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Some methods for the numerical computation of two-loop non-infrared
vertices are reviewed. A new method is also proposed and compared to the
old ones. Finally, some preliminary results are presented, concerning the

evaluation of the fermionic corrections to sin2 θlept
eff through the described

techniques.
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1. Introduction

In the forthcoming experiments, the validity of the Standard Model will
be tested with high precision. In addition to the direct search of the Higgs
Boson, important quantities will be measured in the future colliders, provid-
ing a good test of the Model. This of course pushes the theorists to compute
these observables at the same degree of precision. For example, the mass of
the W boson, whose present value is MW = 80.426±0.034 GeV ( [1]), will be
measured with an expected error of 15 MeV at LHC and 6 MeV at the ILC.

Or the effective leptonic weak mixing angle (sin2 θlept
eff = 0.23150(16), [1]) will

be known with an absolute precision of 10−5 at the ILC. To get a similar
theoretical uncertainty, we have to improve the calculation in perturbation
theory beyond the one-loop level. The computation of two-loop Feynman
diagrams is a hard task. The pure analytical techniques are very efficient
when few mass scales are present (see for example [2] or [3]), but seem to be
unable to deal with the complete set of two-loop diagrams in the Standard
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Model (where more scales come into the game). For this reason we were
led to abandon the analytical way in favour of a numerical evaluation of
multi-loop diagrams. The goal of the numerical approach is to express any
diagram in terms of smooth integrals.

2. Standard BT relation

The Bernstein–Tkachov theorem [4] tells us that for any finite set of poly-
nomials Vi(x), where x = (x1, . . . , xN) is a vector of Feynman parameters,
there exists an identity of the following type:

F (x, ∂)
∏

i

V µi+1
i (x) = B

∏

i

V µi

i (x) , (1)

where F is a polynomial of x and ∂i = ∂/∂xi; B and all coefficients of F
are polynomials of µi and of the coefficients of Vi(x). If the polynomial V
is of second degree we have a master formula, again due to Tkachov [4]. We
write the quadratic V as:

V (x) = xt H x + 2Kt x + L , (2)

where xt = (x1, ..., xn), H is an n×n matrix, K is an n vector. The solution
to the problem of determining the polynomial F is as follows:

F = 1 +
Pt ∂x

µ + 1
, P = −

x − X

2
, (3)

B = L − Kt H−1 K , X = −H−1 K . (4)

Therefore we have:

V µ(x) =
1

B

[

1 +
Pt ∂x

µ + 1

]

V µ+1(x) . (5)

This is the standard BT relation for quadratics.

3. Strategy

The standard BT relation is very useful for the computation of one-loop
diagrams and also some two-loop configurations (see [5–9]). The strategy is
the following. First of all, the diagram with N external legs and a tensorial
structure of rank n is decomposed in form factors:

Gµ1,...,µn

N =
∑

T

GN(T )T µ1,...,µn . (6)
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Here T µ1,...,µn are all possible tensors of rank n that can be obtained by
combining the N −1 independent external momenta of the diagram and the
metric δµ ν .

For one-loop diagrams, if we write each form factor in the parametric
space, we always obtain a result of this form (see [7] for details):

GN =

(

µ2

π

)ε/2

Γ
(

n +
ε

2

)

∫

dSN−1(x), , P (x)V (x)−n−ε/2 n ∈ N, (7)

where
∫

dSm(z) =

1
∫

0

dz1

z1
∫

0

dx2 ...

zm−1
∫

0

dzm , (8)

µ is the mass scale and P and V are polynomials in the Feynman parameters
x = (x1, . . . , xN−1). In particular V (x) is always a quadratic of the type
Eq. (2). The Γ function contains the UV pole (if present) of the diagram.
Its argument is always equal to the exponent of V with opposite sign and
therefore, for every UV divergent one-loop diagram, V has a vanishing power.

The goal is to express GN in terms of smooth integrals to be integrated
numerically. For n = 0 (which corresponds to UV divergent form factors),
we can simply perform a Laurent expansion around ε = 0 to get just smooth
integrands of the type:

P (x) lnk V (x) . (9)

For n ≥ 1 the idea is to apply the BT relations Eq. (5) to “raise” the power
of V of one unit and then integrate by parts to get rid of the derivatives.
Then the procedure is repeated for all integrals that are generated, until the
power of V becomes −ε/2, and, at this point, we proceed as in the case
n = 0.

The procedure is clear and leads to smooth integrals at the price of
introducing the denominator B which of course can vanish somewhere in
the phase space. It can be proved that the zeros of B correspond to the
leading Landau singularity of the diagram, but the singular behaviour is
usually overestimated by the BT procedure (see [7]). This means that in the
region B ∼ 0 all terms generated by Eq. (5) cancel one another, giving rise
to numerical instabilities. For this reason it would be good to find a new
relation, which should contain the real divergent behaviour for B = 0 and
therefore should remain stable also for B ∼ 0.

In the two-loop case the form factors are classified counting the number
of propagator of each loop:

GN(T ) → Ga b c(T ), (10)
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where a is the number of propagators (with momentum q1) which belong
just to the first loop (the one with the smallest number of propagators),
b is the number of propagators (with momentum q2) which belong just to
the second loop and c is the number of propagators (with momentum q1−q2)
which belong to both loops.

Then we first parametrise the loop with momentum q1, obtaining a new
propagator in q2 with a non integer power. The mass and the momentum
of this new propagator depend in general on the Feynam parameters of the
first loop. After the parametrisation of the second loop, each form factor
takes the form ( see [10] for details):

Ga b c = Aε

(

µ2

π

)ε

Γ (n + ε)

∫

dSa+c−1(x)

∫

dSb(x)

×[x2 (1 − x2)]
−m−ε/2 y

m−1+ε/2
b P (x, y)Vx(y)−n−ε , (11)

where m,n ∈ N, µ is again the mass scale and Aε is a constant regular in
ε = 0. P is a polynomial in all Feynman parameters x = (x1, . . . , xa+c−1)
and y = (y1, . . . , yb). Vx(y) is a quadratic of the type Eq. (2) in y, where
now the coefficients H, K, L depend on x and have the following form:

C(x)

xh
2 (1 − x2)k

, (12)

where h, k ∈ N and C is quadratic in x. The Γ function contains the
overall UV pole (if present), while sub-divergencies are contained in [x2(1−

x2)]
−m−ε/2y

m−1+ε/2
b . Since at least one of the coefficients of Vx have in

the denominator the product x2 (1 − x2), the divergent behaviour of the
integrand at x2 = 0 and x2 = 1 is present (generating the UV pole) just for
m > n. On the other hand the UV divergency is generated by the behaviour
in yb = 0 only for m = 0.

So, apart the UV pole coming from sub-loops, any two-loop diagram is
the integral of a one-loop diagram whose masses and momenta depend on the
integration variables. If we would be able to express any one-loop diagram in
terms of smooth integrals not only with respect to the integration variables,
but also with respect to their external masses and momenta, the numerical
evaluation of two-loop diagrams would be a trivial task. The BT relation
Eq. (5) is in general not good for this purpose, because it introduces the
denominator B. In fact, since the coefficients H, K and L of Vx (Eq. (11))
depend on the Feynman variables x, the same happens for B which therefore
generates singularities inside the x integration contour. As a consequence,
apart some special cases where it is possible to have a factor B independent
of any Feynman variable, the standard BT method cannot be applied for
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two-loop diagrams. This is another reason to search for a new BT-like
relation.

4. The new BT-like relation

To obtain new relations it is useful to write the quadratic V (x) in the
following way:

V (x) = xt H x + 2Kt x + L

= (xt − Xt)H (x − X) + B = Q(x) + B . (13)

This formula, which defines the quadratic Q(x), can be trivially verified
using the definition of B and X in Eq. (4). The basic relation satisfied by
Q(x) is the following:

Pt ∂x Q(x) = −Q(x) , P = −
x − X

2
. (14)

At this point we introduce a new variable y and a new polynomial W (x, y)
defined as follows:

W (x, y) = Q(x) y + B , (15)

and satisfying the following relation:

(Pt ∂x + y ∂y)W µ(x, y) = 0 . (16)

Next we consider the following integral

Iβ =

1
∫

0

dy yβ−1 W µ(x, y) , β > 0 (17)

and compute:

Pt ∂x Iβ =

1
∫

0

dy yβ−1 Pt ∂x W µ(x, y) = −

1
∫

0

dy yβ ∂y W µ(x, y)

= −W µ(x, 1) + β

1
∫

0

dy yβ−1 W µ(x, y) = −V µ(x) + β Iβ. (18)

Using the definition of the hypergeometric function (see [11]) to evaluate Iβ,
we finally get:

V µ(x) = Bµ

(

1 −
Pt ∂x

β

)

2F1

(

−µ , β ; β + 1 ; −
Q

B

)

. (19)
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This formula has a general validity and does not depend on the actual ex-
pression for Q, B and P. The only relations which they must satisfy are:

V (x) = Q(x) + B, Pt ∂x Q(x) = −Q(x), β > 0. (20)

The usefulness of this relation is evident if we consider the case µ = −1−αε.
In this case the better choice for the free parameter β is β = 1. Using the
expansion of the hypergeometric function around ε = 0

2F1 (1 + α ε , 1 ; 2 ; x) = −
1

x

∞
∑

n=0

(−α ε)n

(n + 1)!
lnn+1(1 − x), (21)

we obtain

V −1−α ε =

∞
∑

n=1

(−αε)n−1

n!

(

1 − Pt ∂x

) B−α ε

Q
lnn

(

1 +
Q

B

)

. (22)

In this relation we have obtained our goal to avoid the appearance of the
factor B in the denominator. Here, the only denominator is Q(x) which can
vanish inside the integration contour; however its zeros are compensated by
the logarithm, whose argument goes to 1 when Q(x) goes to 0.

An example of the usefulness of the new relation is the evaluation of
one-loop three-point functions. In the scalar case we have:

C0 =

(

µ2

π

)ε/2

Γ
(

1 +
ε

2

)

1
∫

0

dx1

x1
∫

0

dx2 V (x1, x2)
−1−ε/2. (23)

If we insert Eq. (22) and integrate by parts, we simply obtain:

C0 =
2

∑

i=0

ai

2

1
∫

0

dx
1

Q[i](x)
ln

(

1 +
Q[i](x)

B

)

+ O(ε) , (24)

where

Q[0](x) = Q(1, x) , Q[1](x) = Q(x, x) , Q[2](x) = Q(x, 0) , (25)

a0 = 1 − X1 , a1 = X1 − X2 , a2 = X2 . (26)

This result for C0 (which can be easily generalised for tensor integrals) can
be also used to compute two-loop diagrams which can be expressed as an
integral of a one-loop three-point function. We see for example what happens
in two families of two-loop vertices.
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5. The two-loop vertex V
131

All two-loop vertices can be classified according to six families. Their list
is given in the Appendix. Taking into consideration the V 131 vertex, after
Feynman parametrisation it takes the form:

V 131 = −

(

µ2

π

)ε

Γ (1 + ε)

1
∫

0

dx

∫

dS3(y, z1, z2) [x(1−x)]−ε/2(1−y)ε/2−1 U−1−ε,

(27)

U = (zt−Xt)H (z−X)+(m2
x−m2

3) (1−y)+B, m2
x =

m2
1

x
+

m2
2

1 − x
, (28)

where the masses are defined in the figure for V 131 in the Appendix. The
coefficient H, X and B are those appearing in the polynomial of a one-loop
three-point function, with external momenta −P , p1, p2 and masses m3, m4,
m5. If we introduce Q(y, z1, z2) for the polynomial U defined by:

U(y, z1, z2) = Q(y, z1, z2) + B, (29)

we see that Q satisfies the following basic relation:

[

(1 − y) ∂y −
(zt − Xt) ∂z

2

]

Q = −Q. (30)

From this formula we obtain the standard BT relation and the new one
(choosing β = 1):

U−1−ε =
1

B

[

1 −
(1 − y) ∂y

ε
+

(zt − Xt) ∂z

2 ε

]

U−ε, (31)

U−1−ε =
∞
∑

n=1

(−ε)n−1

n!

[

1 − (1 − y)∂y +
(zt − Xt)∂z

2

]

B−ε

Q
lnn

(

1 +
Q

B

)

.

(32)

From these equations, we see that V 131 is exactly one of those particular
two-loop configurations for which a factor B independent of any Feynman
parameter can be found. If this is crucial for the application of the standard
BT method (Eq. (31)), this would not be strictly required for the new method
(Eq. (32)). In addition to that the new relation appears to have a better
behaviour near the zeros of B.

However, for this type of diagrams, where the polynomial U is linear in
one of the Feynman variables (y), another procedure is available. After the
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transformation y → 1 − (1 − z1) y, we have to compute:

I =

1
∫

0

dy yε/2−1 (a y + b)−1−ε =
2 b−1−ε

ε
2F1

(

1 + ε ,
ε

2
;

ε

2
+ 1 ; −

a

b

)

, (33)

a = (m2
x − m2

3) (1 − z1) , b = (zt − Xt)H (z − X) + B . (34)

By applying the properties of the hypergeometric function (see [9] for details)

s p2

1 p2

2 m1 m2 m3 m4 m5 Re V 131

0

1002 m2

b m2

b m
W

m
W

m
Z

mb m
Z

0.274717(2) × 10−2

0.2747182(5) × 10−2

0.2747194 × 10−2

8002 m2

b m2

b m
W

m
W

m
Z

mb m
Z

−0.247(4) × 10−3

−0.2456(9) × 10−3

−0.24612(8) × 10−3

5002 m2

t m2

t m
W

m
W

m
Z

mt m
Z

0.952(1) × 10−5

0.9536(7) × 10−5

0.9545(13) × 10−5

m2

Z
m2

e m2

e mt mt m
Z

me m
Z

0.288416(3) × 10−2

0.288418(3) × 10−2

0.2884222 × 10−2

m2

Z
m2

e m2

e mt mt 0 me 0 unstable
−0.195(47)
−0.214261(7)

m2

Z
m2

e m2

e me me 0 me 0 unstable
0.2080(3)
unstable

Fig. 1. Numerical results for the V 131 family: V 131 = V 131
−1 ε−1 + V 131

0 . All mo-

menta are given in GeV. The first entry refers to the standard BT method Eq. (31),

the second to the new method Eq. (32) and the third to Eq. (35). When no num-

ber appears in curly brackets, this means that the error does not affect the written

digits. In the last two cases we have B ∼ 0 and in the last case also m2
x −m2

3 ∼ 0.
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and expanding in ε we simply obtain:

V 131 =

1
∫

0

dz1

z1
∫

0

dz2
1

V
ln

(

1 +
V

(m2
x − m2

3) (1 − z1)

)

+



−
2

ε
+

1
∫

0

dx lnAx



 C0(P
2, p2

1, p
2
2,m3,m4,m5) , (35)

where

V = (zt−Xt)H (z−X)+B , Ax = −m2
3 x (1−x)+m2

1 (1−x)+m2
2 x . (36)

Note that V is exactly the polynomial of the C0 function appearing in
Eq. (35). The numerical results for the three methods are then compared in
Fig. 1.

6. The two-loop vertex V
231

Another important example of two-loop vertex topologies is V 231 (see
Appendix). In this case Feynman parametrisation gives:

V 231 = −

(

µ2

π

)ε

Γ (2 + ε)

∫

dS2(x1, x2) [x2(1 − x2)]
−1−ε/2

×

∫

dS3(y1, y2, y3) y
ε/2
3 U−2−ε, (37)

where

U = −[p2 y1 − P (y2 −X y3) + p1]
2 + (P 2 − p2

1 + m2
6 − m2

5) y1

−(P 2 + m2
6 − m2

4) y2 + (M2
x − m2

4) y3 + p2
1 + m2

5, (38)

X =
1 − x1

1 − x2
, M2

x =
−P 2 x2

1 + x1 (P 2 + m2
1 − m2

2) + x2 (m2
3 − m2

1) + m2
2

x2 (1 − x2)
.

(39)
Now the polynomial U is a quadratic in y1, y2 and y3 of the type U =
yt H y +2Kt y +L and in principle we could apply the new BT-like relation
for µ = −2 − ε. Nevertheless, this would not be the most clever approach,
because in this case the H matrix is singular and therefore the BT-factors
B and X are not well-defined. Anyway, thanks to this singularity, we can
perform the following change of variable

y2 → y2 + X y3 (40)
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and obtain a new polynomial U ′ which is now linear in y3. Since this diagram
is not UV divergent, we can set ε = 0 and the integration in y3 becomes
trivial, giving:

V 231 =

∫

dS2(x1, x2)

1
∫

0

dy1
1

A(x)

×











y1
∫

(1−X )y1

dy2

[

x2 (1 − x1)

(y1 − y2)A(x) + x2 (1 − x1)B(y)
−

1

B(y)

]

+

(1−X )y1
∫

0

dy2

[

x2 (x1 − x2)

y2 A(x) + x2 (x1 − x2)B(y)
−

1

B(y)

]











, (41)

where A(x) and B(y) are quadratics, respectively in x1, x2 and y1, y2. There-
fore each term is now a quadratic in y1, y2 to power −1 with x-dependent
coefficients. In other words, the y-integrations are one-loop 3-point func-
tions C0 with x-dependent masses and momenta (of course some change of
variable has to be done to reduce to the usual simplex in y1, y2). Note that

s, −p2
1, −p2

2 m1, m2, m3, m4,m5, m6 Re V 231

1002, m2
b , m2

b mb, mb, m
Z
, mb, m

Z
, mb 0.5028(4)× 10−7

2002, m2
b , m2

b mb, mb, m
Z
, mb, m

Z
, mb 0.9816(20)× 10−8

8m2
t , m2

t , m2
t mt, mt, m

Z
, mt, m

Z
, mt 0.1489(5)× 10−8

20m2
t , m2

t , m2
t mt, mt, m

Z
, mt, m

Z
, mt 0.1675(6)× 10−8

m2
Z
, m2

e, m2
e mt, mt, mt, m

Z
, me, m

Z
−0.2018966× 10−8

m2
Z
, m2

e, m2
e mt, mt, mt, 0, me, 0 0.5987(6)× 10−6

m2
Z
, m2

e, m2
e me, me, me, 0, me, 0 −0.21161(49)× 10−3

Fig. 2. Numerical results for the V 231 family. All momenta are given in GeV. When

no number appears in curly brackets, this means that the error does not affect the

written digits.
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the zeros of A(x) do not spoil the smoothness of the integrand because the C
functions cancel one another in the limit A(x) → 0. At the end the diagram
is written in the following form

V 231 =

∫

dS2(x1, x2)
1

A(x)

[

C
(1)
0 − C

(2)
0 + C

(3)
0 − C

(4)
0

]

(42)

and computed numerically using for the C0 functions the expression of
Eq. (24) obtained with the new method. The numerical results are shown
in Fig. 2.

7. Work in progress: fermionic correction to sin
2

θ
lept
eff

The effective leptonic weak mixing angle is at present the observable
that can give the most stringent indirect evaluation on the mass of the
Higgs boson (by means of the radiative corrections). In the future, if the

Higgs boson would be discovered, sin2 θlept
eff would represent a strong test of

the Standard Model. It is defined through the vectorial and axial effective
couplings gv and ga of the Z boson with leptons:

sin2 θl
eff =

1

4

(

1 − Re

(

gv

ga

))

. (43)

The effective couplings gv and ga are defined through the amplitude of the
decay of an on-shell Z boson into two leptons:

Ml
Zll = ūl M

µ vl ε
µ
Z

= ūl γµ (gv + ga γ5) vl ε
µ
Z
, s = M2

Z . (44)

Therefore gv and ga can be obtained from the matrix Mµ by using suitable
projectors:

1

D
Tr (γµ M

µ), ga = −
1

D
Tr (γµ γ5 M

µ), (45)

where D is the dimension of the space-time. Among the electroweak two-
loop diagrams contributing to Mµ, we started considering those containing
a closed fermion loop (this computation has been recently done by Awramik,
Czakon, Freitas and Weiglein in [12]). They are represented in Fig. 3.

We started applying our methods on configuration c which is the most
difficult one. The strategy used is the following:

• Write the amplitude, considering the different contributions to con-
figuration c. This generates a sum of tensor integral of the family
V 231.



2584 S. Uccirati

µ

γ,Z,W

γ,Z,W

a

µ

W,GW

W

W
b

µ

γ,Z,W

γ,Z,W

c

Fig. 3. Diagrams contributing to the fermionic corrections to sin2 θlept
eff . Because of

CP conservation, diagrams involving the Higgs boson cancel and are not included.

• Perform a simple reduction of tensor integral of the following type:

2 q · p

(q2 + m2)[(q + p)2 + M2]

=
1

q2 + m2
−

1

(q + p)2 + M2
−

p2 − m2 + M2

(q2 + m2)[(q + p)2 + M2]
. (46)

This kind of reduction does not introduce any new denominator and
therefore any spurious singularity. At this point we have a sum of
scalar and vector integrals belonging to 4 vertex families (V 121, V 131,
V 221 and V 231), together with some self-energies and some one-loop
diagrams.

• Combine the sum of all these diagrams in just one integral.

Just to show the efficiency of the numerical computation, we give some
preliminary results. We consider the expansion in loops for gv/ga

gv,a = g0
v,a + g1

v,a + g2
v,a , (47)

gv

ga
=

g0
v

g0
a

[

1 +
g1
v

g0
v

−
g1
a

g0
a

−
g1
a

g0
a

(

g1
v

g0
v

−
g1
a

g0
a

)

+
g2
v

g0
v

−
g2
a

g0
a

]

, (48)

where the last two terms represent the pure two-loop corrections to sin2 θlept
eff .

The contribution to these corrections coming from diagram c (Fig. 3) with
two Z or two W is:

(

g2
v

g0
v

−
g2
a

g0
a

)

ZZ

= −0.279937 × 10−5 ± 0.15 × 10−9,

(

g2
v

g0
v

−
g2
a

g0
a

)

WW

= 0.577269 × 10−1 ± 0.14 × 10−5. (49)

In this result the contributions coming from all possible fermion loops are
summed up. In particular it includes the diagrams containing the top quark
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which in the usual analytical approach require an expansion in the ratio
MZ/mt ∼ 1/4.

8. Conclusions

The techniques described in this paper show that the numerical approach
to Feynman integrals allows the computation of diagrams that cannot be
treated within the usual analytical approach. Under this point of view,
would be interesting to apply these methods, and in particular the new one,
to more complicated two-loop diagrams (the two-loop 4-point functions for
example). In addition to that, the first results obtained from the application

of these techniques to the fermionic correction to sin2 θlept
eff , seem to show

that the numerical approach is not only suited for the computation of single
integrals, but can also be applied to the complete evaluation of physical
observables (which requires to sum up several diagrams). Of course the
computation must be completed to give a serious proof of that.

I would like to thank A. Ferroglia, M. Passera and G. Passarino for the
collaboration on the computation of two-loop vertices and W. Hollik and
U. Meier for the common work on the evaluation of sin2

eff .

Appendix A
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Fig. 4. Two-loop vertex topologies. The momenta are all incoming.
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