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The physics of high-energy collider experiments asks for delicate com-
parisons between theoretical predictions and experimental data. Signals
and potential backgrounds for new physics have to be predicted at suffi-
cient accuracy. The accuracy as well as the computational complexity of
the calculations leading to the predictions depend on both the number of
external particles in the process analyzed and the order of the quantum
corrections, the number of loops, included in the calculation. We present
some approaches to problems occurring in these calculations regarding the
integration of phase-space and the inclusion of one-loop corrections.

PACS numbers: 02.70.Uu, 12.38.Bx, 12.15.Lk

1. Introduction

Collider experiments played and continue to play a fundamental rôle in
particle physics. This is exemplified by past, current and future experiments
like, e.g. LEP at CERN, Tevatron at Fermilab or HERA at DESY, and LHC,
again at CERN, respectively. Current research focuses on even more precise
tests of what is known as the Standard Model of particle physics, the validity
of which needs the discovery of the Higgs boson at such a collider experiment.
This asks for new colliders to reach higher energies leading to events from
scattering experiments with higher numbers of particles involved.
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In order to prepare and analyze the outcome of the experiments, signals
and potential backgrounds for new physics have to be predicted at sufficient
accuracy. Most of the calculations involved are set up within the framework
of perturbation theory, in which the accuracy is controlled by the order pa-
rameter. In the application to quantum field theory, on which the Standard
Model is based, the order parameter is connected to both the number of
external particles in the process analyzed and the order of the quantum
corrections, the number of loops, included in the calculation.

The Standard Model is tested mainly by the comparison of the exper-
imental data and theoretical calculations on the statistical level. This can
happen through the analysis of cross sections, or simulation of collider ex-
periments. Both the increase in the multiplicity of particles at the experi-
ments, and the need for higher accuracy of theoretical calculations lead to
a dramatic increase of the complexity of this analysis. In the following, we
will encounter two particular examples in which this increase of complexity
constitutes a challenge in the scientific process.

2. A hierarchical phase space generator for QCD antennas

The reliable description of multi-jet production at collider experiments
is an important issue in the study of the Standard Model. It requires the
calculation of cross sections, which again requires the integration of squared
scattering amplitudes over phase space. The number of dimensions of the
integration space in combination with the desired cuts point at the Monte
Carlo method as the only suitable candidate for this task. Since the com-
putation of QCD scattering matrix elements with many particles is rather
time-consuming, the integration process should preferably involve as few in-
tegration points as possible. The strong peaking structures exhibited in the
QCD amplitudes enforce the application of the Monte Carlo method to be
dressed with a sophisticated portion of importance sampling. Flat phase
space generators, like RAMBO [1], will not be adequate for this task.

In the last years several methods to efficiently integrate the peaking
structures of the scattering amplitudes have emerged, and have been used
in several contexts [2]. For instance, PHEGAS [3] is an example where an
efficient, automated, mapping of all possible peaking structures of a given
scattering process has been established. The algorithm is based on the
“natural” mappings dictated by the Feynman graphs contributing to the
given process, so that the number of kinematic channels used to generate
the phase space is equal to the number of Feynman graphs. Using adaptive
methods, like multi-channel optimization [4] and by throwing away channels
that are negligible, we may end up with a few channel generator exhibiting
high efficiency, as is indeed the case in n(+γ)-fermion production in e+e−
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collisions. In contrast, the QCD scattering amplitudes point towards the
opposite direction: large number of Feynman graphs which means large
number of kinematic channels which, moreover, contribute equally to the
result.

A way out off this problem may be based on the long-standing remark
that n + 2-gluon amplitude may be described by a very compact expression
when special helicities are assigned to the gluons, which, combined with the
leading color approximation, results to

∑

c

|M|2 = 8

(

Nc

2

)n

(N2
c −1)

n+2
∑

1≤i<j

(pi ·pj)
4
∑

P (2,...,n+2)

An+2(p1, . . . , pn+2) , (1)

where Nc refers to the number of colors,

An+2(p1, . . . , pn+2) = [ (p1 · p2)(p2 · p3) · · · (pn+1 · pn+2)(pn+2 · p1) ]−1 , (2)

and the sum over all permutations of the 2nd to the (n + 2)nd argument of
this function is taken, with the exception of those that are equivalent under
reflection i 7→ n + 4− i [5].

SARGE [6] is the first known example of a phase space generator that deals
with the momentum structures entering the above expression, namely with
(2), known as antenna structures. The algorithm is based on the “demo-
cratic” strategy to generate the n body phase space, as is the case for RAMBO,
and it makes use of the scale symmetry of the antenna to achieve the required
goal. Now, we study the “hierarchical” strategy for phase space generation
in order to efficiently map the momentum antenna structures. The idea is as
follows. Using the standard two-body phase space (neglecting factors of 2π)

dΦ2(P ; s1, s2; p1, p2) = d4p1 δ+(p2
1−s1) d4p2 δ+(p2

2−s2) δ4(P−p1−p2) , (3)

we decompose the phase space

dΦn(P ; p1 . . . , pn) = δ4
(

n
∑

i=1

pi − P
)

n
∏

i=1

d4pi δ+(p2
i − σi) (4)

as

dΦn(P ; p1 . . . , pn) = dsn−1 dΦ2(Qn;σn, sn−1; pn, Qn−1)

×dsn−2 dΦ2(Qn−1;σn−1, sn−2; pn−1, Qn−2)

...

×ds2 dΦ2(Q3;σ3, s2; p3, Q2)

×dΦ2(Q2;σ2, σ1; p2, p1) . (5)
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The task is to express the phase space in terms of the invariants pi · pj

appearing in the antenna structure (2), so that, using a suitable mapping,
we can construct a density that, apart from constant and soft terms, will be
identical to this antenna structure.

2.1. Antenna generation

In this section, we will present a sketch of how the antenna structures
can be generated using the hierarchical approach. For a treatment in full
detail, we refer to [7]. The starting point is the generation of he two-body
phase space (3) in terms of the variables

a1 =
q1 · p1

q1 · P
, a2 =

p2 · q2

P · q2
, (6)

where q1, q2 are given massless momenta. Let us introduce the notation

c = cos(∠(~q1,~q2)) , s =
√

1− c2 (7)

and
s = P 2 , s̄1,2 =

s1,2

s
. (8)

We find that the parameterization

p0
1 ← (s + s1 − s2)/(2

√
s) ,

p3
1 ← p0

1 −
√

s a1 ,

p2
1 ← ( (

√
s− p0

1 −
√

s a2) + cp3
1 )/s , (9)

p1
1 ← ±( (p0

1)
2 − s1 − (p2

1)
2 − (p3

1)
2 )1/2 ,

leads to the identity

dΦ2(P ; s1, s2; p1, p2) = da1 da2 Π (a1, a2)
−1/2

Θ(Π (a1, a2) ) , (10)

where

Π (a1, a2) = 4s2[(1 − a2 + s̄2 − s̄1)a2 − s̄2]

− [(1− 2a1 − s̄1 + s̄2) + (1− 2a2 − s̄1 + s̄2)c]
2 , (11)

and Θ is the step function. So in order to obtain a two-body phase space
with a density which depends on the invariants a1, a2 following some given
function f(a1, a2), one has to generate a1, a2 following a density proportional
to f(a1, a2)×Π (a1, a2)

−1/2 in the region where Π (a1, a2) > 0, and construct
the momenta as given above.
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The generation strategy proceeds through a sequence of two-body phase
space generations following the decomposition (5). At each two-body gen-
eration, one final-state momentum pk is generated, together with the sum
Qk−1 of the remaining final-state momenta to be generated. This suggest
to label the momenta in a way opposite to the order of generation, so first
pn, Qn−1 are generated, then pn−1, Qn−2 and so on. The starting point is
the center of mass frame (CMF) of the initial momenta q1 and q2 with
Qn = q1 + q2 being the overall momentum. The CMF of momentum Qk

we denote by CMFk. The pair pk, Qk−1 is generated by generating variables

a
(k)
1 , a

(k)
2 and constructing the momenta as described before. These variables

are now equal to

a
(k)
1 =

pk+1 · pk

pk+1 ·Qk
and a

(k)
2 =

q2 ·Qk−1

q2 ·Qk
. (12)

This happens in CMFk, so in order to obtain pk, Qk−1, the constructed

momenta have to be boosted such that (
√

Q2
k, 0, 0, 0) is transformed to Qk.

Now, we do three observations. Firstly, we have

pk+1 ·Qk =
(Q2

k+1 −Q2
k − p2

k+1)

2
. (13)

Secondly, we have, with Σk =
∑k

i=1 σi,

sk − Σk

(sk − σk − sk−1) (sk−1 − Σk−1)
=

d

dsk−1
log

(

sk−1 − Σk−1

sk − σk − sk−1

)

, (14)

and thirdly, we can write

An+2(q1, pn, pn−1 . . . , p1, q2) =
1

2n−1
(sn − Σn)(q1 ·Qn)(q2 ·Qn)

×
(

3
∏

k=n

gk(sk−1)
1

a
(k)
1 a

(k)
2

)

1

a
(2)
1 a

(2)
2

,

(15)

where gk(sk−1) is given by (14), and where sn = Q2
n, pn+1 = q1 and Q1 = p1.

These observations suggest that the phase space generation
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dsn−1 gn(sn−1) da
(n)
1

1

a
(n)
1

da
(n)
2

1

a
(n)
2

Π
−1/2
(n) Θ(Π(n))

dsn−2 gn−1(sn−2) da
(n−1)
1

1

a
(n−1)
1

da
(n−1)
2

1

a
(n−1)
2

Π
−1/2
(n−1)Θ(Π(n−1))

...

ds2 g3(s2) da
(3)
1

1

a
(3)
1

da
(3)
2

1

a
(3)
2

Π
−1/2
(3) Θ(Π(3))

da
(2)
1

1

a
(2)
1

da
(2)
2

1

a
(2)
2

Π
−1/2
(2) Θ(Π(2)) , (16)

will lead to a density for the momenta that is proportional to An+2. Three

variables are generated in each CMFk, namely sk−1, a
(k)
1 and a

(k)
2 . Just as the

integration of sk−1 (14), also the integration of a
(k)
1 , a

(k)
2 results in a volume

factor that depends on the corresponding variables generated in CMFk+1.
However, these factors are logarithmic functions of their arguments and
exhibit a non-singular behavior, and we call them soft factors. The total
actual density will therefore be the product of n − 1 soft factors times the
antenna structure under consideration.

In the end, we want to generate all permutations in the momenta of
(15). Those for which q1 and q2 each appear in two factors (none of which
is q1 · q2) cannot be obtained by simple re-labeling. In order to obtain these,
we observe that they can be decomposed into two antennas, namely

Am+2(q1, pm, . . . , p1, q2)×An−m+2(q2, pn, . . . , pm+1, q1) (17)

and each of these can be generated after the decomposition,

dΦn(P ; p1 . . . , pn) = dsm dsn−m dΦ2(Qn; sm, sn−m;Qm, Qn−m)

×dΦm(Qm; p1, . . . , pm) dΦn−m(Qn−m; pm+1, . . . , pn) .

(18)

In order to combine the two sub-antennas to the required antenna structure,
we have to take into account in the first decomposition a density that is
proportional to

Θ(
√

sn −
√

sm −
√

sn−m )

(q1 ·Qm)(q1 ·Qn−m)(q2 ·Qm)(q2 ·Qn−m) sm sn−m
. (19)
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2.2. Results

In this section, we present results obtained by SARGE and HAAG1, the
program that implements the hierarchical algorithm described before. In
order to be as general as possible, the only cut we apply is

(pi + pj)
2 ≥ s0 , (20)

where i, j(i 6= j) runs from 1 to n + 2 where n is the number of final-state
particles. Unless explicitly mentioned differently, we use s0 = 900GeV2 and
the total energy

√
s = 1000GeV. Moreover, all particles are assumed to be

massless in order to compare with SARGE, with which only massless particles
can be treated.

As it was mentioned in the introduction, we are interested in integrating
sums of QCD antenna structures (2). We start by considering the simplest
case, namely integrating the function

s2[ (p1 · p3)(p3 · p4)(p4 · p2)(p2 · p5) . . . (pn+2 · p1) ]−1 (21)

that corresponds to a given permutation of the momenta, namely (1, 3, 4, 2, 5,
. . . , n + 2). In Table I we give the results for SARGE, and HAAG. In all three
codes the same single channel, corresponding to (21), has been used in the
generation. Ngen and Nacc are the number of generated and accepted events,
and by f we define

f =
V2

I2
, (22)

where V2 is the quadratic variance and I is the estimated integral. f is
clearly a measure of the efficiency of the generator. Moreover ε, defined as

ε =
〈w〉

wmax
, (23)

is the usual generation efficiency related for instance to ‘unweighted’ events
in a realistic simulation. The results agree well, and exhibit the fact that the
generated densities of the generators the hierarchical type are much closer to
the integrand. The same picture is reproduced for an arbitrary permutation.

For a realistic QCD calculation, the integrated function may be approx-
imated by a sum over permutations. Therefore, an efficient generator has
to include all possible channels, where each channel corresponds to a given
permutation of the momenta. In that case, a multi-channeling optimiza-
tion procedure can be applied, which is incorporated in HAAG. In order to
study the efficiency of this optimization we consider the same integration

1
HAAG stands for: Hierarchical AntennA Generation.
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TABLE I

Results for the single-channel integration/generation.

jets algorithm Ngen Nacc I ∆I f ε(%)

4
SARGE 1 × 105 34853 .251 × 10−9 .734 × 10−11 85.9 0.34
HAAG 5 × 104 31193 .260 × 10−9 .280 × 10−11 5.75 1.77

5
SARGE 2.5 × 105 30960 .438 × 10−10 .153 × 10−11 307 0.23
HAAG 6.5 × 104 29855 .442 × 10−10 .640 × 10−12 13.6 1.02

6
SARGE 1 × 106 28383 .487 × 10−11 .164 × 10−12 1141 0.21
HAAG 1.2 × 105 32070 .487 × 10−11 .658 × 10−13 21.9 1.48

as before, but with all channels contributing to the generation and allowing
for optimization. In this optimization procedure, we discard channels that
contribute less than a certain pre-determined fraction to the set of available
channels. It is expected, of course, that in end the right permutation will
be ‘chosen’ by the optimization. This is indeed the case and the results are
presented in Table II. We see that the optimization results to a picture close
to the one obtained with the single channel generation, with some noticeable
improvement in the case of SARGE.

TABLE II

Results for the all-channel generation with optimization.

jets algorithm Ngen Nacc I ∆I f ε(%)

4
SARGE 1 × 105 52516 .262 × 10−9 .294 × 10−11 12.6 1.29
HAAG 5 × 104 34293 .257 × 10−9 .210 × 10−11 3.36 4.28

5
SARGE 2.5 × 105 32315 .422 × 10−10 .106 × 10−11 159 0.44
HAAG 6.5 × 104 31063 .444 × 10−10 .503 × 10−12 8.32 1.17

6
SARGE 1 × 106 29138 .476 × 10−11 .145 × 10−12 933 0.45
HAAG 1.2 × 105 33278 .483 × 10−11 .595 × 10−13 18.2 1.19

As is the case for any multi-channel generator, a computational complex-
ity problem arises when the number of channels increases. For instance, in
our case we are facing a number of 1

2(n + 1)! channels! On the other hand,
it is also clear that the channels we are considering have a large overlap in
most of the available phase space. It is therefore worth to investigate the
dependence of the integration efficiency on the number of channels used.
This is presented in Table III, where the full antenna

s2
∑

P (2,...,n+2)

[ (p1 · p3)(p3 · p4)(p4 · p2)(p2 · p5) . . . (pn+2 · p1) ]−1 (24)

is integrated, using a number of channels that has been selected on a random
basis. We see the rather interesting phenomenon that a decent description
can be achieved with a much smaller number of channels. Variations of
this technique of using only subsets of channels, for example choosing an-
other subset after each step of multi-channel optimization, lead to the same
picture.
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TABLE III

All-channel integration with subsets of channels for generation.

# channels 2520 1500 1000 500 200 50 10
f 5.33 5.37 5.48 5.72 6.14 11.6 84.7

Nacc 26630 26521 26437 26676 27009 27190 27205
ε(%) 11.2 13.1 11.6 7.1 7.5 1.7 0.28

The complete results of the integration of the full antenna are presented
in Table IV. We see that HAAG has a much better f factor than SARGE. On the

TABLE IV

Results for the all-channel integration.

jets algorithm Ngen Nacc I ∆I ε(%) f

4
SARGE 1 × 105 47483 .166 × 10−7 .115 × 10−9 4.21 4.8
HAAG 6 × 104 42019 .167 × 10−7 .810 × 10−10 12.01 1.4

5
SARGE 3 × 105 39095 .176 × 10−7 .162 × 10−9 3.27 25.6
HAAG 1.2 × 105 55234 .177 × 10−7 .856 × 10−10 7.53 2.7

6
SARGE 1.5 × 106 44529 .157 × 10−7 .135 × 10−9 2.95 109
HAAG 1.8 × 105 47911 .161 × 10−7 .905 × 10−10 7.15 5.7

7
SARGE 1 × 107 47766 .123 × 10−7 .988 × 10−10 3.02 642
HAAG 3.6 × 105 45599 .123 × 10−7 .241 × 10−10 5.11 13

8
SARGE 1 × 108 53560 .784 × 10−8 .554 × 10−10 3.29 4998
HAAG 1 × 106 49206 .789 × 10−8 .496 × 10−10 6.30 39

other hand the ε exhibits a less dramatic effect. This is related to the fact
that SARGE generates a phase space that is much larger than the one defined
by the cut on s0. In that sense, if the main time consumption in a given
computation is spent over the evaluation of the integrand (matrix element
squared), it is more fair to compare the square of the estimated expected
error, normalized by the number of accepted events Nacc. In that case we
see that HAAG is still 2-3 times more efficient, and if we consider a smaller
cut, namely

√
s0 = 10 GeV, this gain goes up to an order of magnitude

(Table V).

TABLE V

Results for the all-channel integration with s0 = 100 GeV2.

jets algorithm Ngen Nacc I ∆I ε(%) f

4
SARGE 1 × 105 60986 .364 × 10−6 .548 × 10−8 0.631 22.7
HAAG 6 × 104 46763 .366 × 10−6 .235 × 10−8 4.34 2.47

5
SARGE 2 × 105 43150 .619 × 10−6 .165 × 10−7 0.29 142
HAAG 1 × 105 56034 .643 × 10−6 .465 × 10−8 1.84 5.23

6
SARGE 1 × 106 67811 .114 × 10−5 .257 × 10−7 0.28 502
HAAG 1.4 × 105 51983 .111 × 10−5 .883 × 10−8 2.50 8.83

7
SARGE 5 × 106 84391 .186 × 10−5 .346 × 10−7 0.176 1723
HAAG 2 × 105 44015 .192 × 10−5 .177 × 10−7 2.24 16

8
SARGE 5 × 107 175541 .354 × 10−5 .517 × 10−7 .119 10618
HAAG 5 × 105 58874 .350 × 10−5 .289 × 10−7 1.65 34
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For a realistic calculation of the cross section of a QCD process, one may
assume that the time it takes to perform one evaluation of the integrand
is much larger than the time it takes to generate one accepted event and
to calculate the weight. This means that the computing time is completely
determined by the number of accepted events Nacc. We introduce

Naccf

Ngen
(25)

as a measure of the computing time. For a realistic calculation, one has to
multiply this number by the evaluation time of the integrand, and divide by
the square of the relative error one wants to reach. Fig.1 shows this quantity
as function of the number of produced partons using the data of Table V.
According to this graph, a calculation with SARGE would take 10 times longer
than the calculation with HAAG.

0

10

20

30

40

4 5 6 7 8

SARGE
HAAG

Fig. 1. Naccf/Ngen (a measure of computing time) as function of the number of

produced partons.

3. One-loop corrections to electroweak processes

Scattering amplitudes in Quantum Field Theory can be represented by
Feynman diagrams whose number grows extremely rapidly (faster than fac-
torially) in the number of loops and external legs. This places severe limits
in the calculation of multi-particle scattering amplitudes. The last few years,
the development of new innovative methods and algorithms made possible to
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overcome these limitations. Based on Schwinger–Dyson recursive equations
the complete scattering amplitude is computed directly without recourse
to explicit Feynman diagrams. This results to a dramatic decrease in the
computational cost which now depends only exponentially, i.e. ∼ 3n, in the
number of external particles, n. Automatic computational tools, based on
these Schwinger–Dyson recursive equations, have been developed that are
able to describe any process within the Standard Electroweak theory and
QCD [8–11].

The high precision attainable by the future experiments calls for a reli-
able estimate of the higher order corrections to the multi-particle scattering
processes. This means that the full one-loop contributions along with the
higher order leading QED and electroweak corrections are necessary. More-
over, taking into account the unstable particle contributions, re-summed
propagator corrections have to be included.

As a first step towards the extension of HELAC [8] towards the full one-loop
level, re-summed boson propagators and fermion-loop corrections to boson
vertices can be included. The main reasons to choose his collection of correc-
tions is that it ensures gauge invariance [13], and that it is fairly straightfor-
ward to implement in an automatic program based on the Schwinger–Dyson
method. If one, for example, wants to analyze processes that do not involve
more than 6 fermions, the one-loop corrections do not involve diagrams with
more than 4 external legs. So the “most complicated” diagrams that have to
be included are 1PI fermion-one-loop four-point functions (Fig.2). Below,
we give a sketch how to evaluate them in a straightforward manner. The
lower-point functions can be evaluated analogously.

W−(1) W+(2)

f

f f

f’

Z(3)γ(4)

W−(1) W+(2)

f

f f

f’

(4)γZ(3)

W−(1)

f

f

f’

γ(4) W+(2)

Z(3)

f’

Fig. 2. Three of the six 1PI diagrams that contribute to the fermionic one-loop

correction of the WWZγ vertex. f represents a down-type fermion, and f ′ the cor-

responding up-type fermion. The other three diagrams are obtained by exchanging

f ↔ f ′ and taking the opposite fermion current.
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3.1. Evaluation of the one-loop four-point function

Each diagram represents a function of the masses mi of the fermions,
the momenta pi of the vector bosons, their polarization vectors wi and their
couplings vi, ai to the fermion current. We conveniently choose to access
them by permutating the input of the general fermionic one-loop four-point
function

Γ4 =

∫

dnq

iπ2
Tr[P1(q)V1 P2(q)V2 P3(q)V3 P4(q)V4] , (26)

with2

Pj(q) =
q/ +

∑j−1
i=1 p/i + mj

(q +
∑j−1

i=1 pi)2 −m2
j + iε

and Vj = w/j(vj + ajγ5) . (27)

Possible divergences are treated within the formalism of dimensional regu-
larization. Ambiguities regarding γ5 are avoided if the vectors pi and wi are
considered to be strictly 4-dimensional. The trace can be calculated with the
help of computer algebra, for example with the program FORM [16], leading
to

Γ4 =

∫

dnq

iπ2

num4(q; p1,2,3,m1,2,3,4, w1,2,3,4, v1,2,3,4, a1,2,3,4)

den4(q; p1,2,3,m1,2,3,4)
, (28)

where the denominator function is defined by

denl(q; p1,2,...,l−1,m1,2,...,l) =
l
∏

j=1

[

(

q +

j−1
∑

i=1

pi

)2
−m2

j + iε

]

, (29)

and the numerator num4 is a fourth-order polynomial in the components
of q. The integration problem is now reduced to that of the calculation of
tensor integrals of the type

Dν1···νr(p1,2,3;m1,2,3,4) =

∫

dnq

iπ2

qν1
· · · qνr

den4(q; p1,2,3,m1,2,3,4)
, (30)

with r = 0, 1, 2, 3, 4. The Passarino–Veltman method [14, 15] uses the
Lorentz covariance of these integrals to express them in terms of coefficient

functions D through

Dν1···νr(p1,2,3;m1,2,3,4) =

3
∑

i1,...,ir=0

pi1,ν1
· · · pir ,νrDi1i2···ir(p1,2,3;m1,2,3,4) , (31)

2 We define the sum
P0

i=1
xi as a sum of zero terms.
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with Di1i2···ir = 0 if an odd number of indices are equal to 0, and the
interpretation

p0,ν1
p0,ν2

· · · p0,ν2j
← g{ν1ν2

gν3ν4
· · · gν2j−1ν2j} . (32)

The identification of the D-functions and their expression in terms of the
D-functions can also easily be performed by FORM. The output of FORM will
contain symbols representing scalar products of the external momenta and
the polarization vectors, contractions of these with the Levi–Civita symbol,
and the D-functions. This output can easily be turned into a FORTRAN-code.
The scalar products and the Levi–Civita symbol are easy to be implemented,
and the D-functions can be extracted from the LoopTools-package [17], or
one can make the effort to extend the FF-package [18], upon which LoopTools

is based.

3.2. Result

We will present the result of an actual calculation now. For more results
and more details about the program presented above, we refer to [20]. There,
we will also digress more about the well-known problem that the Passarino–
Veltman method to calculate tensor integrals is numerically unstable for
certain values of the external momenta. It involves the inversion of a kine-
matic matrix, which can become singular, although the one-loop function
is perfectly-well defined. On might hope that, in a Monte Carlo calcula-
tion of a cross section, the probability to get too close to these phase-space
points is too small to be concerned about this problem. We experienced,
that this hope may be trusted for cross section calculations concerning pro-
cesses at the coming generation of accelerators if the computation of the
coefficient functions is performed at quadrupole precision. Restricting the
use of quadrupole precision like this, the cpu-time stays within acceptable
limits. We calculated the total cross section for the process

e−e+ → µ− ν̄µ u d̄ τ− τ+

using the following cuts: El, Eq > 5GeV for lepton and quark energies, a
maximal cosine of 0.985 between all (initial and final state) charged lep-
tons and quarks, and mll,mqq > 10GeV for the invariant masses of charged
leptons and quarks. We used the renormalization scheme of [19], and the
following input parameters

m
W

= 80.35GeV , m
Z

= 91.1867GeV ,

Re[α(5)(m2
Z
)−1] = 128.89 , α(0)−1 = 137.03599976 , (33)

GF = 1.16639 × 10−5 GeV .
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As far as the tree-order cross section is concerned we use the widely used
Fixed Width scheme, where a fixed W -boson width is implemented in all
W -boson propagators and where the GF-scheme is applied for evaluating
the weak parameters. We recall that the latter is defined by using m

W
, m

Z

and GF as input parameters, together with the two relations

s2
W

= 1−
m2

W

m2
Z

, α =

√
2

π
GF m2

W
s2

W
.

For the W and Z widths we use

ΓW = 2.042GeV , ΓZ = 2.49GeV .

The results for E = 500GeV are σ0/ab = 54.96(26) σ1/ab = 57.31(28), and
the K-factor is K/100 = 4.28(2). They show the expected contribution at
the percent level of the higher order FL corrections to the total cross section.
For comparison, the value of σ0/ab computed with O’Mega/WHIZARD [11,12]
is given by 55.07(19).

4. Conclusions

We presented the algorithm HAAG, which uses the “hierarchical” strategy
for phase space generation in order to efficiently map the antenna momentum
structures, typically occurring in QCD amplitudes. It exhibits an improved
efficiency compared to SARGE for multi-parton calculations, and it is more
powerful in describing densities where a partial symmetrization over the per-
mutation space is considered. Also, HAAG makes no fundamental distinction
among massless and massive particles, so it can be used for an arbitrary
multi-partonic process.

Furthermore we implemented one-loop corrections following the Fermion-
Loop scheme in the program HELAC for automatic amplitude calculation and
presented a result of a cross section calculation.

The authors would like to thank C. Schwinn for providing the result of
the cross section calculation with O’Mega/WHIZARD. The research has been
financially supported by the European Union under contract number HPRN-
CT-2000-00149, and through a Marie Curie Fellowship under contract num-
ber HPMD-CT-2001-00105
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