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Physical mechanisms that can influence rotation curves of spiral galax-
ies are discussed. For dark matter studies, possible contributions due to
magnetic fields and non-Newtonian gravitational accelerations should be
carefully accounted for. We point out that magnetic fields are particularly
important in outermost parts of the disk. In the framework of general rela-
tivity the physical reason of an enhanced gravity in spiral galaxies depends
on the assumed metric. The additional gravity is provided for Schwarzschild
metric by nonluminous mass, whereas for Vaidya metric by emission of ra-
diative energy. In the latter case the non-Newtonian acceleration displays
1/r behaviour. Also matter flows contribute to non-Newtonian gravity.

PACS numbers: 98.52.Nr, 98.62.Dm

1. Introduction

The best evidence of enhanced gravity in galaxies is provided by flat
rotation curves of spiral galaxies which do not decay in a Keplerian way even
far from the rotation axis. From simple Newtonian formula for centripetal
acceleration

2
Ving GM (r)
=2 (1.1)

one finds that the total mass within radius r grows with 7 as M(r) ~ rv2,.
The linear growth of mass is customarily attributed to an invisible compo-
nent, referred to as dark matter.
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The problem of dark matter has its beginning in the observational de-
termination by Zwicky of dynamical mass of the Coma cluster of galaxies.
The gravitational mass inferred by Zwicky from the motion of individual
galaxies in the cluster exceeded by a factor of a few hundred the mass ob-
tained by measuring luminosities assuming typical value of mass to light
ratio. Later a discrepancy between dynamical and luminous mass has been
found in spiral galaxies and galaxy clusters.

Our aim here is to point out that the conclusion as to the existence of
dark matter inferred from rotation curves is not inescapable, but based on
some un-spelled assumptions. It holds in Newtonian gravity provided any
role of magnetic fields is negligible. In the framework of Einstein’s gravity
for it to hold one implicite assumes space—time geometry to be given by the
Schwarzschild metric. It is often assumed that galactic gravitational field, as
very weak one, is adequately described by Newtonian gravity. We will show,
employing Vaidya metric, that the inverse problem, of reconstructing galac-
tic gravity given rotation velocity, has also other solutions. One encounters
here ambiguity which can only be resolved by physical input.

Recent observations of dearth of dark matter in elliptical galaxies [2] sug-
gest that there may be more unknowns involved in this problem. One should
also consider non-gravitational origin of the above discrepancy, namely due
to magnetic fields in galaxies. The role of magnetic fields is likely very im-
portant in the outer disk region where the galaxy rotation is detected by
tracing hydrogen clouds.

In order to firmly infer the amount of dark matter in spiral galaxies one
should subtract contributions to rotation curves generated by other forces
(i.e. magnetic fields) and processes. It is certain that such contributions
exist as in many galaxies rotation curves show wiggly structure, as e.g. in
our Galaxy. Such a structure cannot be produced by WIMP gravity, as
density of WIMPs is a monotonically decreasing function of distance from
the center of the distribution. Magnetic influence and energy-flow-generated
gravity can easily account for undulations of rotations curves. However,
immediately a question arises how much such forces/processes contribute
to the bulk of rotation curves. Before gauging this influence the inferred
amount of dark matter in a galaxy is subject to substantial uncertainty.

In the next section the problem of flat rotation curves of spiral galaxies is
briefly reminded. In Sec. 3 the role of magnetic fields is discussed. In Sec. 4
gravity due to radiation flow is discussed with the use of Vaidya metric [1].
Finally in the last section we summarize important points once again.
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2. Enhanced gravity in galaxies

One can formulate the problem of flat rotational curves precisely as fol-
lows: there is too much gravity compared to mass we can account for by
counting stars and measuring the amount of gas in galaxies. It is a nonrela-
tivistic custom to attribute this enhanced gravity to invisible and (almost)
undetectable matter. In a popular Cold Dark Matter model, invisible mass
is due to hypothetical Weakly Interacting Massive Particles — WIMPs.

In general relativity, which is supposed to be the theory of gravity, not
only mass is capable of generating gravitational field, but also energy or radi-
ation flows induce gravity. Interpreting gravitational acceleration in Newto-
nian terms, @ = —GM (r)/r*#, for spherical symmetry one implicite assumes
the Schwarzschild interior metric

ds? = edt* — e dr® — r?d?, (2.1)

with e™ = e = 1 — 2M(r)/r for matter with negligible pressure, described
by a dust equation of state. In the weak field limit, which is appropriate for
galactic fields, one obtains then the Newtonian acceleration.

Typical rotational velocities of spiral galaxies, in the flat regime, are of
the order of 100 km/s. One can thus infer the mass within radius r to be
M(r) = 2.32 x 10°(v./100 km/s)?r/kpc M. For Milky Way galaxy this
gives within 30 kpc the mass Myrw = 3.37 x 10" Mg for v, = 220 km/s.
This high value of mass is thought to show us that the main component
of mass in our Galaxy, and in other galaxies, is nonluminous. Astronomers
tried hard to detect known nonluminous astrophysical objects that could
form an invisible population providing the missing mass. All attempts to
account for it by dim stars, dead stars, plasma or other forms of baryon
matter have failed. The only viable candidate at the moment is particle
dark matter composed of WIMPs (or axions), forming an extended halo
around galaxies. The radius of this halo is presently unknown, but some
observations suggest that it is of the order of 200 kpc. Also, some cold gas
in the form of molecular hydrogen, can contribute to dark matter, as it is
very difficult to detect this component.

One can briefly summarize that the dark matter hypothesis is a Newto-
nian solution of enhanced gravity problem in spiral galaxies with any influ-
ence of magnetic field neglected.

3. Magnetic fields and the rotation curves

Magnetic fields are the most common phenomenon in spiral galaxies
where we observe fields of regular and chaotic structure. The regular struc-
ture has azimuthal and poloidal components. The poloidal component of
the magnetic field is produced by the galactic dynamo effect. The azimuthal
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component is induced from poloidal component by differential rotation. Reg-
ular fields created by such mechanisms may reach intensities of a few to
several hundred microgauss.

A question arises [3,4] whether these fields have any influence on the
galactic rotation curves. In order to answer this question we must investigate
the Navier—Stokes equation with magnetic field,

ov N MGp R n o1 _ o
p [am?v)v} =—Vp-—3 +nAv+(§+§)V(Vov)+E ((V x B) XB) :

(3.1)
We assume here the gravitational field of point mass located at the cen-
ter of galaxy with M ~ 2 x 10*g, which is a good approximation for our
exploratory calculation. In stationary galactic disk we can neglect radial ve-
locities and viscosity and we will compare gravitational and magnetic field
forces. Rough estimate shows that for gas clouds of density p ~ 10~2%g/cm?
at the radius of a few tens kpc, 7 ~ 3 x 10%2cm, from the galactic center, and
for magnetic fields of a few uG, B ~ x107° G, magnetic forces are compa-
rable with gravitational forces. Gravitational acceleration and acceleration
due to magnetic effects are, respectively,

MG

7 ~ 10_8CH1 8_2, (32)
BQ
— ~3x108%ms2. (3.3)
pr

For magnetic effects to occur the gas must be partially ionized. We know
that at least a few percent of the hydrogen in galaxies is ionized. Therefore,
we may expect, that the magnetic fields’ influence on rotational curves is
not negligible.

The above order-of-magnitude estimate shows that the magnetic influ-
ence is particularly important in the outermost regions of the galactic disk,
where the density of hydrogen is the lowest. From Eq. (3.3) we find that
when density decreases by a factor of 100, magnetic fields on the scale of
1u4G can overwhelm gravity! Let us remind that most of the dark matter
contribution to galaxy rotation comes from the outskirts. Any unaccounted
for magnetic field contribution can completely corrupt dark mass measure-
ment. One should also keep in mind that magnetic fields of uG order are
expected to be ubiquitous in the intergalactic space in clusters of galaxies.

Taking only azimuthal component of magnetic field into account and
assuming that it depends only on its radial coordinate we can get a simple
analytical form of this component which will flatten the rotation curve:

2
(o) _ MG | 1 Bd,% (rBy) | (3.4)

r r 4 pr
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where vy = v, = const is the rotational velocity of a galaxy. The solution of
this equation reads:

2:/2pm+/0.5 (vg)212 — MGr — C
B, =4/ AT ”i , (3.5)

where C is the integration constant.
The real magnetic fields in spiral galaxies have all the components,
poloidal and azimuthal, nonvanishing. Therefore, the radial part of Navier—

Stokes equation has the following form:

(vp)? MG 1 0B, 0B, 10 1 0B,
e . B, - By =Z(rBy) -~ .
r r2 4mp 0z or z ¢\ ror (rBs) r 0¢

(3.6)
To assess a possible influence of such magnetic fields on rotation curves one
should take into account the whole 3D structure of magnetic field.
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Fig.1. The dashed—dotted line is a solution of Eq. (3.8) with M = 2 x 10%*g,
vy = 220 km/s, p = 1072°g/cm?, dotted line is a solution corresponding to density
p=0.333 x 1072°g/cm 3. Solid curve is a function By ~ 1/r.

4. Gravity generated by radiation flow: the Vaidya metric

The Schwarzschild metric describes strictly speaking gravity of cold spher-
ically symmetric astrophysical body, such as a planet, dead star or a black
hole. Gravity of radiating objects such as normal stars is only approximately
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described by the Schwarzschild metric. There exists, however, exact solution
of Finstein’s field equations corresponding essentially to a real star which
emits radial flux of radiation, found by Vaidya [1]. In its original form, the
Vaidya metric is

) 2 om\ !, om\ "', o
ds* = | — 11— — dt* — (1 - — dr® —r*df)”. (4.1)
m/ r r

It corresponds to the space—time region outside the star, » > rg, where rq
is the stellar radius, and m = m(r,t). This metric can be cast in a very
elegant form employing the retarded time variable u =t — r,

ds® = (1 — 27) du® — 2dudr + r’dQ?, (4.2)
as shown by Vaidya in Ref. [1].

The energy tensor corresponding to the Vaidya metric has non-zero T; 01
component which describes the energy outflow carried away by massless
fields. Let us consider the energy tensor for directed flow of radiation [5] in
the form

1, = pvv”, (4.3)
where p is the energy density of radiation, and the 4-vector v* is null,
viv, = 0. For the radial outflow, v? =03 =0, and T} = Tg’ = (0. The
metric (4.1) is a particular example of a general non-static spherically sym-
metric metric [5],

ds? = e’V — A gr? — 12402 (4.4)
The Einstein field equations are [5]:
1 1 N
0 _ -A
—87FT0 = _T_2 +e <ﬁ — 7) s (45)
1 1 v
1 _ -
1 . 1 I\
—87T% = 716_”(2)\ +AXA—7v))+ Ze_A (21/’+1/2)\'1/+2V
= —8nT3, 4.7)

(
1.
*87TT01 = —=\. (

.4;

8)

Let us introduce the mass function m( t) through e MM =1-2m/(r,t) /7.
From the null condition, v,v* =0=— (vl) + ¥ (v?)? we find elv— /\)/QTO +
TY = 0 which gives

e N Pm! 4 e i =0. (4.9)
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This allows us to express the function e” through m(r,¢) and its derivatives,
and to write the metric (4.1) in the form (4.2) given by Vaidya.

The physical interpretation of Vaidya’s metric is straightforward. In the
weak field limit we find 7 + m’ = 0 and the energy flux flowing out of
a sphere of radius r is

12 .
Tot=_ " T 4.10
Amrim 47r? ( )

Hence m(r,t) is the radiation energy inside this sphere
m(r,t) = /4777"2T(§) dr . (4.11)

The function 7 is the rate of energy emission, or total luminosity, and
m! = 4nr?T, (g). We should also include the radiation source, located at the
origin, which loses energy at a rate M(0,t — ) = 1n(r,t).

The most important result is the gravitational acceleration in the weak
field limit, e” ~ 1 + v. From general expression we find for the metric (4.4)

the Einstein’s formula, )
F=—=v'. 4.12
7 5V (4.12)
When applied to the Schwarzschild metric in the weak field limit, with v =
—2M /r, it gives the Newtonian acceleration.

For the Vaidya metric from Eq. (4.6) we have

2
vi==|(e=1)+¢e <m’—m>] . (4.13)
r r
In the weak field limit we find
. m  m

This expression shows that there appears a non-Newtonian acceleration
/ .
ap = -2 =g (4.15)
r re
which is inversely proportional to the distance. Far from the center, ar,
becomes dominating. For radiating body, with energy flowing out of the
central mass, m < 0 and the acceleration (4.14) produces an attractive force
which becomes stronger than the usual Newtonian gravitation.

The additional gravitational attraction due to radiation emission implied
by the Vaidya metric was first discussed by Lindquist et al. [6]. It gives an
explicit example of non-Newtonian gravitational force resulting from KEin-
stein’s gravity theory for a realistic metric in the weak field limit. Thus the
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notion that Newtonian acceleration is the only weak-field limit of general
relativity is inaccurate.

The formula (4.14) can be generalized to the case of galactic wind which
is a radial matter outflow,

M Vwind

Qwind = G (416)

rc?
Here vying is the radial velocity of the wind and m < 0 is the mass loss
rate due to wind. Please note that the above formula (4.15) is also valid
for radial accretion, with radial infall velocity v, < 0. Since for accretion
the mass increases, m > 0, the induced acceleration is also directed inward,
as for the wind. One can thus conclude that radially oscillating shell of
gas would always produce gravitational attraction, both in expansion and
contraction phase.

5. Discussion

Astronomers tend to consider the Newtonian solution of the enhanced
gravity problem in spiral galaxies to be the only one compatible with general
relativity. One can encounter statements that any non-Newtonian gravita-
tional acceleration in galaxies, as e.g. employed by Milgrom in his model
of galaxy gravity [7]|, would necessarily require modifications of Einstein’s
gravity theory. We have given here an example that the statement that non-
Newtonian gravitational acceleration, a ~ 1/r, is incompatible with general
relativity, is not true. The acceleration (4.14) can be shown to produce flat
rotational curves of spiral galaxies. The centripetal acceleration when the
non-Newtonian acceleration dominates, is

v2 G

rot
ot _ 5.1
r cr (5.1)
which allows us to calculate the source luminosity L = —ri. For v, =

100km/s L ~ 1052 erg/s. Hence the problem of enhanced gravity in spiral
galaxies with the Vaidya metric changes to the problem of the energy source
and the physical nature of its emission. Physically, it is very different from
the Newtonian solution, which is the nonluminous matter.

Presently it is a standard assumption that galactic dynamics is governed
by dark matter. To prove the dark matter hypothesis a number of experi-
ments start to search for neutralino, the best supersymmetry candidate for
WIMP. Also, astrophysical observations of dark matter in elliptical galax-
ies have been attempted by PN.S collaboration [2] with planetary nebulae
as a tracer of gravity. Surprisingly, gravity of those galaxies is adequately
described by luminous matter only, a result described as a “missing missing
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mass” problem [2]. If the results obtained by PN.S collaboration are correct
than dark matter in elliptical galaxies is at least differently distributed than
in spiral galaxies, with only trace amount inside inner 56 effective radii.

A radical proposal is the Milgrom’s Modified Newtonian Dynamics
(MOND) hypothesis, which postulates new gravitation law for very weak ac-
celerations. This proposal, employed as a phenomenological model, is quite
successful in explaining spiral galaxies dynamics. MOND also explains the
dearth of dark matter in elliptical galaxies [8] observed by Romanowsky
et al. [2]. The radial dependence of the MOND acceleration is the same as
in non-Newtonian acceleration ay, (4.14) for the Vaidya metric.

One can notice that the Vaidya metric is an example of metric considered
recently by Lake [9] that can give flat rotation curves of spiral galaxies.

We have shown here that magnetic fields in spiral galaxies can play a cru-
cial role in determining the rotation curves. The solution (3.6) shows that
magnetic field which fully accounts for a flat rotation curve has toroidal
component compatible with observed magnetic fields in spiral galaxies. It
may not be a good approximation to completely suppress magnetic field in-
fluence when studying the physical origin of flat rotation curves. In realistic
description observed magnetic field influence should be subtracted before
fitting gravitational potential generated by assumed dark matter halo. The
importance of magnetic field contribution to flat rotational curves of spiral
galaxies has been recently discussed in Ref. [10].

It is also worth to notice that pure magnetic mechanism of flat rotation
curves in spiral galaxies could explain simultaneously why these curves in
elliptical galaxies are Keplerian. It is because there are no regular magnetic
fields in elliptical galaxies.
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