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LOW-x CONTRIBUTION TO THE BJORKENSUM RULE WITHIN UNIFIED ln

2
x+LO DGLAPAPPROXIMATIONDorota KotlorzDepartment of Physi
s, Te
hni
al University of OpoleOzimska 75, 45-370 Opole, Polande-mail: dstrozik�po.opole.pland Andrzej KotlorzDepartment of Mathemati
s, Te
hni
al University of OpoleLuboszy
ka 3, 45-370 Opole, Poland(Re
eived May 13, 2004; Revised version re
eived September 29, 2004)The small-x 
ontributions to the Bjorken sum rule within uni�ed pi
ture

ln2 x+LO DGLAP for di�erent input parametrisations gNS
1 (x, Q2

0) are pre-sented. Theoreti
al predi
tions for ∫ 0.003

0
gNS
1 (x, Q2 = 10)dx are 
omparedwith the SMC small-x data. Rough estimation of the slope λ, 
ontrollingthe small-x behaviour of gNS

1 ∼ x−λ from the obtained results and SMCdata is performed. The 
ru
ial role of the running 
oupling αs = αs(Q
2/z)at low-x is taken into a

ount.PACS numbers: 12.38.Bx 1. Introdu
tionThe results of SIDIS (semi in
lusive deep inelasti
 s
attering) experi-ments with polarised beams and targets enable the extra
tion of the spindependent quark and gluon densities. This powerful tool of studying theinternal spin stru
ture of the nu
leon allows veri�
ation of sum rules. Oneof them is the Bjorken sum rule (BSR) [1℄, whi
h refers to the �rst momentof the nonsinglet spin dependent stru
ture fun
tion gNS

1 (x,Q2). Be
ause ofSUf (2) �avour symmetry, BSR is regarded as exa
t. Thus all of estimationsof polarised parton distributions should be performed under the assumptionthat the BSR is valid. Determination of the sum rules requires knowledge ofspin dependent stru
ture fun
tions over the entire region of x ∈ (0; 1). The(2503)
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essible x range for the spin dependent DIS is however lim-ited (0.7 > x > 0.003 for SMC data [2℄) and therefore one should extrapolateresults to x = 0 and x = 1. The extrapolation to x → 0, where stru
turefun
tions grow strongly, is mu
h more important than the extrapolation to
x → 1, where stru
ture fun
tions vanish. Assuming that the BSR is valid,one 
an determinate from existing experimental data the very small-x 
ontri-bution (0.003 > x > 0) to the sum rule. Theoreti
al analysis of the small-xbehaviour of gNS

1 (x,Q2) = gp
1(x,Q2)− gn

1 (x,Q2) together with the broad x-range measurement data allow veri�
ation of the shape of the input partondistributions. In this way one 
an determinate the free parameters in theseinput distributions. Experimental data 
on�rm the theoreti
al predi
tions ofthe singular small-x behaviour of the polarised stru
ture fun
tions. It is wellknown, that the low-x behaviour of both unpolarised and polarised stru
turefun
tions is 
ontrolled by the double logarithmi
 terms (αs ln2 x)n [3,4℄. Forthe unpolarised 
ase, this singular PQCD behaviour is however overriddenby the leading Regge 
ontribution [5℄. Therefore, the double logarithmi
 ap-proximation is very important parti
ularly for the spin dependent stru
turefun
tion g1. The resummation of the ln2 x terms at low x goes beyond thestandard LO and NLO PQCD evolution of the parton densities. The non-singlet polarised stru
ture fun
tion gNS
1 , governed by leading αn

s ln2n x terms,is a 
onvenient fun
tion both for theoreti
al analysis (be
ause of its simpli
-ity) and for the experimental BSR tests. The small-x behaviour of gNS
1 ,implied by double logarithmi
 approximation, has a form x−λ with λ ≈ 0.4.This or similar small-x extrapolation of the spin dependent quark distribu-tions have been assumed in re
ent input parametrisations e.g. in [6, 7, 13℄.More singular parametrisation of g0NS

1 (x,Q2
0 = 4) ∼ x−0.8 at small-x, basedon the QCD (LO and NLO) analysis of the world data on polarised deepinelasti
 s
attering, has been presented in [14℄. Mentioned above double log-arithmi
 approa
h is however ina

urate for QCD analysis at medium andlarge values of x. Therefore, the double logarithmi
 approximation should be
ompleted by LO DGLAP Q2 evolution. In our theoreti
al analysis within

ln2 x+LO DGLAP approa
h we estimate gNS
1 at low-x and hen
e the small-

x 
ontributions ∫ x0

0 gNS
1 (x,Q2)dx, ∫ x2

x1
gNS
1 (x,Q2)dx (x0, x1, x2 ≪ 1) to theBSR for di�erent input quark parametrisations: the Regge nonsingular oneand the singular one. We 
ompare our results with the suitable experimen-tal SMC data for BSR. In the next se
tion we re
all some of the re
enttheoreti
al developments 
on
erning the small-x behaviour of the nonsingletpolarised stru
ture fun
tion gNS

1 . Se
tion 3 is devoted to the presentationof the uni�ed ln2 x+LO DGLAP approximation. We also dis
uss the roleof the running 
oupling αs. Se
tion 4 
ontains our results for the stru
-ture fun
tion gNS
1 at small-x and for 
ontributions to the Bjorken sum rule

∆IBSR(x1, x2, Q
2) =

∫ x2

x1
gNS
1 (x,Q2)dx (x1, x2 ≪ 1). We present our pre-
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tions using �at (nonsingular) ∼ (1 − x)3 and singular ∼ x−λ at small-xparametrisations of the input stru
ture fun
tion gNS
1 (x,Q2

0) as well. We
ompare our results with the SMC data for the small-x 
ontribution to theBSR. We roughly estimate the slope λ 
ontrolling the small-x behaviourof gNS
1 ∼ x−λ from our gNS

1 predi
tions and from the SMC data, basingon the validity of the BSR. We 
ompare also results ∆IBSR(x1, x2, Q
2) and

gNS
1 (x = 10−6, Q2 = 10) in di�erent approximations: pure LO DGLAP,pure ln2 x, ln2 x+LO DGLAP and obtained for di�erent αs parametrisa-tions: αs = const, αs = αs(Q

2), αs = αs(Q
2/z). Finally, Se
tion 5 
ontainsa summary of our paper.2. Small-x behaviour of the nonsinglet spin dependentstru
ture fun
tion gNS

1
(x, Q2)The small value of the Bjorken parameter x, spe
ifying the longitudinalmomentum fra
tion of a hadron 
arried by a parton, 
orresponds by de�ni-tion to the Regge limit (x → 0). Therefore the small-x behaviour of stru
turefun
tions 
an be des
ribed using the Regge pole ex
hange model [5℄. In thismodel the spin dependent nonsinglet stru
ture fun
tion gNS

1 = gp
1 − gn

1 inthe low-x region behave as:
gNS
1 (x,Q2) = γ(Q2)x−αA1

(0) , (2.1)where αA1
(0) is the inter
ept of the A1 Regge pole traje
tory, 
orrespondingto the axial ve
tor meson and lies in the limits

−0.5 ≤ αA1
(0) ≤ 0 . (2.2)This low value of the inter
ept (2.2) implies the nonsingular, �at behaviourof the gNS

1 fun
tion at small-x. The nonperturbative 
ontribution of the A1Regge pole is, however, overridden by the perturbative QCD 
ontributions,parti
ularly by resummation of double logarithmi
 terms ln2 x. In this waythe Regge behaviour of the spin dependent stru
ture fun
tions is unstableagainst the perturbative QCD expe
tations, whi
h at low-x generate moresingular x dependen
e than that implied by (2.1)�(2.2). Nowadays it iswell known that the small-x behaviour of the nonsinglet polarised stru
turefun
tion gNS
1 is governed by the double logarithmi
 terms i.e. (αs ln2 x)n[3, 4℄. E�e
ts of these ln2 x approa
h go beyond the standard LO and evenNLO Q2 evolution of the spin dependent parton distributions and signif-i
antly modify the Regge pole model expe
tations for the stru
ture fun
-tions. From the re
ent theoreti
al analyses of the low-x behaviour of the

gNS
1 fun
tion [9℄ one 
an �nd that resummation of the double logarithmi
terms (αs ln2 x)n leads to the singular form:

gNS
1 (x,Q2) ∼ x−λ (2.3)



2506 D. Kotlorz, A. Kotlorzwith λ ≈ 0.4. This behaviour of gNS
1 is well 
on�rmed by experimental data,after a low-x extrapolation beyond the measured region [2, 10, 11℄.3. Unintegrated stru
ture fun
tion fNS(x, Q2)within double logarithmi
 ln2 x and uni�ed

ln2 x+LO DGLAP approximationsPerturbative QCD predi
ts a strong in
rease of the stru
ture fun
tion
gNS
1 (x,Q2) with the de
reasing parameter x [3, 4℄ what is 
on�rmed byexperimental data [2, 10, 11℄. This growth is implied by resummation of

ln2 x terms in the perturbative expansion. The double logarithmi
 e�e
ts
ome from the ladder diagram with quark and gluon ex
hanges along the
hain. In this approximation the unintegrated nonsinglet stru
ture fun
tion
fNS(x,Q2) satis�es the following integral evolution equation [3℄:

fNS(x,Q2) = fNS
0 (x) +

1
∫

x

dz

z

Q2/z
∫

Q2

0

dk′2

k′2
ᾱsf

NS
(x

z
, k′2

)

, (3.1)where
ᾱs =

2αs

3π
(3.2)and fNS

0 (x) is a nonperturbative 
ontribution whi
h has a form:
fNS
0 (x) = ᾱs

1
∫

x

dz

z
g0NS
1 (z) , (3.3)

g0NS
1 (x) is an input parametrisation

g0NS
1 (x) = gNS

1

(

x,Q2 = Q2
0

)

. (3.4)The unintegrated distribution fNS(x,Q2) is related to the gNS
1 (x,Q2) via

fNS(x,Q2) =
∂gNS

1 (x,Q2)

∂ ln Q2
. (3.5)Eq. (3.1) generates the leading small-x behaviour of fNS and hen
e gNS

1 ,but it is ina

urate in des
ribing the total Q2 evolution. For larger values of
x, whi
h are involved in the evolution equation (3.1) via ∫ 1

x dz one shouldtake into a

ount Q2 DGLAP evolution with 
omplete splitting fun
tion
Pqq(z). Therefore, the double logarithmi
 approa
h should be 
ompleted
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ription of the polarised stru
-ture fun
tion fNS(x,Q2) in
orporating DGLAP evolution and the doublelogarithmi
 ln2 x e�e
ts at low-x leads to the following equation for theunintegrated distribution fNS(x,Q2) [18℄:
fNS(x,Q2) = fNS

0 (x) +

1
∫

x

dz

z

Q2/z
∫

Q2

dk′2

k′2
ᾱsf

(x

z
, k′2

)

+

Q2

∫

Q2

0

dk′2

k′2

1
∫

x

dz

z
ᾱs

(1 + z2)f(x/z, k′2) − 2zf(x, k′2)

1 − z

+ᾱs

Q2

∫

Q2

0

dk′2

k′2

(

3

2
+ 2 ln(1 − x)

)

f(x, k′2) , (3.6)where
fNS
0 (x) = ᾱs

[ 1
∫

x

dz

z

(1 + z2)g
(0)
1 (x/z) − 2zg

(0)
1 (x)

1 − z

+

(

3

2
+ 2 ln(1 − x)

)

g
(0)
1 (x)

]

. (3.7)The unintegrated distribution fNS in the equation (3.6) is related to the
gNS
1 (x,Q2) via

gNS
1 (x,Q2) = g0NS

1 (x) +

Q2(1/x−1)
∫

Q2

0

dk2

k2
f

(

x

(

1 +
k2

Q2

)

, k2

)

. (3.8)An important role in solutions of (3.1) and (3.6) plays the 
oupling αs, whi
h
an be parametrised in di�erent way. The simplest 
hoi
e of αs is a 
onstan
e(nonrunning) 
oupling:
αs = const. (3.9)This simpli�
ation allows the analyti
al analysis of the suitable evolutionequations for trun
ated and full moments of the unintegrated stru
ture fun
-tion fNS(x,Q2) within ln2 x approximation [3, 8℄. The introdu
tion of therunning 
oupling e�e
ts implies αs in (3.1) and (3.6) of a form

αs = αs(Q
2) . (3.10)



2508 D. Kotlorz, A. KotlorzIt has been however lately proved [9℄, that dealing with a very small-xregion one should use a pres
ription for the running 
oupling in a form
αs = αs(Q

2/z). This parametrisation is theoreti
ally more justi�ed than
αs = αs(Q

2). Namely, the substitution αs = αs(Q
2) is valid only for hardQCD pro
esses, when x ∼ 1. However, the evolution of DIS stru
ture fun
-tions at small-x needs �more running� αs:

αs = αs

(

Q2

z

)

. (3.11)Our predi
tions for gNS
1 and ∆IBRS(x1, x2, Q

2) for di�erent forms of αs willbe presented in the forth
oming se
tion.4. Predi
tions for gNS

1
and small-x 
ontribution to the BSROur purpose is to 
al
ulate the nonsinglet polarised stru
ture fun
tion

gNS
1 (x,Q2) and hen
e also the 
ontribution to the Bjorken sum rule in thesmall-x region. The BSR is a fundamental rule and must be hold as a rig-orous predi
tion of QCD in the limit of the in�nite momentum transfer Q2:

IBSR ≡ Γ
p
1 − Γ

n
1 =

1
∫

0

dxgNS
1 (x,Q2) =

1

6

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

, (4.1)where
Γ

p
1 ≡

1
∫

0

dxgp
1(x,Q2) , (4.2)

Γ
n
1 ≡

1
∫

0

dxgn
1 (x,Q2) , (4.3)and | gA

gV
| is the neutron β-de
ay 
onstant

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

= F + D = 1.2670 . (4.4)Hen
e the BSR for the �avour symmetri
 sea quarks s
enario (∆ū = ∆d̄)reads:
IBSR(Q2) ≡

1
∫

0

dxgNS
1 (x,Q2) ≈ 0.211 . (4.5)
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ontribution to the BSR has a form:
∆IBSR(x1, x2, Q

2) ≡

x2
∫

x1

dxgNS
1 (x,Q2) . (4.6)Below we present our results for gNS

1 and ∆IBSR at small-x obtained fordi�erent αs sets (3.9)-(3.11) within 
ombined ln2 x+LO DGLAP approa
h.We 
ompare these predi
tions with pure LO DGLAP and pure ln2 x resultsas well. We solve numeri
ally the evolution equation (3.6) in a 
ase of uni�ed
ln2 x+LO DGLAP pi
ture and in a 
ase of pure LO DGLAP, when one getsthe following equation:

fNS(x,Q2) = fNS
0 (x)

+

Q2

∫

Q2

0

dk′2

k′2

1
∫

x

dz

z
ᾱs

(1 + z2)f(x/z, k′2) − 2zf(x, k′2)

1 − z

+ᾱs

Q2

∫

Q2

0

dk′2

k′2

(

3

2
+ 2 ln(1 − x)

)

f(x, k′2) . (4.7)In order to have 
omparable results, for pure ln2 x analysis we also use nu-meri
al solutions of (3.1). Our predi
tions have been found for two di�erentinput parametrisations g0NS
1 (x), 
hosen at Q2

0 = 1GeV2:
1. g0NS

1 (x) = 0.8447(1 − x)3 , (4.8)
2. g0NS

1 (x) = 0.290x−0.4(1 − x)2.5 . (4.9)Input 1 is the simple Regge form, 
onstan
e as x → 0; input 2 is a �toy�model, in whi
h we have used the latest theoreti
al results 
on
erning thesmall-x behaviour x−0.4 of the nonsinglet fun
tion gNS
1 [9℄. In Fig. 1 we plotinputs g0NS

1 (x) (4.8)�(4.9) in the low-x region [10−5 ÷ 10−2] together with
gNS
1 (x,Q2) results for Q2 = 10GeV2 within ln2 x+LO DGLAP approa
hwith �very running� 
oupling αs = αs(Q

2/z). Fig. 2 
ontains 
omparison ofthree approximations: pure ln2 x, pure LO DGLAP and uni�ed ln2 x+LODGLAP. We present stru
ture fun
tion gNS
1 (x,Q2 = 10) for αs = αs(Q

2/z).Finally, Fig. 3 shows the gNS
1 (x,Q2 = 10) results within 
ombined ln2 x+LODGLAP approa
h for di�erent parametrisations of αs: (3.9)�(3.11). In ea
h�gure we present the solutions for both input parametrisations (4.8)�(4.9).Numbers at ea
h plot 
orrespond to the suitable inputs 1 or 2. In Table I
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Fig. 1. Input parametrisations g0NS
1 (4.8)�(4.9) (dashed) and gNS

1 (x, Q2 = 10)(solid) for these inputs within ln2 x+LO DGLAP approa
h and for running
αs(Q

2/z).
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Fig. 2. The small-x predi
tions for gNS
1 (x, Q2 = 10) within di�erent approxima-tions: LO DGLAP (dotted), ln2 x (dashed), uni�ed ln2 x+LO DGLAP (solid).Plots for both inputs (4.8)�(4.9) and running αs(Q

2/z).
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Fig. 3. The small-x predi
tions for gNS
1 (x, Q2 = 10) within uni�ed ln2 x+LODGLAP approa
h for di�erent αs: αs = 0.18 (dotted), αs(Q

2) (dashed), αs(Q
2/z)(solid). Plots for both inputs (4.8)�(4.9).we present our results for the low-x 
ontributions to the BSR (4.6) togetherwith ε(x1, x2), whi
h is de�ned by the following expression:

x2
∫

x1

dxgNS
1 (x,Q2) = [1 + ε(x1, x2)]

x2
∫

x1

dxg0NS
1 (x) . (4.10)In the last 
olumn we give the per
entage value p[%]:

p =
∆IBSR(x1, x2, Q

2)

IBSR(Q2)
100% . (4.11)In Table II we 
olle
t results for all possible 
ombinations of approxima-tions and αs sets: LO DGLAP and αs = const = 0.18, LO DGLAPand αs = αs(Q

2), . . . , ln2 x and αs = αs(Q
2/z) et
. We present here

∆IBSR(0, 3 · 10−3, 10), gNS
1 (x = 10−6, Q2 = 10). In the last 
olumn thee�e
tive slope λ (2.3) at Q2 = 10GeV2 and small-x [10−6; 10−5] is shown.We use again both inputs g0NS

1 (x). From these results one 
an read thatthe low-x gNS
1 (x,Q2) values and hen
e the low-x 
ontributions to the BSRstrongly depends on the input parametrisation g0NS

1 . For the �at Regge form(4.8) ∆IBSR(0, 10−2, 10) is equal to around 7.6% of the total IBSR = 0.211,while for the singular input (4.9) 19.0%. The stru
ture fun
tion gNS
1 itself at
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ontribution to the BSR (4.6) for di�erent input parametrisations(4.8)�(4.9) within ln2 x+LO DGLAP approximation with running αs(Q
2/z).

x1 x2 ∆IBSR(x1, x2, 10) ε(x1, x2) p%(1) 0.006108 1.4213 2.890 3 × 10−3 (2) 0.020668 0.4097 9.80(1) 0.016050 0.9289 7.610 10−2 (2) 0.040000 0.3336 18.96(1) 0.002457 1.9422 1.16
10−5 10−3 (2) 0.010450 0.4574 4.95(1) 0.015672 0.9028 7.43
10−4 10−2 (2) 0.037380 0.3214 17.72 TABLE II

∆IBSR(0, 0.003, 10), gNS
1 (x = 10−6, 10) and λ for both input parametrisations(4.8)�(4.9) within di�erent approa
hes and αs.

g0NS
1 (x) approa
h αs ∆IBSR(0, 0.003) gNS

1 λ
onst=0.18 0.003879 2.07 0.06LO αs(Q
2) 0.005742 4.31 0.11

αs(Q
2/z) 0.004534 2.17 0.04
onst=0.18 0.005614 10.2 0.251.Regge ln2 x αs(Q
2) 0.008855 23.9 0.31

αs(Q
2/z) 0.007043 9.93 0.20
onst=0.18 0.005440 9.75 0.25

ln2 x+LO αs(Q
2) 0.008281 21.8 0.30

αs(Q
2/z) 0.006108 7.36 0.18
onst=0.18 0.017283 88.6 0.40LO αs(Q
2) 0.020543 110 0.40

αs(Q
2/z) 0.019184 98.0 0.40
onst=0.18 0.019026 113 0.422.�Toy� ln2 x αs(Q
2) 0.023641 161 0.44

αs(Q
2/z) 0.022175 130 0.41
onst=0.18 0.018756 111 0.42

ln2 x+LO αs(Q
2) 0.022712 152 0.43

αs(Q
2/z) 0.020668 117 0.41



Low-x Contribution to the Bjorken Sum Rule Within Uni�ed . . . 2513very small-x = 10−6 and Q2 = 10GeV2 is in a 
ase of x−0.4 input about 16times larger than for the �at one. The value of ε(x1, x2), de�ned in (4.10)varies from 0.9 ÷ 1.9 for the Regge input 1 to 0.3 ÷ 0.5 for the singular in-put 2. The e�e
tive slope λ (2.3) des
ribing the small-x behaviour of thestru
ture fun
tion gNS
1 remains un
hanged in a 
ase of the singular input.Namely, the x−0.4 shape of the input g0NS

1 (x) implies again the same low-xbehaviour of the gNS
1 (x,Q2), independently of the Q2-evolution approa
h.Quite di�erent situation o

urs for the �at inputs e.g. the Regge one (4.8),where the singular small-x behaviour of the gNS

1 (x,Q2) is totally generatedby the QCD evolution with ln2 x terms. Pure double logarithmi
 ln2 x ap-proa
h or 
ombined ln2 x+LO DGLAP approximation give the value of λfrom 0.2 to 0.3. Only in the pure LO DGLAP analysis we obtain λ ≤ 0.1.It means that the double logarithmi
 ln2 x e�e
ts are better visible ina 
ase of nonsingular inputs. In a 
ase of singular input parametrisations
g0NS
1 ∼ x−λ (e.g. λ ∼ 0.4) the growth of gNS

1 at small-x, implied by the
ln2 x terms resummation, is hidden behind the singular behaviour of g0NS

1 ,whi
h survives the QCD evolution. Comparing plots from Fig. 2 and resultsfrom the last 
olumn in Table II, one 
an read that the ln2 x resummationgives steep growth of the gNS
1 in the small-x region. It is well visible in a
ase of the Regge input, where gNS

1 (x,Q2) within ln2 x or ln2 x+LO DGLAPapproa
hes strongly dominate over that, obtained in pure LO DGLAP ap-proximation. Double logarithmi
 
ontributions of the type (αs ln2 x)n, whi
hlead to the strong growth of stru
ture fun
tions at low-x are not in
ludedin the DGLAP evolution (LO or NLO). Di�eren
es between pure ln2 x and
ln2 x+LO DGLAP results within the same set of αs are not very signi�
ant.However, pure ln2 x approximation overestimate the value of gNS

1 and shouldbe a

ompanied by the LO DGLAP evolution. This is be
ause in the larger-
x region, involved in the evolution equation for fNS (3.1), pure ln2 x analysisis inadequate. The 
ru
ial point in QCD analysis is a treatment of the 
ou-pling αs. The problem of αs parametrisations in high energy pro
esses hasbeen widely dis
ussed in [9℄. Fixed, 
onstan
e αs is very 
onvenient in manyphysi
al problems. Thus, use of the �xed αs simpli�es the evolution equa-tions for stru
ture fun
tions and enables easy analyti
al solutions. However,an introdu
tion of the �xed 
oupling needs a reasonable s
ale and this issomehow �arti�
ial�. Namely, the s
ale for �xing of αs is not well de�ned. Inperturbative QCD one should take into a

ount running αs e�e
ts. In thisway, usually, the pres
ription for the running 
oupling reads αs = αs(Q

2).This 
onstru
tion is however a

urate only for hard QCD pro
esses, where
x ∼ 1. On the other hand, many interesting QCD pro
esses (e.g. DIS atlow-x) are Regge-like. For these 
ases, with small-x involved, �hard� running
αs(Q

2) is in
orre
t. Instead of αs(Q
2) one has to use a modi�ed parametri-sation of αs:
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αs = αs(k

2
⊥/β) , (4.12)where k2

⊥
is the transverse momentum of the ladder parton and β is thestandard Sudakov parameter. In our approa
h this pres
ription reads as(3.11). From Fig. 3 and Table II we are able to 
ompare the predi
tionsfor gNS

1 at small-x for three αs parametrisations (3.9)�(3.11). The resultsfor αs = const = 0.18 and αs = αs(Q
2/z) (within the same approa
h LOor ln2 x et
. and with the same input g0NS

1 ) are similar but signi�
antlysmaller than in a 
ase of running αs = αs(Q
2). Within ln2 x+LO DGLAPapproximation with �at input for �very� running αs(Q

2/z) (x < z < 1), viaweaker 
oupling (αs(Q
2/z) < αs(Q

2)), the value of gNS
1 (x = 10−6, Q2 = 10)is almost 3 times smaller than for the �hard� running αs(Q

2). It is a goodlesson how 
hoi
e of the running 
oupling in�uen
es the results in the low-xregion. From the experimental SMC data [10℄ the low-x 
ontribution to theBSR at Q2 = 10GeV2 is equal to
6

0.003
∫

0

gNS
1 (x,Q2 = 10)dx = 0.09 ± 0.09 . (4.13)The above result has been obtained via an extrapolation of gNS

1 to the unmea-sured region of x: x → 0. Forms of the polarised quark distributions havebeen �tted to SMC semi-in
lusive and in
lusive asymmetries. In the �ttingdi�erent parametrisations of the polarised quark distributions [15, 16℄ havebeen used. The extrapolation of gNS
1 to very small-x region depends stronglyon the assumption (input parametrisation) made for this extrapolation. Inthis way present experimental data give only indire
tly the estimation ofthe small-x 
ontribution to the moments of parton distributions. The result(4.13) with a large statisti
al error and strongly �t-dependent 
annot be a�nal, 
ru
ial value. Nevertheless we would like to estimate the exponent λin the low-x behaviour of gNS

1 ∼ x−λ using the above SMC result for thesmall-x 
ontribution to the BSR. Assuming the validity of the BSR (4.5) atlarge Q2 = 10GeV2, one 
an �nd:
x0
∫

0

dxgNS
1 (x,Q2) = IBSR(Q2) −

1
∫

x0

dxgNS
1 (x,Q2) , (4.14)where x0 is a very small value of the Bjorken variable. Taking into a
-
ount the small-x dependen
e of gNS

1 ∼ x−λ and the experimental data for
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∆IBSR(0, 0.003, 10) one 
an obtain:

C

0.003
∫

0

x−λdx = 0.015 ± 0.015 . (4.15)The 
onstant C 
an be eliminated from a low-x SMC data [10℄:
Cx−λ = gn−p

1 (x, 10) . (4.16)Taking di�erent small-x SMC data, we have found λ = 0.37 (x = 0.014);
λ = 0.20 (x = 0.008); λ = 0.38 (x = 0.005).It seems nowadays that the most probably small-x behaviour of gNS

1 is
gNS
1 (x,Q2) ∼ x−0.4 . (4.17)This results from the latest theoreti
al analyses [9℄, whi
h take into a

ountthe running 
oupling e�e
ts at low-x. It has been shown in [9℄ that theinter
ept λ 
ontrolling the power-like small-x behaviour of gNS

1 depends onthe 
hoi
e of the parameters nf (�avour number), Q2
0 (input s
ale) and

ΛQCD. The maximal value of λ, whi
h gives the maximal 
ontribution tothe stru
ture fun
tion gNS
1 in the perturbative QCD, in
orporating ln2 xe�e
ts, is equal to 0.4. The same value of λ = 0.4 was obtained in thesemi-phenomenologi
al estimation from BSR for lower Q2 [17℄. The po-larised (nonsinglet and singlet as well) stru
ture fun
tions are presently theobje
ts of intensive theoreti
al investigations. Maybe the 
ru
ial point forunderstanding of the small-x behaviour of stru
ture fun
tions is an analy-sis beyond the leading order αn

s ln2n x. The resummation of α
(n+1)
s ln2n xterms is studied in [20℄. The 
orre
tions to gNS

1 due to the nonleading termsare on the level of 1% in the a

essible at present experimentally x region,but 
an be larger (up to about 15%) at very small-x ∼ 10−0.5. In thesituation, when the present experimental data do not 
over the whole re-gion of x ∈ (0; 1), theoreti
al predi
tions for e.g. stru
ture fun
tions in theunmeasured low-x region 
annot be dire
tly veri�ed. Latest experimentalSMC [2, 10℄ and HERMES [11℄ data provide results for the BSR from theregion 0.003 ≤ x ≤ 0.7 and 0.023 ≤ x ≤ 0.6, respe
tively. In the verysmall-x region exist only indire
t, extrapolated results with large un
er-tainties. Small-x 
ontribution to the Bjorken sum rule resulting from su
hindire
t SMC data analysis is equal to 0.015 ± 0.015. Large un
ertaintiesof the small-x experimental results disable unfortunately realisti
 
ompar-ison of the data with the theoreti
al predi
tions. Namely, all our resultsfor ∆IBSR(0, 0.003, 10) in Table II: from 0.004 (for LO, αs = 0.18, �at in-put) to 0.024 (for ln2 x, αs(Q
2), singular x−0.4 input) are in agreement with
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al [3, 4, 9, 18�20℄ and experimental [2, 10, 11℄ investigations give hope thatour knowledge about stru
ture fun
tions at small-x is getting better.5. Summary and 
on
lusionsIn this paper we have estimated the nonsinglet polarised stru
ture fun
-tion gNS
1 at small-x and also 
ontributions from the small-x region to theBjorken sum rule. We have used the numeri
al solutions within uni�eddouble logarithmi
 and DGLAP (ln2 x+LO DGLAP) approximation. Ourpredi
tions for gNS

1 (x,Q2) and ∆IBSR(x1, x2, Q
2) have been found for twoinput parametrisations g0NS

1 (x,Q2
0). These parametrisations des
ribe dif-ferent small-x behaviour of g0NS

1 = g
0(p−n)
1 at Q2

0: gNS
1 ∼ x−λ. The main
on
lusion from our analyses is that the stru
ture fun
tion gNS

1 at small-xand hen
e also the small-x 
ontribution to the BSR strongly depends on theinput parametrisation g0NS
1 . The per
entage value ∆IBSR(0, 10−2, Q2 = 10)of the total BSR ≈ 0.211 varies from 7.6 for the �at Regge input 1 (λ = 0)to almost 19 for the singular one 2 (λ = 0.4). The stru
ture fun
tion gNS

1itself at very small-x = 10−6 and Q2 = 10GeV2 is in a 
ase of x−0.4 inputabout 16 times larger than for the �at one. Double logarithmi
 ln2 x e�e
ts,responsible for the strong growth of the stru
ture fun
tion in the low-xregion, are better visible in a 
ase of nonsingular inputs. In a 
ase of singu-lar input parametrisations g0NS
1 ∼ x−λ (e.g. λ ∼ 0.4) the growth of gNS

1 atsmall-x, implied by the ln2 x terms resummation, is hidden behind the singu-lar behaviour of g0NS
1 , whi
h survives the QCD evolution. Input parametri-sation 2 in
orporates latest theoreti
al investigations, whi
h suggest singularsmall-x shape of polarised stru
ture fun
tions: ∼ x−0.4 for the nonsinglet
ase and even ∼ x−0.8 for the singlet one. Both these values are indire
tly
on�rmed by �tted experimental HERMES data. Basing on these results,similar extrapolations of the spin dependent quark distributions towards thevery low-x region have been assumed in several re
ent input parametrisa-tions ∆q(x,Q2

0). Our results for the small-x 
ontribution 0 ≤ x ≤ 0.003to the BSR are in agreement with the experimental SMC data (for bothinputs). However, it must be emphasised, that SMC data for the low-xregion su�er from large un
ertainties. Using SMC data for gNS
1 at small-x(0.14, 5 · 10−3, 8 × 10−3) we have estimated the exponent λ whi
h governsthe low-x behaviour of gNS

1 . Thus we have obtained λ = 0.20 ÷ 0.38 withlarge un
ertainties. This e�e
tive slope λ 
al
ulated for low-x ∈ [10−6; 10−5]from gNS
1 in our approa
h amounts about 0.2 (for running αs(Q

2/z) andRegge-like �at input).
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al predi
tions for the polarised stru
-ture fun
tion gNS
1 (x,Q2) we have used uni�ed approa
h whi
h 
ontainsthe resummation of the ln2 x and the LO DGLAP Q2 evolution as well.It is be
ause the pure ln2 x approximation generates 
orre
tly the leadingsmall-x behaviour of the polarised stru
ture fun
tion but is ina

urate forlarger values of x. Another 
ru
ial point of the presented analysis is the roleof the running 
oupling e�e
ts. Latest theoreti
al studies suggest introdu
-tion of the running 
oupling of a form αs = αs(Q

2/z) instead of αs = αs(Q
2).This is more justi�ed in the small-x region. We have found that the 
hoi
eof the running 
oupling signi�
antly in�uen
es the results in the low-x re-gion. E.g. the value of gNS

1 (x = 10−6, Q2 = 10) is for �hard� running αs(Q
2)almost 3 times greater than for the �very� running αs(Q

2/z) (in a 
ase ofnonsingular input g0NS
1 ). Proper theoreti
al treatment of the Q2 evolutionof stru
ture fun
tions in the whole (small and large) x region with all essen-tial perturbative leading and even nonleading e�e
ts involved should be asubje
t of further intensive investigations. It is important be
ause of la
k ofthe experimental data from the very small-x region (x < 0.003). Agreementof the theoreti
al predi
tions e.g. for the BSR with real experimental dataat medium and large x may give hope that for the very interesting small-xregion the suitable theoreti
al results are also reliable.We thank Boris Ermolaev for 
onstru
tive remarks and useful 
omments
on
erning the running 
oupling e�e
ts in the small-x region. We are alsograteful to Johannes Blümlein for pointing out the role of nonleading termsin polarised stru
ture fun
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