ J.P. Cox, R.T. Giuli, Priniples of Stellar Struture, Gordon and Breah, NewYork 1968.[4℄ J. Karkowski, K. Roszkowski, Z. �wierszzy«ski, E. Male, Phys. Rev. D67,064024 (2003).[5℄ W.H. Press, et al., Numerial Reipes in C, Cambridge University Press, 2002.[6℄ C.V. Vishveshwara, Phys. Rev. D1, 2870 (1970).[7℄ F.J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).[8℄ F.J. Zerilli, Phys. Rev. D2, 2141 (1970).


