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LOW-x CONTRIBUTION TO THE BJORKENSUM RULE WITHIN UNIFIED ln

2
x+LO DGLAPAPPROXIMATIONDorota KotlorzDepartment of Physis, Tehnial University of OpoleOzimska 75, 45-370 Opole, Polande-mail: dstrozik�po.opole.pland Andrzej KotlorzDepartment of Mathematis, Tehnial University of OpoleLuboszyka 3, 45-370 Opole, Poland(Reeived May 13, 2004; Revised version reeived September 29, 2004)The small-x ontributions to the Bjorken sum rule within uni�ed piture

ln2 x+LO DGLAP for di�erent input parametrisations gNS
1 (x, Q2

0) are pre-sented. Theoretial preditions for ∫ 0.003

0
gNS
1 (x, Q2 = 10)dx are omparedwith the SMC small-x data. Rough estimation of the slope λ, ontrollingthe small-x behaviour of gNS

1 ∼ x−λ from the obtained results and SMCdata is performed. The ruial role of the running oupling αs = αs(Q
2/z)at low-x is taken into aount.PACS numbers: 12.38.Bx 1. IntrodutionThe results of SIDIS (semi inlusive deep inelasti sattering) experi-ments with polarised beams and targets enable the extration of the spindependent quark and gluon densities. This powerful tool of studying theinternal spin struture of the nuleon allows veri�ation of sum rules. Oneof them is the Bjorken sum rule (BSR) [1℄, whih refers to the �rst momentof the nonsinglet spin dependent struture funtion gNS

1 (x,Q2). Beause ofSUf (2) �avour symmetry, BSR is regarded as exat. Thus all of estimationsof polarised parton distributions should be performed under the assumptionthat the BSR is valid. Determination of the sum rules requires knowledge ofspin dependent struture funtions over the entire region of x ∈ (0; 1). The(2503)



2504 D. Kotlorz, A. Kotlorzexperimentally aessible x range for the spin dependent DIS is however lim-ited (0.7 > x > 0.003 for SMC data [2℄) and therefore one should extrapolateresults to x = 0 and x = 1. The extrapolation to x → 0, where struturefuntions grow strongly, is muh more important than the extrapolation to
x → 1, where struture funtions vanish. Assuming that the BSR is valid,one an determinate from existing experimental data the very small-x ontri-bution (0.003 > x > 0) to the sum rule. Theoretial analysis of the small-xbehaviour of gNS

1 (x,Q2) = gp
1(x,Q2)− gn

1 (x,Q2) together with the broad x-range measurement data allow veri�ation of the shape of the input partondistributions. In this way one an determinate the free parameters in theseinput distributions. Experimental data on�rm the theoretial preditions ofthe singular small-x behaviour of the polarised struture funtions. It is wellknown, that the low-x behaviour of both unpolarised and polarised struturefuntions is ontrolled by the double logarithmi terms (αs ln2 x)n [3,4℄. Forthe unpolarised ase, this singular PQCD behaviour is however overriddenby the leading Regge ontribution [5℄. Therefore, the double logarithmi ap-proximation is very important partiularly for the spin dependent struturefuntion g1. The resummation of the ln2 x terms at low x goes beyond thestandard LO and NLO PQCD evolution of the parton densities. The non-singlet polarised struture funtion gNS
1 , governed by leading αn

s ln2n x terms,is a onvenient funtion both for theoretial analysis (beause of its simpli-ity) and for the experimental BSR tests. The small-x behaviour of gNS
1 ,implied by double logarithmi approximation, has a form x−λ with λ ≈ 0.4.This or similar small-x extrapolation of the spin dependent quark distribu-tions have been assumed in reent input parametrisations e.g. in [6, 7, 13℄.More singular parametrisation of g0NS

1 (x,Q2
0 = 4) ∼ x−0.8 at small-x, basedon the QCD (LO and NLO) analysis of the world data on polarised deepinelasti sattering, has been presented in [14℄. Mentioned above double log-arithmi approah is however inaurate for QCD analysis at medium andlarge values of x. Therefore, the double logarithmi approximation should beompleted by LO DGLAP Q2 evolution. In our theoretial analysis within

ln2 x+LO DGLAP approah we estimate gNS
1 at low-x and hene the small-

x ontributions ∫ x0

0 gNS
1 (x,Q2)dx, ∫ x2

x1
gNS
1 (x,Q2)dx (x0, x1, x2 ≪ 1) to theBSR for di�erent input quark parametrisations: the Regge nonsingular oneand the singular one. We ompare our results with the suitable experimen-tal SMC data for BSR. In the next setion we reall some of the reenttheoretial developments onerning the small-x behaviour of the nonsingletpolarised struture funtion gNS

1 . Setion 3 is devoted to the presentationof the uni�ed ln2 x+LO DGLAP approximation. We also disuss the roleof the running oupling αs. Setion 4 ontains our results for the stru-ture funtion gNS
1 at small-x and for ontributions to the Bjorken sum rule

∆IBSR(x1, x2, Q
2) =

∫ x2

x1
gNS
1 (x,Q2)dx (x1, x2 ≪ 1). We present our pre-



Low-x Contribution to the Bjorken Sum Rule Within Uni�ed . . . 2505ditions using �at (nonsingular) ∼ (1 − x)3 and singular ∼ x−λ at small-xparametrisations of the input struture funtion gNS
1 (x,Q2

0) as well. Weompare our results with the SMC data for the small-x ontribution to theBSR. We roughly estimate the slope λ ontrolling the small-x behaviourof gNS
1 ∼ x−λ from our gNS

1 preditions and from the SMC data, basingon the validity of the BSR. We ompare also results ∆IBSR(x1, x2, Q
2) and

gNS
1 (x = 10−6, Q2 = 10) in di�erent approximations: pure LO DGLAP,pure ln2 x, ln2 x+LO DGLAP and obtained for di�erent αs parametrisa-tions: αs = const, αs = αs(Q

2), αs = αs(Q
2/z). Finally, Setion 5 ontainsa summary of our paper.2. Small-x behaviour of the nonsinglet spin dependentstruture funtion gNS

1
(x, Q2)The small value of the Bjorken parameter x, speifying the longitudinalmomentum fration of a hadron arried by a parton, orresponds by de�ni-tion to the Regge limit (x → 0). Therefore the small-x behaviour of struturefuntions an be desribed using the Regge pole exhange model [5℄. In thismodel the spin dependent nonsinglet struture funtion gNS

1 = gp
1 − gn

1 inthe low-x region behave as:
gNS
1 (x,Q2) = γ(Q2)x−αA1

(0) , (2.1)where αA1
(0) is the interept of the A1 Regge pole trajetory, orrespondingto the axial vetor meson and lies in the limits

−0.5 ≤ αA1
(0) ≤ 0 . (2.2)This low value of the interept (2.2) implies the nonsingular, �at behaviourof the gNS

1 funtion at small-x. The nonperturbative ontribution of the A1Regge pole is, however, overridden by the perturbative QCD ontributions,partiularly by resummation of double logarithmi terms ln2 x. In this waythe Regge behaviour of the spin dependent struture funtions is unstableagainst the perturbative QCD expetations, whih at low-x generate moresingular x dependene than that implied by (2.1)�(2.2). Nowadays it iswell known that the small-x behaviour of the nonsinglet polarised struturefuntion gNS
1 is governed by the double logarithmi terms i.e. (αs ln2 x)n[3, 4℄. E�ets of these ln2 x approah go beyond the standard LO and evenNLO Q2 evolution of the spin dependent parton distributions and signif-iantly modify the Regge pole model expetations for the struture fun-tions. From the reent theoretial analyses of the low-x behaviour of the

gNS
1 funtion [9℄ one an �nd that resummation of the double logarithmiterms (αs ln2 x)n leads to the singular form:

gNS
1 (x,Q2) ∼ x−λ (2.3)



2506 D. Kotlorz, A. Kotlorzwith λ ≈ 0.4. This behaviour of gNS
1 is well on�rmed by experimental data,after a low-x extrapolation beyond the measured region [2, 10, 11℄.3. Unintegrated struture funtion fNS(x, Q2)within double logarithmi ln2 x and uni�ed

ln2 x+LO DGLAP approximationsPerturbative QCD predits a strong inrease of the struture funtion
gNS
1 (x,Q2) with the dereasing parameter x [3, 4℄ what is on�rmed byexperimental data [2, 10, 11℄. This growth is implied by resummation of

ln2 x terms in the perturbative expansion. The double logarithmi e�etsome from the ladder diagram with quark and gluon exhanges along thehain. In this approximation the unintegrated nonsinglet struture funtion
fNS(x,Q2) satis�es the following integral evolution equation [3℄:

fNS(x,Q2) = fNS
0 (x) +

1
∫

x

dz

z

Q2/z
∫

Q2

0

dk′2

k′2
ᾱsf

NS
(x

z
, k′2

)

, (3.1)where
ᾱs =

2αs

3π
(3.2)and fNS

0 (x) is a nonperturbative ontribution whih has a form:
fNS
0 (x) = ᾱs

1
∫

x

dz

z
g0NS
1 (z) , (3.3)

g0NS
1 (x) is an input parametrisation

g0NS
1 (x) = gNS

1

(

x,Q2 = Q2
0

)

. (3.4)The unintegrated distribution fNS(x,Q2) is related to the gNS
1 (x,Q2) via

fNS(x,Q2) =
∂gNS

1 (x,Q2)

∂ ln Q2
. (3.5)Eq. (3.1) generates the leading small-x behaviour of fNS and hene gNS

1 ,but it is inaurate in desribing the total Q2 evolution. For larger values of
x, whih are involved in the evolution equation (3.1) via ∫ 1

x dz one shouldtake into aount Q2 DGLAP evolution with omplete splitting funtion
Pqq(z). Therefore, the double logarithmi approah should be ompleted



Low-x Contribution to the Bjorken Sum Rule Within Uni�ed . . . 2507by LO DGLAP Q2 evolution. Uni�ed desription of the polarised stru-ture funtion fNS(x,Q2) inorporating DGLAP evolution and the doublelogarithmi ln2 x e�ets at low-x leads to the following equation for theunintegrated distribution fNS(x,Q2) [18℄:
fNS(x,Q2) = fNS

0 (x) +

1
∫

x

dz

z

Q2/z
∫

Q2

dk′2

k′2
ᾱsf

(x

z
, k′2

)

+

Q2

∫

Q2

0

dk′2

k′2

1
∫

x

dz

z
ᾱs

(1 + z2)f(x/z, k′2) − 2zf(x, k′2)

1 − z

+ᾱs

Q2

∫

Q2

0

dk′2

k′2

(

3

2
+ 2 ln(1 − x)

)

f(x, k′2) , (3.6)where
fNS
0 (x) = ᾱs

[ 1
∫

x

dz

z

(1 + z2)g
(0)
1 (x/z) − 2zg

(0)
1 (x)

1 − z

+

(

3

2
+ 2 ln(1 − x)

)

g
(0)
1 (x)

]

. (3.7)The unintegrated distribution fNS in the equation (3.6) is related to the
gNS
1 (x,Q2) via

gNS
1 (x,Q2) = g0NS

1 (x) +

Q2(1/x−1)
∫

Q2

0

dk2

k2
f

(

x

(

1 +
k2

Q2

)

, k2

)

. (3.8)An important role in solutions of (3.1) and (3.6) plays the oupling αs, whihan be parametrised in di�erent way. The simplest hoie of αs is a onstane(nonrunning) oupling:
αs = const. (3.9)This simpli�ation allows the analytial analysis of the suitable evolutionequations for trunated and full moments of the unintegrated struture fun-tion fNS(x,Q2) within ln2 x approximation [3, 8℄. The introdution of therunning oupling e�ets implies αs in (3.1) and (3.6) of a form

αs = αs(Q
2) . (3.10)



2508 D. Kotlorz, A. KotlorzIt has been however lately proved [9℄, that dealing with a very small-xregion one should use a presription for the running oupling in a form
αs = αs(Q

2/z). This parametrisation is theoretially more justi�ed than
αs = αs(Q

2). Namely, the substitution αs = αs(Q
2) is valid only for hardQCD proesses, when x ∼ 1. However, the evolution of DIS struture fun-tions at small-x needs �more running� αs:

αs = αs

(

Q2

z

)

. (3.11)Our preditions for gNS
1 and ∆IBRS(x1, x2, Q

2) for di�erent forms of αs willbe presented in the forthoming setion.4. Preditions for gNS

1
and small-x ontribution to the BSROur purpose is to alulate the nonsinglet polarised struture funtion

gNS
1 (x,Q2) and hene also the ontribution to the Bjorken sum rule in thesmall-x region. The BSR is a fundamental rule and must be hold as a rig-orous predition of QCD in the limit of the in�nite momentum transfer Q2:

IBSR ≡ Γ
p
1 − Γ

n
1 =

1
∫

0

dxgNS
1 (x,Q2) =

1

6

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

, (4.1)where
Γ

p
1 ≡

1
∫

0

dxgp
1(x,Q2) , (4.2)

Γ
n
1 ≡

1
∫

0

dxgn
1 (x,Q2) , (4.3)and | gA

gV
| is the neutron β-deay onstant

∣

∣

∣

∣

gA

gV

∣

∣

∣

∣

= F + D = 1.2670 . (4.4)Hene the BSR for the �avour symmetri sea quarks senario (∆ū = ∆d̄)reads:
IBSR(Q2) ≡

1
∫

0

dxgNS
1 (x,Q2) ≈ 0.211 . (4.5)



Low-x Contribution to the Bjorken Sum Rule Within Uni�ed . . . 2509The small-x ontribution to the BSR has a form:
∆IBSR(x1, x2, Q

2) ≡

x2
∫

x1

dxgNS
1 (x,Q2) . (4.6)Below we present our results for gNS

1 and ∆IBSR at small-x obtained fordi�erent αs sets (3.9)-(3.11) within ombined ln2 x+LO DGLAP approah.We ompare these preditions with pure LO DGLAP and pure ln2 x resultsas well. We solve numerially the evolution equation (3.6) in a ase of uni�ed
ln2 x+LO DGLAP piture and in a ase of pure LO DGLAP, when one getsthe following equation:

fNS(x,Q2) = fNS
0 (x)

+

Q2

∫

Q2

0

dk′2

k′2

1
∫

x

dz

z
ᾱs

(1 + z2)f(x/z, k′2) − 2zf(x, k′2)

1 − z

+ᾱs

Q2

∫

Q2

0

dk′2

k′2

(

3

2
+ 2 ln(1 − x)

)

f(x, k′2) . (4.7)In order to have omparable results, for pure ln2 x analysis we also use nu-merial solutions of (3.1). Our preditions have been found for two di�erentinput parametrisations g0NS
1 (x), hosen at Q2

0 = 1GeV2:
1. g0NS

1 (x) = 0.8447(1 − x)3 , (4.8)
2. g0NS

1 (x) = 0.290x−0.4(1 − x)2.5 . (4.9)Input 1 is the simple Regge form, onstane as x → 0; input 2 is a �toy�model, in whih we have used the latest theoretial results onerning thesmall-x behaviour x−0.4 of the nonsinglet funtion gNS
1 [9℄. In Fig. 1 we plotinputs g0NS

1 (x) (4.8)�(4.9) in the low-x region [10−5 ÷ 10−2] together with
gNS
1 (x,Q2) results for Q2 = 10GeV2 within ln2 x+LO DGLAP approahwith �very running� oupling αs = αs(Q

2/z). Fig. 2 ontains omparison ofthree approximations: pure ln2 x, pure LO DGLAP and uni�ed ln2 x+LODGLAP. We present struture funtion gNS
1 (x,Q2 = 10) for αs = αs(Q

2/z).Finally, Fig. 3 shows the gNS
1 (x,Q2 = 10) results within ombined ln2 x+LODGLAP approah for di�erent parametrisations of αs: (3.9)�(3.11). In eah�gure we present the solutions for both input parametrisations (4.8)�(4.9).Numbers at eah plot orrespond to the suitable inputs 1 or 2. In Table I
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Fig. 1. Input parametrisations g0NS
1 (4.8)�(4.9) (dashed) and gNS

1 (x, Q2 = 10)(solid) for these inputs within ln2 x+LO DGLAP approah and for running
αs(Q

2/z).
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Fig. 2. The small-x preditions for gNS
1 (x, Q2 = 10) within di�erent approxima-tions: LO DGLAP (dotted), ln2 x (dashed), uni�ed ln2 x+LO DGLAP (solid).Plots for both inputs (4.8)�(4.9) and running αs(Q

2/z).



Low-x Contribution to the Bjorken Sum Rule Within Uni�ed . . . 2511

 0

 10

 20

 30

 40

 50

 60

 1e-05  0.0001  0.001  0.01

g 1
N

S

x

1

2

Fig. 3. The small-x preditions for gNS
1 (x, Q2 = 10) within uni�ed ln2 x+LODGLAP approah for di�erent αs: αs = 0.18 (dotted), αs(Q

2) (dashed), αs(Q
2/z)(solid). Plots for both inputs (4.8)�(4.9).we present our results for the low-x ontributions to the BSR (4.6) togetherwith ε(x1, x2), whih is de�ned by the following expression:

x2
∫

x1

dxgNS
1 (x,Q2) = [1 + ε(x1, x2)]

x2
∫

x1

dxg0NS
1 (x) . (4.10)In the last olumn we give the perentage value p[%]:

p =
∆IBSR(x1, x2, Q

2)

IBSR(Q2)
100% . (4.11)In Table II we ollet results for all possible ombinations of approxima-tions and αs sets: LO DGLAP and αs = const = 0.18, LO DGLAPand αs = αs(Q

2), . . . , ln2 x and αs = αs(Q
2/z) et. We present here

∆IBSR(0, 3 · 10−3, 10), gNS
1 (x = 10−6, Q2 = 10). In the last olumn thee�etive slope λ (2.3) at Q2 = 10GeV2 and small-x [10−6; 10−5] is shown.We use again both inputs g0NS

1 (x). From these results one an read thatthe low-x gNS
1 (x,Q2) values and hene the low-x ontributions to the BSRstrongly depends on the input parametrisation g0NS

1 . For the �at Regge form(4.8) ∆IBSR(0, 10−2, 10) is equal to around 7.6% of the total IBSR = 0.211,while for the singular input (4.9) 19.0%. The struture funtion gNS
1 itself at



2512 D. Kotlorz, A. Kotlorz TABLE IThe small-x ontribution to the BSR (4.6) for di�erent input parametrisations(4.8)�(4.9) within ln2 x+LO DGLAP approximation with running αs(Q
2/z).

x1 x2 ∆IBSR(x1, x2, 10) ε(x1, x2) p%(1) 0.006108 1.4213 2.890 3 × 10−3 (2) 0.020668 0.4097 9.80(1) 0.016050 0.9289 7.610 10−2 (2) 0.040000 0.3336 18.96(1) 0.002457 1.9422 1.16
10−5 10−3 (2) 0.010450 0.4574 4.95(1) 0.015672 0.9028 7.43
10−4 10−2 (2) 0.037380 0.3214 17.72 TABLE II

∆IBSR(0, 0.003, 10), gNS
1 (x = 10−6, 10) and λ for both input parametrisations(4.8)�(4.9) within di�erent approahes and αs.

g0NS
1 (x) approah αs ∆IBSR(0, 0.003) gNS

1 λonst=0.18 0.003879 2.07 0.06LO αs(Q
2) 0.005742 4.31 0.11

αs(Q
2/z) 0.004534 2.17 0.04onst=0.18 0.005614 10.2 0.251.Regge ln2 x αs(Q
2) 0.008855 23.9 0.31

αs(Q
2/z) 0.007043 9.93 0.20onst=0.18 0.005440 9.75 0.25

ln2 x+LO αs(Q
2) 0.008281 21.8 0.30

αs(Q
2/z) 0.006108 7.36 0.18onst=0.18 0.017283 88.6 0.40LO αs(Q
2) 0.020543 110 0.40

αs(Q
2/z) 0.019184 98.0 0.40onst=0.18 0.019026 113 0.422.�Toy� ln2 x αs(Q
2) 0.023641 161 0.44

αs(Q
2/z) 0.022175 130 0.41onst=0.18 0.018756 111 0.42

ln2 x+LO αs(Q
2) 0.022712 152 0.43

αs(Q
2/z) 0.020668 117 0.41



Low-x Contribution to the Bjorken Sum Rule Within Uni�ed . . . 2513very small-x = 10−6 and Q2 = 10GeV2 is in a ase of x−0.4 input about 16times larger than for the �at one. The value of ε(x1, x2), de�ned in (4.10)varies from 0.9 ÷ 1.9 for the Regge input 1 to 0.3 ÷ 0.5 for the singular in-put 2. The e�etive slope λ (2.3) desribing the small-x behaviour of thestruture funtion gNS
1 remains unhanged in a ase of the singular input.Namely, the x−0.4 shape of the input g0NS

1 (x) implies again the same low-xbehaviour of the gNS
1 (x,Q2), independently of the Q2-evolution approah.Quite di�erent situation ours for the �at inputs e.g. the Regge one (4.8),where the singular small-x behaviour of the gNS

1 (x,Q2) is totally generatedby the QCD evolution with ln2 x terms. Pure double logarithmi ln2 x ap-proah or ombined ln2 x+LO DGLAP approximation give the value of λfrom 0.2 to 0.3. Only in the pure LO DGLAP analysis we obtain λ ≤ 0.1.It means that the double logarithmi ln2 x e�ets are better visible ina ase of nonsingular inputs. In a ase of singular input parametrisations
g0NS
1 ∼ x−λ (e.g. λ ∼ 0.4) the growth of gNS

1 at small-x, implied by the
ln2 x terms resummation, is hidden behind the singular behaviour of g0NS

1 ,whih survives the QCD evolution. Comparing plots from Fig. 2 and resultsfrom the last olumn in Table II, one an read that the ln2 x resummationgives steep growth of the gNS
1 in the small-x region. It is well visible in aase of the Regge input, where gNS

1 (x,Q2) within ln2 x or ln2 x+LO DGLAPapproahes strongly dominate over that, obtained in pure LO DGLAP ap-proximation. Double logarithmi ontributions of the type (αs ln2 x)n, whihlead to the strong growth of struture funtions at low-x are not inludedin the DGLAP evolution (LO or NLO). Di�erenes between pure ln2 x and
ln2 x+LO DGLAP results within the same set of αs are not very signi�ant.However, pure ln2 x approximation overestimate the value of gNS

1 and shouldbe aompanied by the LO DGLAP evolution. This is beause in the larger-
x region, involved in the evolution equation for fNS (3.1), pure ln2 x analysisis inadequate. The ruial point in QCD analysis is a treatment of the ou-pling αs. The problem of αs parametrisations in high energy proesses hasbeen widely disussed in [9℄. Fixed, onstane αs is very onvenient in manyphysial problems. Thus, use of the �xed αs simpli�es the evolution equa-tions for struture funtions and enables easy analytial solutions. However,an introdution of the �xed oupling needs a reasonable sale and this issomehow �arti�ial�. Namely, the sale for �xing of αs is not well de�ned. Inperturbative QCD one should take into aount running αs e�ets. In thisway, usually, the presription for the running oupling reads αs = αs(Q

2).This onstrution is however aurate only for hard QCD proesses, where
x ∼ 1. On the other hand, many interesting QCD proesses (e.g. DIS atlow-x) are Regge-like. For these ases, with small-x involved, �hard� running
αs(Q

2) is inorret. Instead of αs(Q
2) one has to use a modi�ed parametri-sation of αs:
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αs = αs(k

2
⊥/β) , (4.12)where k2

⊥
is the transverse momentum of the ladder parton and β is thestandard Sudakov parameter. In our approah this presription reads as(3.11). From Fig. 3 and Table II we are able to ompare the preditionsfor gNS

1 at small-x for three αs parametrisations (3.9)�(3.11). The resultsfor αs = const = 0.18 and αs = αs(Q
2/z) (within the same approah LOor ln2 x et. and with the same input g0NS

1 ) are similar but signi�antlysmaller than in a ase of running αs = αs(Q
2). Within ln2 x+LO DGLAPapproximation with �at input for �very� running αs(Q

2/z) (x < z < 1), viaweaker oupling (αs(Q
2/z) < αs(Q

2)), the value of gNS
1 (x = 10−6, Q2 = 10)is almost 3 times smaller than for the �hard� running αs(Q

2). It is a goodlesson how hoie of the running oupling in�uenes the results in the low-xregion. From the experimental SMC data [10℄ the low-x ontribution to theBSR at Q2 = 10GeV2 is equal to
6

0.003
∫

0

gNS
1 (x,Q2 = 10)dx = 0.09 ± 0.09 . (4.13)The above result has been obtained via an extrapolation of gNS

1 to the unmea-sured region of x: x → 0. Forms of the polarised quark distributions havebeen �tted to SMC semi-inlusive and inlusive asymmetries. In the �ttingdi�erent parametrisations of the polarised quark distributions [15, 16℄ havebeen used. The extrapolation of gNS
1 to very small-x region depends stronglyon the assumption (input parametrisation) made for this extrapolation. Inthis way present experimental data give only indiretly the estimation ofthe small-x ontribution to the moments of parton distributions. The result(4.13) with a large statistial error and strongly �t-dependent annot be a�nal, ruial value. Nevertheless we would like to estimate the exponent λin the low-x behaviour of gNS

1 ∼ x−λ using the above SMC result for thesmall-x ontribution to the BSR. Assuming the validity of the BSR (4.5) atlarge Q2 = 10GeV2, one an �nd:
x0
∫

0

dxgNS
1 (x,Q2) = IBSR(Q2) −

1
∫

x0

dxgNS
1 (x,Q2) , (4.14)where x0 is a very small value of the Bjorken variable. Taking into a-ount the small-x dependene of gNS

1 ∼ x−λ and the experimental data for
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∆IBSR(0, 0.003, 10) one an obtain:

C

0.003
∫

0

x−λdx = 0.015 ± 0.015 . (4.15)The onstant C an be eliminated from a low-x SMC data [10℄:
Cx−λ = gn−p

1 (x, 10) . (4.16)Taking di�erent small-x SMC data, we have found λ = 0.37 (x = 0.014);
λ = 0.20 (x = 0.008); λ = 0.38 (x = 0.005).It seems nowadays that the most probably small-x behaviour of gNS

1 is
gNS
1 (x,Q2) ∼ x−0.4 . (4.17)This results from the latest theoretial analyses [9℄, whih take into aountthe running oupling e�ets at low-x. It has been shown in [9℄ that theinterept λ ontrolling the power-like small-x behaviour of gNS

1 depends onthe hoie of the parameters nf (�avour number), Q2
0 (input sale) and

ΛQCD. The maximal value of λ, whih gives the maximal ontribution tothe struture funtion gNS
1 in the perturbative QCD, inorporating ln2 xe�ets, is equal to 0.4. The same value of λ = 0.4 was obtained in thesemi-phenomenologial estimation from BSR for lower Q2 [17℄. The po-larised (nonsinglet and singlet as well) struture funtions are presently theobjets of intensive theoretial investigations. Maybe the ruial point forunderstanding of the small-x behaviour of struture funtions is an analy-sis beyond the leading order αn

s ln2n x. The resummation of α
(n+1)
s ln2n xterms is studied in [20℄. The orretions to gNS

1 due to the nonleading termsare on the level of 1% in the aessible at present experimentally x region,but an be larger (up to about 15%) at very small-x ∼ 10−0.5. In thesituation, when the present experimental data do not over the whole re-gion of x ∈ (0; 1), theoretial preditions for e.g. struture funtions in theunmeasured low-x region annot be diretly veri�ed. Latest experimentalSMC [2, 10℄ and HERMES [11℄ data provide results for the BSR from theregion 0.003 ≤ x ≤ 0.7 and 0.023 ≤ x ≤ 0.6, respetively. In the verysmall-x region exist only indiret, extrapolated results with large uner-tainties. Small-x ontribution to the Bjorken sum rule resulting from suhindiret SMC data analysis is equal to 0.015 ± 0.015. Large unertaintiesof the small-x experimental results disable unfortunately realisti ompar-ison of the data with the theoretial preditions. Namely, all our resultsfor ∆IBSR(0, 0.003, 10) in Table II: from 0.004 (for LO, αs = 0.18, �at in-put) to 0.024 (for ln2 x, αs(Q
2), singular x−0.4 input) are in agreement with



2516 D. Kotlorz, A. KotlorzSMC data (within the total error). Nevertheless, the progress in theoreti-al [3, 4, 9, 18�20℄ and experimental [2, 10, 11℄ investigations give hope thatour knowledge about struture funtions at small-x is getting better.5. Summary and onlusionsIn this paper we have estimated the nonsinglet polarised struture fun-tion gNS
1 at small-x and also ontributions from the small-x region to theBjorken sum rule. We have used the numerial solutions within uni�eddouble logarithmi and DGLAP (ln2 x+LO DGLAP) approximation. Ourpreditions for gNS

1 (x,Q2) and ∆IBSR(x1, x2, Q
2) have been found for twoinput parametrisations g0NS

1 (x,Q2
0). These parametrisations desribe dif-ferent small-x behaviour of g0NS

1 = g
0(p−n)
1 at Q2

0: gNS
1 ∼ x−λ. The mainonlusion from our analyses is that the struture funtion gNS

1 at small-xand hene also the small-x ontribution to the BSR strongly depends on theinput parametrisation g0NS
1 . The perentage value ∆IBSR(0, 10−2, Q2 = 10)of the total BSR ≈ 0.211 varies from 7.6 for the �at Regge input 1 (λ = 0)to almost 19 for the singular one 2 (λ = 0.4). The struture funtion gNS

1itself at very small-x = 10−6 and Q2 = 10GeV2 is in a ase of x−0.4 inputabout 16 times larger than for the �at one. Double logarithmi ln2 x e�ets,responsible for the strong growth of the struture funtion in the low-xregion, are better visible in a ase of nonsingular inputs. In a ase of singu-lar input parametrisations g0NS
1 ∼ x−λ (e.g. λ ∼ 0.4) the growth of gNS

1 atsmall-x, implied by the ln2 x terms resummation, is hidden behind the singu-lar behaviour of g0NS
1 , whih survives the QCD evolution. Input parametri-sation 2 inorporates latest theoretial investigations, whih suggest singularsmall-x shape of polarised struture funtions: ∼ x−0.4 for the nonsingletase and even ∼ x−0.8 for the singlet one. Both these values are indiretlyon�rmed by �tted experimental HERMES data. Basing on these results,similar extrapolations of the spin dependent quark distributions towards thevery low-x region have been assumed in several reent input parametrisa-tions ∆q(x,Q2

0). Our results for the small-x ontribution 0 ≤ x ≤ 0.003to the BSR are in agreement with the experimental SMC data (for bothinputs). However, it must be emphasised, that SMC data for the low-xregion su�er from large unertainties. Using SMC data for gNS
1 at small-x(0.14, 5 · 10−3, 8 × 10−3) we have estimated the exponent λ whih governsthe low-x behaviour of gNS

1 . Thus we have obtained λ = 0.20 ÷ 0.38 withlarge unertainties. This e�etive slope λ alulated for low-x ∈ [10−6; 10−5]from gNS
1 in our approah amounts about 0.2 (for running αs(Q

2/z) andRegge-like �at input).
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1 (x,Q2) we have used uni�ed approah whih ontainsthe resummation of the ln2 x and the LO DGLAP Q2 evolution as well.It is beause the pure ln2 x approximation generates orretly the leadingsmall-x behaviour of the polarised struture funtion but is inaurate forlarger values of x. Another ruial point of the presented analysis is the roleof the running oupling e�ets. Latest theoretial studies suggest introdu-tion of the running oupling of a form αs = αs(Q

2/z) instead of αs = αs(Q
2).This is more justi�ed in the small-x region. We have found that the hoieof the running oupling signi�antly in�uenes the results in the low-x re-gion. E.g. the value of gNS

1 (x = 10−6, Q2 = 10) is for �hard� running αs(Q
2)almost 3 times greater than for the �very� running αs(Q

2/z) (in a ase ofnonsingular input g0NS
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