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We present a subtraction scheme for eliminating the ultraviolet, soft,
and collinear divergences in the numerical calculation of an arbitrary one-
loop QCD amplitude with an arbitrary number of external legs. The sub-
tractions consist of local counter terms in the space of the four-dimensional
loop momentum.
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1. Introduction

Tests of the Standard Model or one of its extensions frequently involve
high momentum transfer processes in which one is looking for effects from
new interactions or particles. In most cases, at least some of the particles
interact via the strong interactions. Then, in order to obtain reasonably
accurate predictions for the expected cross sections, it is necessary to calcu-
late the cross section at next-to-leading order (NLO) in quantum chromo-
dynamics (QCD). Sometimes this is possible using the currently available
theoretical tools, sometimes not. This paper concerns a method for po-
tentially extending the range of problems for which a next-to-leading order
calculation is possible.
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An NLO calculation necessarily involves a virtual loop integration. That
is, one has an integral

∫
ddl

(2π)d
Γ̃ (k1, . . . , kn; l)

over a loop momentum l in d = 4−2ε dimensions, with momenta k1, · · · , kn

leaving the graph at vertices around the loop. Of course, one wants d = 4
in the end, but there can be infrared divergences, which are temporarily
regulated by working with d 6= 4. (There can also be ultraviolet divergences,
but we ignore these for this initial discussion.) The infrared divergences arise
because we work with a gauge theory containing massless particles. This
leads to poles of the form 1/ε2 and 1/ε in the integral.

The traditional method of dealing with the 1-loop integrals initiated in
the context of collider physics cross sections by Ellis, Ross, and Terrano [1],
is to calculate the integrals analytically. The result is expressed in the form
of the residues of the 1/ε2 and 1/ε poles and a remaining finite piece, which
contains the most important physical information. There are several one-
loop amplitude have been calculated up to n = 5 [1] and there are also
calculations available with massive particles, such as massive quarks.

One wonders if we could not get beyond n = 5 by simply performing the
virtual loop integrals numerically. Of course, one is not going to perform
integrals in d = 4−2ε dimensions numerically. Instead, one would have to do
something about the infrared divergences first, then take d = 4. Something
like this was tried in Ref. [2] in the case of e+ + e− → 3 jets .

In this paper, we present a different proposal, one that is very close to the
traditional method. One would subtract from the integrand certain simple
integrands that match the complete integrand in one of the soft or collinear
limits that gives a divergence. Then the difference would be integrable in
d = 4 dimensions and this integral would be performed numerically. The
integral of each subtraction term would be added back, but this time with
the integration performed analytically. This gives the same 1/ε2 and 1/ε
poles that one has in an analytic calculation, ready for cancellation as usual.

There has been other recent work aimed at automating the calculation
of loop integrals in such a way that those integrals that are not amenable
to analytic evaluation could be evaluated numerically [3]. This approach
makes use of the Feynman parameter representation of the diagrams.

This paper provides only a short review of our subtraction method. The
details of the scheme can be found in Ref. [4].
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2. Matrix elements at one-loop level

2.1. One-loop graphs

As discussed in the introduction of this section, we wish to calculate the
one-loop, m-parton matrix element graph by graph using numerical integra-
tion. In this subsection, we define some tools for this calculation. We use the
vector notation in color and spin space of the previous subsection to write
the one-loop matrix element as a sum of the one-loop Feynman graphs,

∣∣M(p1, . . . , pm)
〉

=
∑

graphs G

∣∣G(G; p1, . . . , pm)
〉
. (1)

The |G〉 vector is related to the one-loop, amputated Green function.
The graph G contains a one-loop, one-particle-irreducible subgraph Γ

with n = n(G) external lines and n internal lines around the loop. Let us
label momenta of the internal lines l1, l2, . . . ln. We integrate over the loop
momentum. One can consider lk for some specific index k to be the indepen-
dent loop momentum, which we call l. In the actual numerical integration,
one chooses a definition for l, then chooses a random value for l thus defined,
and then computes the li. Thus our notation is

∣∣G(G; p1, . . . , pm)
〉

=

∫
ddl

(2π)d
∣∣G̃(G; {l}; p1, . . . , pm)

〉
, (2)

where G̃ denotes the integrand for graph G and {l} is a shorthand for
l1, . . . , ln.

In certain graphs, the loop integration could be infrared and/or ultra-
violet divergent. To handle the infrared divergences, we introduce simple
counter terms that we subtract from the integrand for the numerical inte-
gration and then add back analytically. We discuss this in Sections 3, 4, 5.

2.2. S-matrix

The S-matrix can be constructed from the amputated Green functions
by means of the LSZ reduction formula

∣∣Mfull(p1, . . . , pm)
〉

=

(
∏

i

√
ri

)
∣∣M(T )

full(p1, . . . , pm)
〉
. (3)

Here we consider both sides of the equation to be vectors in color and spin
space. The subscripts “full” indicate that this formula applies to the matrix
element summed over orders of perturbation theory. The T (for “truncated”)
superscript on M on the right indicates that the matrix element is calculated
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by multiplying amputated Green functions by the appropriate Dirac spinors
and polarization vectors. The factors

√
ri, one for each external particle,

are of two types, one for gluons and one for quarks and antiquarks. They
are defined from the residues of the poles of the corresponding renormalized
propagators at p2 = 0.

The constants ri have perturbative expansions

ri = 1 + r
(1)
i + · · · , (4)

where r
(1)
i ∝ α1

s . Thus, including terms up to one-loop order,
∣∣Mfull(p1, . . . , pm)

〉
=
∣∣Mtree(p1, . . . , pm)

〉
+
∣∣M(T,1)(p1, . . . , pm)

〉

+
∑

i

1

2
r
(1)
i

∣∣Mtree(p1, . . . , pm)
〉
. (5)

Here
∣∣M(T,1)

〉
is the one-loop contribution to

∣∣M(T )
〉
. Elsewhere in this

paper we denote
∣∣M(T,1)

〉
simply as

∣∣M
〉
.

Now we need to evaluate the residue constants r
(1)
i and we can obtain

the results from the one-loop expressions of the renormalized propagators.
For the quark lines we have

r(1)
q = CF

αs

4π

1

ε

(4π)ε

Γ (1 − ε)
(6)

and for the gluons

r(1)
g = −

[
5

3
CA − 4

3
TR nf

]
αs

4π

1

ε

(4π)ε

Γ (1 − ε)
, (7)

where TR = 1/2 and nf is the number of quark flavors.

3. Renormalization

The ultraviolet divergences are to be eliminated according to the MS
renormalization prescription. However, since we calculate loop integrals by
numerical integration, the implementation of the MS prescription needs some
analysis. This is the subject of the present section.

Consider an ultraviolet divergent one-loop graph with n propagators in
the loop. Here n could be 2, 3, or 4. Denote the momenta leaving Γ by
k1, . . . , kn. In our application, Γ will be a subgraph of G and the momenta
k1, . . . , kn will be linear combinations of p1, . . . , pm. The graph Γ has the
generic form

Γ (k1, . . . , kn) =

∫
ddl

(2π)d
Γ̃ (k1, . . . , kn; l) . (8)
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The functions Γ and Γ̃ may carry spinor and vector indices as well as color
indices. Our notation here suppresses these indices. We seek to calculate
the renormalized version of Γ . With MS renormalization, this is

[Γ ]R = lim
ε→0

{
Γ − [Γ ]pole

}
, (9)

where

[Γ ]pole =
1

ε

(4π)ε

Γ (1 − ε)
× lim

ε→0
[εΓ (ε)] . (10)

Here we are to choose the external momenta so that Γ does not have infrared
divergences. For instance, all of the external momenta can be space-like.
Then the only pole present in Γ (ε) in Eq. (10) is the ultraviolet pole that is
to be removed by renormalization.

Since we are performing integrals numerically, we need to represent
[Γ ]pole as an integral

[Γ ]pole =

∫
ddl

(2π)d
Γ̃UV(k1, . . . , kn; l) , (11)

in such a way that [Γ ]R can be calculated as

[Γ ]R =

∫
d4l

(2π)4
lim
ε→0

{
Γ̃ (k1, . . . , kn; l) − Γ̃UV(k1, . . . , kn; l)

}
. (12)

This last step is justified if the integrands Γ̃ and Γ̃UV match up to an l−5

remainder for l → ∞ at fixed ε and if Γ̃UV if free of infrared singularities.

There is more than one possibility for Γ̃UV. However, there is a simple
prescription that works in all cases save one, the one-loop gluon self-energy,
which has a quadratic divergence and needs a more elaborate treatment.

Having a renormalization counterterm for a divergent subgraph Γ of
a graph G the renormalized graph can be written by

∫
ddl

(2π)d

{∣∣G̃(G; {l}; p1, . . . , pm)
〉
−
∣∣R̃(G; {l}; p1, . . . , pm)

〉}
, (13)

where
∣∣R̃(G; {l}; {p}m)

〉
is obtained from G by substituting Γ̃UV for Γ̃ . In

the case that graph G is ultraviolet finite, we define
∣∣R̃(G; {l}; p1, . . . , pm)

〉

to be zero. We will use this notation in subsequent sections.
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4. Soft singularities

The integrand of a one-loop graph becomes singular when the momentum
of an internal gluon loop line that connects to two external lines becomes soft.
Consider a one-loop graph G with external momenta p1, . . . pm directed out
of the graph. Choose two of the external lines, with labels i and j. If the lines
i and j connect via three-point vertices to the two ends of a gluon propagator
in the loop, then we will say that {i, j} is in the soft indices class for graph G,

{i, j} ∈ IS(G). In this case the integrand
∣∣G̃(G; {l}; p1, . . . , pm)

〉
is singular

in the limit that the momentum of the gluon propagator that connects lines
i and j, call it lk, tends to zero. The loop integration is logarithmically
divergent at this point.

The denominators that become singular in the soft limit lk → 0 are l2k
for the soft gluon propagator, (lk + pi)

2 for the immediately preceding prop-
agator in the loop and (lk − pj)

2 for the immediately following propagator1.
It is useful to define a soft limit function

∣∣fS
ij(G; {p}m)

〉
= lim

lk→0
l2k(lk + pi)

2(lk − pj)
2
∣∣G̃(G; l1, . . . , ln; {p}m)

〉
. (14)

With this definition,
∣∣fS

ij

〉
vanishes if {i, j} /∈ IS(G). We can then define

a soft subtraction for the integrand G̃ as

∣∣S̃ij(G; lk ; {p}m)
〉

=

∣∣fS
ij(G; {p}m)

〉

(l2k + i0)((lk + pi)2 + i0)((lk − pj)2 + i0)
. (15)

The integral for the original graph minus this subtraction is

∫
ddl

(2π)d

{∣∣G̃(G; {l}; {p}m)
〉
−
∣∣S̃ij(G; lk; {p}m)

〉}
. (16)

Having subtracted the integral of
∣∣S̃ij

〉
, we should add it back. For this

purpose, we need to study the structure of the soft subtraction in more
detail. The soft limit function has a rather simple form

∣∣fS
ij(G; {p}m)

〉
= −ig2

sµ
2ε4pi ·pjT i · T j H ij

∣∣G(Gij(G); {p}m)
〉
, (17)

where the graph Gij(G) represents the tree level amputated graph obtained
from graph G by omitting the three singular propagators and the vertices
where they join the external lines i and j. The operator T i · T j acts in the
color space of the i, j external lines and it represents the color connection
between them. The H ij is an operator in the spin space of the partons i and

1 Here we choose the positive direction around the loop to be from line i to line j.
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j and does not depend on the loop momentum. The form of H ij depends on
whether partons i and j are quarks (or equivalently antiquarks) or gluons.

With this result, the soft subtraction is

∣∣S̃ij(G; lk; {p}m)
〉

= Eij(lk, pi, pj)T i · T j H ij

∣∣G(Gij(G); {p}m)
〉
, (18)

where the Eij(lk, pi, pj) is the familiar eikonal factor [5],

Eij(lk, pi, pj) = −ig2
sµ

2ε 4pi · pj

(l2k + i0)((lk + pi)2 + i0)((lk − pj)2 + i0)
. (19)

We need to add back the sum over graphs of the integral
∣∣Sij

〉
of
∣∣S̃ij

〉
.

We are now prepared to calculate what this quantity is. Defining Vsoft
ij (ε) to

be the integral of Eij(l), we have

∣∣Sij(G; {p}m)
〉

= Vsoft
ij (ε)T i · T j H ij

∣∣G̃(Gij(G); {p}m)
〉
. (20)

The integral can be performed analytically, with the result

Vsoft
ij (ε) ≡

∫
ddl

(2π)d
Eij(l) =

αs

4π

(4π)ε

Γ (1 − ε)

(
µ2

−2pi ·pj

)ε(
2

ε2
+ O(ε)

)
. (21)

Thus
∣∣Sij(G)

〉
is a known integral times a tree level graph with a modified

color factor and a kinematic factor H ij.
The sum over graphs G of the subtraction terms is even simpler. We

consider a given set of final state parton flavors and a given choice of {i, j}.
The tree graphs Gij(G) have the same parton flavors and momenta. Sum-
ming over all graphs G for which {i, j} ∈ IS(G), the graphs Gij(G) cover
all tree graphs with this choice of external partons. Thus summing over
graphs G gives the full tree amplitude

∣∣Mtree(p1, . . . , pm)
〉

corresponding to
the given final state. On the other hand the tree level matrix element is
gauge invariant and it ensures that the complicated terms in the operator
H ij , do not contribute, so that H ij can be replaced by the unit operator.
Then the soft contribution that we need to add back is

∑

G

∣∣Sij(G; p1, . . . , pm)
〉

= Vsoft
ij (ε)T i · T j

∣∣Mtree(p1, . . . , pm)
〉
. (22)

We now summarize the soft gluon subtractions, this time including a sum
over pairs of indices {i, j}. We subtract

∑

{i,j}∈IS(G)

∣∣S̃ij(G; lk; p1, . . . , pm)
〉
, (23)
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defined in Eq. (15) from the integrand
∣∣G̃(G; {l}, p1, . . . , pm)

〉
for each one-

loop graph G. Then we add the integrals of these terms back in the form

∑

{i,j}

Vsoft
ij (ε)T i · T j

∣∣Mtree(p1, . . . , pm)
〉
. (24)

5. Collinear singularities

One-loop graphs have logarithmic infrared divergences that arise from
integration regions in which the momentum on an internal loop line that
connects to an external line becomes collinear with the momentum of the
external line. In this section, we define a term that, when subtracted from
the graph, eliminates the divergence. This construction is quite similar
to what we needed for soft gluon divergences. However, the structure of
the collinear subtraction term is more complicated, so we will need a more
involved analysis.

Consider a one-loop graph G with external momenta p1, p2, . . . pm di-
rected out of the graph. Choose one of the external lines, with label i. If the
line i connects via a three-point vertex to the loop, and if the loop partons
are both gluons or are one gluon and one quark or antiquark, then we will
say that i is in the collinear index class for graph G, i ∈ IC(G). In this case
the loop integration has a logarithmic divergence arising from the region in
which the momenta of the loop propagators that connect to line i, call them
j and j + 1, become collinear to the outgoing momentum of line i,

lj → x pi , −lj+1 → (1 − x) pi , (25)

with 0 < x < 1.
The denominators that become singular in the collinear limit (25) are

l2j and (−lj+1)
2 = (pi − lj)

2. The coefficient of 1/[l2j × (pi − lj)
2] in the

integrand for the graph is non-singular in the collinear limit. It is useful to

define a collinear coefficient function
∣∣fC,0

i (G;x; p1, . . . , pm)
〉

by

∣∣fC,0
i (G;x; {p}m)

〉
= lim

lj→x pi

l2j (pi − lj)
2
∣∣G̃(G; l1, . . . , ln; {p}m)

〉
. (26)

One can use the collinear coefficient function to remove the collinear
divergence. Consider the integral

∫
ddl

(2π)d

{∣∣G̃(G; {l}, {p}m)
〉
− 1

(l2j + i0)((pi − lj)2 + i0)

×
∫

dx δ

(
x − lj · ni

pi · ni

) ∣∣fC,0
i (G;x; {p}m)

〉}
. (27)



General Subtraction Method for Numerical Calculation of . . . 2565

Here we define the momentum fraction x away from the collinear limit by
using a lightlike vector ni. A good choice for ni is

nµ
i = −pµ

i +
2 pi ·w

w2
wµ , wµ =

∑

k∈final state

pµ
k . (28)

By construction, the integral in Eq. (27) does not have a divergence from
the collinear region (25). The divergence was only logarithmic and the sub-
traction removes the leading singularity, leaving at worst an integrable sin-
gularity.

There are two problems with Eq. (27). The first is that the naive collinear
formulae is soft singular if one of the collinear loop lines is a gluon. But all
the soft singularities have been subtracted and we do not want to introduce
fake soft singularities with the collinear counterterms. In order to cancel
these contributions to the net integrand in the collinear limit, we should
subtract them from the collinear subtraction term in Eq. (27). To this end,
we define a revised collinear coefficient function

∣∣fC
i (G;x; {p}m)

〉

∣∣fC
i (G;x; {p}m)

〉
=
∣∣fC,0

i (G;x; {p}m)
〉
− 1

x
lim
y→0

y
∣∣fC,0

i (G; y; {p}m)
〉

− 1

1 − x
lim
y→1

(1 − y)
∣∣fC,0

i (G; y; {p}m)
〉

. (29)

With this coefficient function, our subtraction inside the loop integral is

1

(l2j + i0)((pi − lj)2 + i0)

1∫

0

dx δ

(
x − lj · ni

pi · ni

) ∣∣fC
i (G;x; {p}m)

〉
. (30)

A second problem remains with Eq. (30). The integral of the subtrac-
tion term is ultraviolet divergent. We can easily fix that by modifying the
subtraction term to be

fUV(lj , lj − pi)

(l2j + i0)((pi − lj)2 + i0)

1∫

0

dx δ

(
x − lj · ni

pi · ni

) ∣∣fC
i (G;x; p1, . . . , pm)

〉
, (31)

where

fUV(lj , lj − pi) =
1

2

(
−µ2e

l2j − µ2e + i0
+

−µ2e

(lj − pi)2 − µ2e + i0

)
. (32)

Here µ is the MS renormalization scale and e = 2.71828 . . . is the base of
natural logarithms. The factor fUV provides an extra power of l2j in the
denominator for large lj but equals 1 in the collinear limit.



2566 Z. Nagy, D.E. Soper

In summary, we subtract from the integrand for each graph G collinear
subtraction terms

∑

i∈IC(G)

∣∣C̃i(G; {l}, p1, . . . , pm)
〉
, (33)

where

∣∣C̃i(G; {l}, {p}m)
〉

=
fUV(lj , lj − pi)

(l2j + i0)((pi − lj)2 + i0)

×
1∫

0

dx δ

(
x − lj · ni

pi · ni

) ∣∣fC
i (G;x; {p}m)

〉
. (34)

These subtractions, together with the soft subtractions, remove all of the
infrared divergences from the loop integrals.

Our next task, pursued in the following two subsections, will be to add

back the subtraction terms
∣∣C̃i(G; {l}, p1, . . . , pm)

〉
, this time integrated and

summed over graphs G.

5.1. Graph sum of the collinear subtractions

We must add the collinear subtractions
∣∣Ci(G; p1, . . . , pm)

〉
back, this

time performing the integral analytically. We consider the case that line i
is a quark line. The case that i is an antiquark line follows trivially and is
covered at the end of this section. The case that i is a gluon line is treated
in the very similar way and the result has the same structure as in the quark
line case.

We begin by setting up a useful notation. By assumption, line i, carrying
momentum pi out of the graph, connects to a virtual loop in G. Line i must,
therefore, connect to the loop at a quark–gluon–quark vertex. We choose to
label the propagators in the loop so that the gluon line in the loop has label
j and the quark line has label j + 1. Thus a gluon line with label j carries
momentum lj into the vertex and the quark line with label j + 1 carries
momentum −lj+1 = pi − lj into the vertex. We write the integral for the
graph as

G(G, p1, . . . , pm)α = igsµ
εT a

αα′

∫
ddlj
(2π)d

1

(l2j + i0)((pi − lj)2 + i0)
(35)

× ū(pi)γµ(/pi
−/lj)

[
Ṽ

µ
(Gi, p1, . . . , pi − lj, . . . , pm, lj)

]a
α′

.

Here we have abandoned our vector notation for spin and color space and
written the spin and color indices that are needed for the calculation explic-
itly. We display a quark color index α for quark line i in G, leaving the other
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l2j (lj − pi)
2

lj

lj − pi

pi

α
Ṽ (Gi)

lj→xpi−−−−→ 2igsµ
ε T a

αα′

√
1 − x

x

(1 − x)pi

α′

xpi
a

Ṽ (Gi)

Fig. 1. Illustration of Eq. (36). The left hand side represents fC,0
i (G; x; {p}m)α,

which is defined in Eq. (26) as the collinear limit of l2j (lj −pi)
2 times the integrand.

indices on G unwritten. The amplitude Ṽ has a color index a corresponding
to the gluon j in the loop and a quark color index α′ corresponding to the
quark line j + 1 in the loop. There is an explicit color matrix T a

αα′ connect-

ing the colors of Ṽ to the color of G. The amplitude Ṽ carries a vector
index µ corresponding to the polarization of the gluon line j. It also carries
a Dirac spinor index for the quark line j + 1. However, we use the matrix
notation for the Dirac structure of this line without displaying the Dirac
indices explicitly. The Dirac spinor ū(pi) represents the final state quark on
line i. We have displayed the integration over the loop momentum lj , the
quark–gluon–quark vertex and the propagators for the quark and the gluon

in the loop. Everything else is included in the Feynman amplitude Ṽ for
the amputated tree level graph Gi obtained by omitting the propagators j
and j + 1 and the vertex that attaches these propagators to external line i
in graph G.

With the notation thus defined, we are ready to calculate. The subtrac-

tion term fC,0 defined in Eq. (26) can be expressed in terms of Ṽ as

fC,0
i (G;x; p1, . . . , pm)α = 2igsµ

εT a
αα′

√
1 − x

x
(xpi)µ ū((1 − x)pi)

×
[
Ṽ

µ
(Gi, p1, . . . , (1 − x)pi, . . . , pm, xpi)

]a
α′

. (36)

This equation is illustrated in Fig. 1.
We would now like to sum over graphs.We are considering the collinear

subtraction for parton i, which we assume here is a quark and we need
consider only graphs that have a collinear divergence for external leg i: i ∈
IC(G). Let us call this class of graphs C.

The corresponding graphs Gi are amputated tree graphs with m + 1
external legs. The flavors of the first m external particles are {f1, . . . , fm},
the same as for the graph G. The momenta of these particles are the same as
for G except for particle i, which carries momentum (1− x)pi instead of pi.
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The external particle with index m + 1 is a gluon with momentum xpi. Let
us call the set of all such graphs C ′. When we sum over all graphs G ∈ C,
the graphs Gi include all graphs in C ′ except for the graphs in which gluon
m + 1 couples directly to quark i. These graphs are absent because graphs
with a self-energy insertion on external line i are not included in C. Let us
call the set of (m + 1)-particle graphs that we do get C ′

+ and the graphs
that we do not get C ′

−.
The collinear subtraction defined inEq. (34), summed over graphs G∈C is

∑

G∈C

Ci(G; {p}m)α = 2igsµ
ε T a

αα′

∫
ddlj
(2π)d

fUV(lj , lj − pi)

(l2j + i0)((pi − lj)2 + i0)

×
∫

dx

x
δ

(
x− lj · ni

pi · ni

){
(1−x)Ha

α′(x; {p}m)−Ha
α′(0, {p}m)

}
, (37)

where

Ha
α′(x; p1, . . . , pm) = (1 − x)−1/2

× lim
q→xpi

∑

Gi∈C′

+

qµ ū((1 − x)pi)
[
Ṽ

µ
(Gi, p1, ..., (1 − x)pi, ..., pm, q)

]a
α′

. (38)

We now note that gauge invariance says something about H. We have
inserted a gluon line carrying momentum q almost everywhere into tree
graphs with m legs. The gluon has polarization qµ. Gauge invariance tells
us that if we inserted this gluon everywhere, that is if we summed over the
entire set of graphs C ′, we would get zero. However, we have summed only
over the graphs in C ′

+, leaving out the graphs in C ′
−. Thus H equals the

negative of the sum over graphs in C ′
−. This enables us to calculate H as

follows

Ha
α′(x; {p}m) = − lim

q→xpi

∑

Gi∈C′

−

qµ ū((1 − x)pi)√
1 − x

×
[
Ṽ

µ
(Gi, p1, . . . , (1 − x)pi, . . . , pm, q)

]a
α′

= lim
q→xpi

∑

G′

i∈C0

(1 − x)−1/2 gsµ
εT a

α′α′′

×
ū((1 − x)pi)/q((1 − x)/pi

+ /q)

((1 − x)pi + q)2 + i0

×
[
W̃ (G′

i, p1, . . . , (1 − x)pi + q, . . . , pm)
]
α′′

= gsµ
εT a

α′α′′ M(p1, . . . , pi, . . . , pm)α
′′

. (39)
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−1√
1 − x

∑

Gi∈C′

−

lim
q→xpi

(1 − x)pi

α′

q

a

Ṽ (Gi)

=
−1√
1 − x

lim
q→xpi

∑

G′

i∈C0

(1 − x)pi

α′

q
a

W̃ = gsµ
ε T a

α′α′′

pi

α′′

M

Fig. 2. Illustration of Eq. (39). The left hand side represents Ha
α′(x; p1, . . . , pm).

After summing over graphs, we are left with a color matrix times the complete m

particle tree amplitude.

Following the second equals sign, we have displayed the vertex at which the
gluon couples to the quark line i, together with the adjacent propagator.

Everything else we call W̃ . Note that W̃ is the Green function for an
amputated tree graph G′

i with m external partons. The partons have flavors
{f1, . . . , fm}, just as with our original loop graphs, and they have the same
momenta as the original partons except that parton i carries momentum
(1 − x)pi + q. Let us denote the set of all such graphs C0. The sum over
Gi ∈ C ′

− implies that G′
i runs over all of C0. In the next step, we replace /q

by ((1 − x)/pi
+ /q) next to the spinor. This gives a factor ((1 − x)pi + q)2/

((1 − x)pi + q)2 = 1. After this cancellation, it is safe to take the limit
q → xpi. Also, we replace ū((1 − x)pi) by

√
1 − x ū(pi). In the last step,

we recognize that we have the complete three level amplitude M for the m
external particles. This calculation is illustrated in Fig. 2.

We can now insert this result into Eq. (37) and perform the loop integral
to obtain

∑

G,i∈IC(G)

Ci(G; {p}m)α = −2 ig2
sCF µ2ε (40)

×
∫

ddlj
(2π)d

fUV(lj , lj − pi)

(l2j + i0)((pi − lj)2 + i0)
M({p}m)α

=
αs

4π
CF

(4π)ε

Γ (1 − ε)

(
−2

ε
+ O(ε)

)
M({p}m)α .
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Thus, when we sum over all graphs the collinear subtraction terms associated
with an external quark line with label i, we get a simple singular factor times
the tree level amplitude M.

For an external antiquark line we get the same result. For an external
gluon line we have a very similar result from essentially same calculation,
that is∑

G,i∈IC(G)

Ci(G; {p}m) =
αs

4π
CA

(4π)ε

Γ (1 − ε)

(
−1

ε
+ O(ε)

)
M({p}m) . (41)

6. Final formulas

There are two steps to the algorithm that we have outlined here for
generating the expressions to be used in a numerical calculation of the one-
loop graphs for a QCD amplitude.

The first step applies graph by graph, generating subtractions for each
graph. The subtraction terms match the integrand in the soft and collinear
limits of the loop momentum. In this way, the soft and collinear divergences
of the integral are removed.

The second step generates a next-to-leading order contribution to the
m-parton amplitude that is proportional to the tree level matrix element
(summed over tree graphs). This contribution has the form

IV(ε)
∣∣Mtree (p1, . . . , pm)

〉
, (42)

where IV (ε) is a singular function of the dimensional regularization pa-
rameter ε and is a linear operator on the color space of the amplitude∣∣Mtree (p1, . . . , pm)

〉
. There are three parts to IV (ε). The first comes from

the factors
√

ri for each external line that relate the scattering matrix to the
amputated Green function. These contributions are given in Eq. (5). There
is one term for each external line i. The second contribution comes from
adding back the collinear subtractions. Again there is one contribution for
each external line, as given in Eq. (40) for quarks and Eq. (41) for gluons.
Finally, there is a third contribution that comes from adding back the soft
subtractions. There is one term for each pair of external lines, as given in
Eq. (22). The net result is

IV(ε) =
αs

4π

(4π)ε

Γ (1 − ε)

(
1

ε2

m∑

i,j=1
i6=j

T i · T j

(
µ2

−2pi ·pj

)ε

− 1

ε

m∑

i=1

γi

)
, (43)

where the γi factors are

γq = γq̄ =
3

2
CF , γg =

11

6
CA − 4

6
TRnf . (44)

The 1/ε2 and 1/ε poles are all of infrared origin.
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We now turn to the complete calculation of an infrared safe cross sectionσ,
which we write in the form (following as much as possible the notation of [6])

σ = σLO
m−nI

+ σNLO
m+1−nI

+ σNLO
m−nI

. (45)

There are a lowest order (LO) term and two next-to-leading order (NLO)
terms. We suppose that there are nI initial state particles. (In applications,
nI is 0, 1, or 2.) The NLO term from real parton emission has m + 1 − nI

final state particles. This is calculated from the m + 1 − nI particle matrix
element minus subtractions. One can use, for example, the subtraction
scheme proposed by Catani and Seymour [6]. The remaining NLO term has
m − nI final state particles. It is calculated as follows:

σNLO
m−nI

=
∑

G

∫
dΦm−nIF

(m−nI )
J ({p}m)

∫
d4l

(2π)4

× 2Re

{〈
Mtree ({p}m)

∣∣G̃(G; {l}; {p}m)
〉

−
〈
Mtree ({p}m)

∣∣R̃(G; {l}; {p}m)
〉

−
∑

{i,j}∈IS(G)

〈
Mtree ({p}m)

∣∣S̃ij(G; {l}; {p}m)
〉

−
∑

i∈IC(G)

〈
Mtree ({p}m)

∣∣C̃i(G; {l}; {p}m)
〉}

+

∫
dΦm−nI F

(m−nI )
J ({p}m)

× 2 lim
ε→0

〈
Mtree ({p}m)

∣∣IV(ε) + IR(ε)
∣∣Mtree ({p}m)

〉
. (46)

In the first term here, there is a sum over amputated one-loop graphs G. We
integrate over the phase space dΦ for m−nI final state particles with momen-
ta pnI+1, . . . pm, where the initial state particles have momenta p1, . . . , pnI

.
Next, we supply a measurement FJ appropriate to the infrared safe observ-
able that we wish to calculate. Then there is an integration over the loop
momentum l as described in Sec. 2.1. Now there follow four terms inside
the loop integration. The first is the integrand G̃ for the graph G times the
complex conjugate of the tree amplitude for m − nI final state particles.
The second is

〈
Mtree

∣∣ times the renormalization subtraction R, which is
zero if the virtual loop graph is ultraviolet convergent. The renormalization
subtraction is defined in Sec. 3. The third term contains the soft gluon sub-
tractions S for graph G, one subtraction term for each pair {i, j} of external
lines that corresponds to a soft divergence. The soft subtraction is defined
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in Sec. 4. The fourth term contains the collinear subtractions C for graph G,
one subtraction term for each external line i that corresponds to a collinear
divergence. The collinear subtraction is defined in Sec. 5.

There is one final term, which has no integral over a loop momentum
and involves only the tree amplitude. Here we have the singular function
IV(ε) from Eq. (43) that adds back the soft and collinear subtractions from
the virtual graphs. We also have a singular function IR(ε) that adds back
the soft and collinear subtractions from the real graphs. However, the 1/ε
and 1/ε2 poles, whose structure follows from the structure of QCD, cancel
between IV(ε) and IR(ε). Generally a finite contribution remains in the
limit ε → 0.
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