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While the Monte Carlo approach to integration dominates any numer-
ical calculation in particle physics phenomenology, the Quasi-Monte Carlo
method, which promises better performance, is restrained to relatively mi-
nor applications. One of the reasons is the difficulty in estimating reliably
the error when using Quasi-Monte Carlo point sequences. The classical
Monte Carlo estimator, that consistently overestimates the error, has been
used up to now. We review the situation on the error estimators for classical
Monte Carlo and present a new estimator for Quasi-Monte Carlo.

PACS numbers: 02.70.Uu

1. Monte Carlo and Quasi-Monte Carlo

1.1. Introduction

In numerical integration, the main problem is not to obtain a numerical
answer for the integral, but rather, on the one hand, to ensure that the
inherent numerical error is as small as possible, and, on the other hand, to
estimate this error as precisely as possible.

In this paper, we shall be concerned with the integration errors arising
in Monte Carlo and Quasi-Monte Carlo integration. In these methods, the
integration nodes are distributed in a (more or less) stochastic manner, and
the integration errors are, therefore, of an essentially probabilistic nature.
The difference between Monte Carlo and Quasi-Monte Carlo is that in the
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former, the integration points are iid1 uniform in the integration region2,
while in the latter the integration points are not chosen independently, but
rather with an explicit interdependence so that their overall distribution is
“smoother”, in a sense discussed below.

In stochastic integration methods of the Monte Carlo or Quasi-Monte
Carlo types, the integration error is itself an estimate, which contains its
own error. That this is not an academic point becomes clear when we re-
alize that the error estimate is routinely used to provide confidence levels

for the integral estimate (be it based either or Chebyshev or Central-Limit-
Theorem, Gaussian rules); and a mis-estimate of the integration error can
lead to a serious under- or overestimate of the confidence level. As an ex-
ample, suppose that the Central Limit Theorem is applicable, so that the
integration result is drawn from a Gaussian distribution centered around the
true integral value. One standard deviation, as estimated by Monte Carlo,
corresponds to a two-sided confidence level of 68%. If the error estimate is
off by 50% (admittedly a large value), the actual confidence level may then
be anything between 38% and 87%.

From this consideration we are, therefore, led to a hierarchy of error
estimates: the first-order error is that on the integral estimate, while the
second-order error is the error on the error estimate. This in turn has, of
course, its own third-order error, and so on. Higher orders than the second
one, however, appear to be too academic for practical relevance, but we
should like to argue that, in any serious integration problem, the second-
order error ought to be included. In what follows we shall discuss the first-
and second-order error estimates.

1.2. Monte Carlo estimators

In this section we briefly review the probabilistic theory underlying Mon-
te Carlo integration. This is of course well known, but we include it here
so that the significant difference with the Quasi-Monte Carlo can become
clear.

Throughout this paper we shall consider integration problems over the
d-dimensional unit hypercube C = [0, 1)d. The integrand is a function f(~x),
which we shall assume real and non-negative, and, of course, integrable
overC. We shall define:

Jm =

∫

C

f(~x)m dd~x m = 1, 2, 3, . . . , (1)

1 iid stands for “independent, identically distributed”.
2 This ignores the possible interpretation of stratified and importance sampling meth-

ods of variance reduction. These can, at any rate, always be formulated in terms of

methods using iid uniform integration points.
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so that J1 is the required integral. Note that Jm is not necessarily finite for
m ≥ 2. In Monte Carlo we assume N integration points, to be chosen iid
from the uniform probability distribution over C. This means that the point

set X = {~x1, ~x2, . . . , ~xN} on which the integration is based is assumed to be
a typical member of an ensemble of such point sets, in such a way that the
combined probability distribution of the N points over this ensemble is the
uniform iid one

PN (~x1, ~x2, . . . , ~xN ) = 1 . (2)

We shall take the averages over this ensemble.
Let us assume that a point set X has been generated, and the values

of the integrand f(~x) at all these points have been computed. These we
shall denote by fj ≡ f(~xj), j = 1, 2, . . . ,N . From these we can compute the
discrete analogues of the integrals Jm, which are computable in linear time
(that is, time proportional to N):

Sm =
N

∑

j=1

(fj)
m . (3)

The Monte Carlo estimate of the integral is then

E1 =
1

N
S1 . (4)

The expected value of E1 over the above ensemble of point sets is then given
by

〈E1〉 =
1

N

∑

i

〈fi〉 =

∫

C

f(~x) dd~x = J1 , (5)

which is indeed the required integral: this is the basis for the Monte Carlo
method. Its usefulness appears if we compute the variance of E1

σ (E1)
2 =

〈

E2
1

〉

− 〈E1〉
2 =

1

N

(

J2 − J2
1

)

. (6)

Since this decreases as N−1, the Monte Carlo method actually converges
for large N . Note that the leading, O(N0), terms of 〈E2

1〉 and 〈E1〉
2 cancel

against each other: this is a regular phenomenon in variance estimates of this
kind3. The variance σ (E1)

2 is estimated by the first-order error estimator

E2 =
1

N2
S2 −

1

N3
S2

1 , (7)

3 It should be pointed out that what we estimate is the average of the squared error,

rather than the error itself, and squaring and averaging do not commute. In fact,

this is another reason why the second-order estimate is relevant.
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for which we have

〈E2〉 = σ (E1)
2 + O(N−2) . (8)

Since N is usually quite large, at least 10,000 or so, we feel justified in
working only to leading order in N . The squared error of E2 is computed
to be, to leading order in N ,

σ (E2)
2 =

1

N3

(

J4 − 4J3J1 − J2
2 + 8J2J

2
1 − 4J4

1

)

, (9)

for which the estimator is

E4 =
1

N7

(

N3S4 − 4N2S3S1 − N2S2
2 + 8NS2S

2
1 − 4S4

1

)

. (10)

which can also be computed in linear time; we have

〈E4〉 = σ (E2)
2 + O(N−4) . (11)

Some details on the computation of leading-order expectation values of this
type, as well as (for purposes of illustration) the form of the third- and
fourth-order error estimators, will be given in [1].

1.3. Quasi-Monte Carlo estimators

In contrast to the case of regular Monte Carlo, the technique of Qua-
si-Monte Carlo relies on point sets in which the points are not chosen iid
from the uniform distribution, but rather interdependently. To make this
more specific, let us consider a point set X of N points. For such a point
set, we may define a measure of non-uniformity, called a discrepancy or,
as in this paper, a diaphony. Its precise definition is presented below: for
now, suffice it to demand that there exist a function D(X) of the point
set, which increases with its non-uniformity: D(X) = 0 if the point set is
perfectly uniform in all possible respects, an ideal situation that can never
be obtained for any finite point set. The Quasi-Monte Carlo method consists
of using point sets X for which D(X) has some value s which is (very much)
smaller than 〈s〉, the value that may be expected for truly iid uniform ones.

Given that such “quasi-random” point sets can be obtained, how does
one use them in numerical integration? The obvious issue here is to deter-
mine of what ensemble the quasi-random point set X can be considered to
be a “typical” member. In this paper, we should like to advocate the view-
point that, since the main additional property of the quasi-random point set
that distinguishes it from truly random point sets is its “anomalously small”
discrepancy D, the ensemble ought to consist of those point sets that are
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iid uniformly, with the additional constraint that the discrepancy D has the
particular value D(X) = s for the actually used point set4.

The multi-point distribution of such a point set PN is now no longer
simply unity, since that would imply independence of the points in the point
set. Let us, therefore, write the multipont distribution as

PN (s; ~x1, ~x2, . . . , ~xN ) = 1 −
1

N
FN (s; ~x1, ~x2, . . . , ~xN ) , (12)

where we have anticipated a factor 1/N before the multipoint correlation

FN . Since an obvious requirement on the correlation function is that it
must be independent of the ordering of the points, FN (s; . . .) must be totally
symmetric; moreover, we must have

Fk(s; ~x1, ~x2, . . . , ~xK) =

∫

C

Fk+1(s; ~x1, ~x2, . . . , ~xk, ~xk+1) dd~xk+1 . (13)

Finally, since the minimum requirement is that the Quasi-Monte Carlo in-
tegral be unbiased, we must have

P1(s; ~x1) = 1 , (14)

so that
∫

C

F2(s; ~x1, ~x2) dd~x2 = 0 . (15)

The above remains, of course, to be proven for any prescription used for
the construction of the correlation function, and we shall do so in the next
section, for our particular prescription. This establishes the properties of
our ensemble of point sets X on which, to our view, the Quasi-Monte Carlo
estimates ought to be based. We shall indicate the “Quasi-Monte Carlo”
nature of the estimators by the superscript (q). The first estimator is that
of the integral

E
(q)
1 =

1

N

∑

fj . (16)

Here, and in the rest of this section, the sums will run from 1 to N . Denoting
by the subscript (q) averages with respect to the “quasi-random” ensemble
discussed above, we then have

〈

E
(q)
1

〉

(q)
=

∫

C

f(~x) P1(s; ~x) dd~x = J1 , (17)

4 We do not examine the possible alternative that the point sets in the ensemble must

have discrepancy in the neighborhood of the observed value s; this amounts to the

distinction between the micro-canonical and the canonical ensemble in statistical

mechanics.
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as before: owing to the fact that the one-point distribution is uniform, the
Quasi-Monte Carlo estimate is indeed unbiased just as the Monte Carlo
one. The distinction between the two methods appears in the first-order
error estimate. Let us define

α(~xi, ~xj) = 1 + F2(s; ~xi, ~xj) , (18)

then we have

σ
(

E
(q)
1

)2

(q)
=

1

N

(

J2 −

∫

f1f2α12

)

+ O

(

1

N2

)

, (19)

where we have adopted the straightforward convention for integrals

∫

f1f2α12 =

∫

C

f(~x1) f(~x2) α(~x1, ~x2) dd~x1 dd~x2 , (20)

etcetera. As before, we shall happily neglect terms that are subleading in
1/N . The advantage of the Quasi-Monte Carlo method is now clear: if we
can ensure that α12 > 1 “where it counts”, that is, generally, when ~x1 and ~x2

are “close” in some sense, then the Quasi-Monte Carlo error will be smaller
than the Monte Carlo one. A good Quasi-Monte Carlo point set, therefore,
is one in which the points “repel” each other to some extent.

The first-order error estimate is now simply

E
(q)
2 =

1

N2

∑

f2
i −

1

N3

∑

fifjαij . (21)

It is simple to show that, indeed

〈

E
(q)
2

〉

(q)
= σ

(

E
(q)
1

)2

(q)
+ O(N−2) , (22)

however, evaluating E
(q)
2 in linear time is less trivial since a simple expression

for F2(s; . . .) has to be derived. We shall discuss this later. The variance of

the estimator E
(q)
2 can be evaluated to

σ
(

E
(q)
2

)2
=

1

N3

(
∫

f4
i − 4

∫

f3
i fjαij −

∫

f2
i f2

j αij

+ 4

∫

f2
i fkflαikαkl + 4

∫

f2
i fkflαikαil

− 4

∫

fifjfkflαijαjkαkl

)

+ O(N−4) , (23)
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for which the corresponding estimator (to leading order) is

E
(q)
4 =

1

N7

(

N3
∑

f4
i − 4N2

∑

f3
i fjαij − N2

∑

f2
i f2

j αij

+ 4N
∑

f2
i fkflαikαkl + 4N

∑

f2
i fkflαikαil

− 4
∑

fifjfkflαijαjkαkl

)

. (24)

A technique with Feynman graphs has been deviced, that yields the higher
order error estimators, where the role of ~ is played by 1/N . The details
of this technique, which allowed us to also find E8 will be discussed in [1].
It goes without saying that the substitution αij → 1 will reduce all the
Quasi-Monte Carlo results to the regular Monte Carlo ones.

2. Multipoint distributions

2.1. The multi-point distribution in general

Under the premise that the Quasi-Monte Carlo point sequence we use
is a typical member of the ensemble of point sets with the particular value
of diaphony D(X) = s, the Quasi-Monte Carlo analogue of Eq. (2) would
then be the assumption

PN (s; ~x1, ~x2, . . . , ~xN ) =
1

H(s)
δ(D(X) − s) , (25)

where s is, again, the observed value of the discrepancy of X, on which
PN must now of course depend; and H(s) is the probability density to
happen upon a point sets X with this discrepancy in the regular Monte
Carlo ensemble:

H(s) =

∫

C

δ(D(X) − s) dd~x1 dd~x2 dd~xN . (26)

2.2. Diaphony

We consider a point set X with N elements, given in C. The non-
uniformity of the point set X can be described by its diaphony

D(X) =
1

N

N
∑

j,k=1

β(~xj , ~xk) , (27)

with

β(~xj , ~xk) =
ˆ∑

~n

σ2
~n e~n(~xj)ē~n(~xk) ,

e~n(~x) = exp(2iπ ~n · ~x) . (28)
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Here, the vectors ~n = (n1, n2, . . . , nd) form the integer lattice, and the hat

denotes the sum over all ~n except ~n = ~0. We may also write

D(X) =
1

N

ˆ∑

~n

σ2
~n

∣

∣

∣

∣

∣

∣

N
∑

j=1

e~n(~xj)

∣

∣

∣

∣

∣

∣

2

, (29)

so that we recognize the diaphony as a measure of how well the various
Fourier modes are integrated by the point set X5. The diaphony is, therefore,
seen to be related to the “spectral test”, well-known in the field of random-
number generator testing. For the mode strengths σ2

~n we have

σ2
~n ≤ 0 ,

ˆ∑

~n

σ2
~n = 1 . (30)

The latter convention simply establishes the overall normalization of D. The
advantage of this diaphony over, say, the usual (star) discrepancy is the fact
that it is translation-invariant:

β(~xj , ~xk) = β(~xj − ~xk) , (31)

so that point sets X and X ′ that differ only by a translation (modulo 1) have
the same nonuniformity: the diaphony is actually defined on the hypertorus
rather than on the hypercube. Also, the diaphony is tadpole-free

∫

C

β(~x) dd~x = 0 . (32)

Moreover, we shall use σ2
~n such that σ2

~n = σ2
~n′ if the two lattice vectors ~n

and ~n′ differ only by a permutation of their components. Thus, X and X ′

will also have the same nonuniformity if they differ by a global permutation
of the coordinates of the points.

2.3. Multipoint distribution by Laplace transform

As discussed above, let H(s) be the probability that the point set X
has diaphony equal to s, that is, D(X) = s. The underlying ensemble of
point sets is that of sets of N iid uniformly distributed points, i.e. the same
ensemble underlying the usual Monte Carlo error estimates.

5 It should be noted, however, that this specific choice for e~n(x) is by no means manda-

tory. The only necessary condition here and in all that follows is that the functions

e~n(x) form a complete orthonormal set in [0, 1]D .
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Let us define

Gp(z; ~x1, . . . ~xp) =

∫

dd~xk+1 . . . ~xNezD(x) . (33)

Then, we have

H(s) =

∫

C

dd~x1 dd~x2 . . . dd~xN δ(D(X) − s)

=
1

2iπ

+i∞
∫

−i∞

e−zs G0(z) dz , (34)

where the integration contour runs to the left of all the singularities of G0(z);
and the multipoint distribution for p points averaged over all point sets X
with diaphony s, is given by

Pp(s; ~x1, ~x2, . . . , ~xp) =
1

H(s)
Rp(s; ~x1, ~x2, . . . , ~xp) ,

Rp(s; ~x1, ~x2, . . . , ~xp) =
1

2iπ

+i∞
∫

−i∞

e−zs Gp(z) dz . (35)

It has been shown [2] that

G0(z) = exp
(

−
1

2

∑

~̂n

ln
(

1 − 2zσ2
~n

)

)

+ O

(

1

N2

)

(36)

and

G2(z;x, y) = G0(z)
(

1 +
1

N

∑

~̂n

2zσ2
~n

1 − 2zσ2
~n

e~n(x) e∗~n

)

+ O

(

1

N2

)

. (37)

Upon insertion of Eqs. (36), (37) in the formula for the two-point corre-
lation function we get

F2(s;x, y) =
∑

~̂n

ω~n e~n(x) e∗~n(y) , (38)

with

ω~n =

i∞
∫

−i∞

dze−zsG0(z)
−2zσ2

~n

1−2zσ2

~n

i∞
∫

−i∞

dz e−zsG0(z)

. (39)
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Except in the very simplest cases, a complete evaluation of Eq. (38) is
nontrivial. A simplification arises if s is much smaller than its expectation
value 1 (which is anyway the aim in quasi-Monte Carlo), or if the Gaussian
limit is applicable, namely when the number of modes with non-negligible
σ2

~n becomes large in such a way that no single mode dominates. In practice,
this happens when the dimensionality of C becomes large. Fortunately, these
are precisely the situations of interest. The position of the saddle point for
H(s), ẑ, is given by

ˆ∑

~n

σ2
~n

1 − 2zσ2
~n

= s . (40)

For s ≪ 1, therefore, ẑ is large and negative. Since to first order the same
saddle point may be used for R2, we find the attractive result

F2(s; ~x1, ~x2) ≈
ˆ∑

~n

−2ẑσ2
~n

1 − 2ẑσ2
~n

e~n(~x1)ē~n(~x2) . (41)

The formulae (40) and (41) suffice, in our approximation, to compute all the
multipoint correlations.

3. The estimator

3.1. The estimator analyzed

Inserting Eq. (41) in the equation for our estimator (Eq. 21) we arrive
at the following estimator for the Quasi-Monte Carlo error

E
(q)
2 =

1

N2

∑

f2
i −

1

N3

(

∑

fi

)2
−

1

N3

∑

~̂n

ω~n

∣

∣

∣

∑

i

fie~n(xi)
∣

∣

∣

2
, (42)

with

ω~n =
−2ẑσ2

~n

1 − 2ẑσ2
~n

. (43)

We are still free to choose the exact form of the weights σ2
~n at will, under

the constraints of Eq. (30). Our choice is the so called Jacobi weights

σ2
~n = Ke−λ~n2

(44)

with
K−1 =

∑

~̂n

e−λ~n2

. (45)

The parameter λ is regulating the sensitivity of the diaphony: as λ →
0 ⇒ σ~n → 1 for every mode while as λ → ∞ ⇒ σ~n → 0. The first case
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corresponds to a super-sensitive diaphony, useless for practical purposes,
whereas the second case corresponds to a non-sensitive diaphony that would
value equally all point-sets (D(X) = 0 always). In effect λ defines the
number of “active” modes in the diaphony. We choose λ = 0.1.

 0
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Fig. 1. The value of the diaphony as a function of the value of the saddle point

through s =
∑

n

(σ2

n
/(1 − 2zσ2

n
)) for λ = 0.1 and d = 2.

Since the estimator (Eq. (42)) contains an infinite sum over modes, we
have to give a prescription as to which modes one is entitled to disregard.
Fig. 1 shows the dependence of the saddle point ẑ to the value of the di-
aphony s. As the value of s becomes small the saddle point becomes quickly
large and negative ẑ ≪ 0. Then −2ẑσ2

~n → ∞ for low modes and −2ẑσ2
~n → 0

for higher modes, when σ2
~n/|ẑ| → 0. We can thus safely neglect these higher

modes in the estimator. As long as the value of the diaphony is small, which
is in any case the goal in Quasi-Monte Carlo the profile of ω~n depends only
on the choice of λ, which regulates the sensitivity of the diaphony. We
see, therefore, that the estimator inherits the sensitivity of the diaphony in
a direct way.

It is easy to see that the estimator averages (to leading order in N) in
a positive definite quantity. This leaves open the possibility for a negative
error estimate, in which case the error on the above estimator becomes
particularly relevant. In this case the higher order terms (1/N2 supressed)
that we have neglected are actually important, which indicates that as N
becomes large the negative error effect should disappear.
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3.2. The estimator plotted

In the following we present a number of plots that show how both the
classical and the quasi error estimates behave as a function of the number
of points N . We use a RANLUX [3] generator for pseudo-random point-
sequences and a Van de Corput [4] generator with base 2, 3, 5, 7, 11, . . . for
quasi-random sequences. All integrations are performed in the unit hyper-
cube [0, 1]D.

3.2.1. Test functions

The test functions we use consist of a subset of the test functions used
by Schlier in [5], along with two Gaussian functions with constant and di-
mensionally dependent width. We have

TF13 : f(~x) =

D
∏

k=1

|4xk − 2| + k

1 + k
, (46)

which averages to J1 = 1. This test function is especially taylored for
a Van de Corput sequence, since in D = 1 it is perfectly integrated by
such a sequence with base 2.

TF2 : f(~x) =

D
∏

k=1

k cos(kxk) , (47)

which averages to J1 =
∏

k sin(k). This function should be difficult to
integrate in high dimensions.

TF4 : f(~x) =

D
∑

k=1

k
∏

j=1

xj , (48)

which averages to J1 = 1 − (1/2D). It is chosen as a simple example of
a function that is not a product of one dimensional functions.

TF5 : f(~x) = Ke−(~x−~x0)2/2σ2

σ2 = 0.01 , (49)

which averages to J1 = 1 (K is the normalization factor). This is the
standard Gaussian peak with fixed width. The fixed width results in a rapid
decrease, in higher dimensions of the subset of the integration volume where
the function is non-zero, making the integration cumbersome (the higher the
dimension, the more points are needed). To fix this side effect we also use

TF6 : f(~x) = Ke−(~x−~x0)2/2σ2

, σ2 =
1

4π(1 + a)2/D
a = 10 , (50)
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which averages to J1 = 1 (K is the normalization factor). The width in this
function increases in such a way as to keep the ratio of the useful integration
volume to the total fixed.

3.2.2. Plots

In the following some plots of the error and its estimates as functions
of the number of points N are shown in a logarithmic scale. For a more
detailed presentation the reader is deferred to [1]. Here the classical error
estimate, based on the iid assumption is presented, along with three versions
of quasi error estimators, Eq5

2 , Eq10
2 , Eq15

2 . The superscript next to q denotes
the squared length of the higher modes included in the sum of Eq. (42).

Thus Eq10
2 includes modes with ~n2 ≤ 10. The real error made is included for

comparison. Moreover, in the first plot the performance of a pseudo-random
point set produced by RANLUX is presented for comparison. The observation,
there, that the pseudo-random pointsets perform much worse than the quasi-
random ones persists in all other cases. The error under the pseudo-random
set is not depicted in the rest of the plots for reasons of clarity. The reader
is deferred to [1] for a more elaborate treatment.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1000  10000

Fig. 2. TF2, d = 2 log-plot of the real error (continuous line), and then from top

to bottom the classical estimate (slashed), Eq5

2
(small-slashed), Eq10

2
(dotted) and

Eq15

2
(slashed–dotted). The fluctuating dotted line in this plot is the error with

the RANLUX pseudorandom point set. The comparison with the real Quasi-Monte

Carlo error shows that the quasi point set integrates much better. Further more,

the classical error estimator is far off the real error whereas the quasi estimators

are approaching the real error as more modes are added to the sum.



2630 A. Lazopoulos

 1e-04

 0.001

 0.01

 0.1

 1000  10000

Fig. 3. TF4, d = 3 log-plot of the real error (continuous line), and then from top

to bottom the classical estimate (slashed), Eq5

2
(small-slashed), Eq10

2
(dotted) and

Eq15

2
(slashed–dotted). Here TF4 is shown in 3 dimensions, the need for more

modes becomes apparent though the improvement in the error estimate using the

quasi estimator is still significant.
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Fig. 4. TF5, d = 3 log-plot of the real error (continuous line), and then from top

to bottom the classical estimate (slashed), Eq5

2
(small-slashed), Eq10

2
(dotted) and

Eq15

2
(slashed–dotted). The Gaussian peak test function in 3 dimensions behaves

much better. The estimator is not only improved but also approaching very well

the real error made by the use of the Van de Corput sequence.
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Fig. 5. TF6, d = 4 log-plot of the real error (continuous line), and then from top

to bottom the classical estimate (slashed), Eq5

2
(small-slashed), Eq10

2
(dotted) and

Eq15

2
(slashed–dotted). The quasi estimators approximate well the error, but now

the negative error effect appears. The fact that for N → 104 the estimator returns

to positive values suggests that the negative values effect is indeed a statistical

fluctuation and not a systematic error. This is the case where the error on the

error estimator becomes relevant.
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Fig. 6. TF13, d = 3 log-plot of the real error (continuous line), and then from top

to bottom the classical estimate (slashed), Eq5

2
(small-slashed), Eq10

2
(dotted) and

Eq15

2
(slashed–dotted). Here the error is particularly small and the error on the

error makes the estimator with modes of squared length up to 10 and up to 15

negative for small N . The conclusion should be once more that the error on the

error is important in such cases. As this second order error decreases with N the

error itself becomes positive approaching its strictly positive mean value.
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4. Outlook

We have seen that the error estimator suggested in this paper performs
always better than the classical estimator when one uses Quasi-Monte Carlo
point sequences. The price to pay is the raise in the complexity of the com-
putation of the estimator from linear to linear times the number of modes
involved. When the dimensionality of the integral is high the number of
modes that are close to zero and, therefore, most relevant for every reason-
able diaphony definition, becomes overwhelmingly large. The solution out
of this deadlog could be reached through sampling over the mode sum in an
efficient way. This we defer to further research.

Moreover, one could decide to consider the point set in question as a typi-
cal member of the ensemble of pointsets with a value s of the diaphony which
is not precisely D(X) but narrowly distributed around D(X). The statis-
tical ensemble would then be different and there are indications that this
approach would be more convenient for progress in the analytic part of the
calculation.

Finally, further experience with more realistic test functions and the im-
plementation of more advanced Quasi-Monte Carlo sequences (like for exam-
ple the Niederreiter sequences [6]) would be in order for further improving
the present results.
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