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Some of the most interesting Higgs-production processes at future e+e−

colliders are of the type e+e− → f f̄H . We present a calculation of the
complete O(α) corrections to these processes in the Standard Model for
final-state neutrinos and top quarks. Initial-state radiation beyond O(α) at
the leading-logarithmic level as well as QCD corrections are also included.
The electroweak corrections turn out to be sizable and reach the order of
±10% and will thus be an important part of precise theoretical predictions
for future e+e− colliders.

Furthermore, an overview is given of a technique for a fast and reliable
numerical calculation of multi-leg one-loop integrals. The method is nu-
merically stable also for exceptional momentum configurations and easily
allows the introduction of complex masses and the calculation of higher
orders in the expansion around D = 4.

PACS numbers: 12.15.Lk

1. Introduction

One of the main future tasks in particle physics will be the investiga-
tion of the mechanism of electroweak symmetry breaking in general and the
discovery of the Higgs boson and the determination of its properties in par-
ticular. Since the Higgs-boson mass is expected to be in the range from the
lower experimental bound of 114.4 GeV up to 1 TeV, with a light Higgs
mass (below ∼ 200 GeV) favoured by electroweak precision data, the LHC
will be able to discover it in the full mass range, provided it exists and has
no exotic properties. However, for the complete determination of its profile,
including its couplings to fermions and gauge bosons, experiments in the
clean environment of an e+e− linear collider are indispensable.

∗ Presented at the final meeting of the European Network “Physics at Colliders”,
Montpellier, France, September 26–27, 2004.
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Here we concentrate on the associated production of a Higgs boson to-
gether with a pair of neutrinos or top quarks in e+e− annihilation, which
are among the most interesting Higgs-boson production processes at future
e+e− linear colliders. The calculation of the radiative corrections to these
processes is presented in the next two sections.

The last section gives a sketch of a technique for a fast and reliable
numerical calculation of multi-leg one-loop integrals and describes an imple-
mentation of the method in Mathematica and C++.

2. The process e
+

e
−

→ νν̄H

At e+e− colliders the two main Higgs production processes are the Higgs-
strahlung and W -boson-fusion processes. In the Higgs-strahlung process the
Higgs boson is radiated off a Z boson, with the corresponding cross section
rising sharply at the threshold, located at a centre-of-mass (CM) energy of√

s = MZ + MH , to a maximum a few tens of GeV above the thresh-
old energy and then falling off as 1/s. In the W -boson-fusion process the
Higgs boson is produced via fusion of two W bosons, each emitted from an
incoming electron/positron. The corresponding cross section grows as ln s
and thus is the dominant production mechanism at large energies. Both
production mechanisms appear in the process e+e− → νlν̄lH, with l = e, µ,
or τ , though the W -boson-fusion process is only present for l = e. For the
process e+e− → ZH the O(α) electroweak radiative corrections have been
calculated many years ago in Ref. [1]. Furthermore a Monte Carlo algorithm
for the calculation of the real photonic corrections to this process was de-
scribed in Ref. [2]. For the full process e+e− → νν̄H there has been a lot of
activity regarding the electroweak corrections recently. Within the Minimal
Supersymmetric Standard Model (MSSM) the fermion and sfermion loop
contributions have been evaluated in Refs. [3, 4]. Analytical results for the
one-loop corrections in the SM have been obtained in Ref. [5], though no
numerical results have been given there. Finally, calculations of the com-
plete O(α) electroweak corrections to e+e− → νν̄H in the SM have been
performed in Refs. [6, 7]. Very recently also results on corrections to the
Z-boson-fusion process e+e− → e+e−H have been presented in Ref. [8].

2.1. Calculational framework

The calculation of the one-loop diagrams has been carried out in the
’t Hooft–Feynman gauge using standard techniques. The renormalization
is carried out in the on-shell renormalization scheme, as e.g. described in
Ref. [9]. The electron mass me is neglected whenever possible.

The calculation of the Feynman diagrams has been performed in two
completely independent ways, leading to two independent computer codes
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for the numerical evaluation. Both calculations are based on the methods
described in Ref. [9]. Apart from the 5-point functions the tensor coefficients
of the one-loop integrals are recursively reduced to scalar integrals with the
Passarino–Veltman algorithm [10] at the numerical level. The scalar in-
tegrals are evaluated using the methods and results of Refs. [9, 11], where
ultraviolet divergences are regulated dimensionally and IR divergences with
an infinitesimal photon mass. The 5-point functions are reduced to 4-point
functions following Ref. [12], where a method for a direct reduction is de-
scribed that avoids leading inverse Gram determinants which potentially
cause numerical instabilities. As a check of gauge independence the calcula-
tion of the virtual corrections has been repeated using the background-field
method [13].

The results of the two different codes, and also those obtained within the
conventional and background-field formalism, are in good numerical agree-
ment (typically within at least 12 digits for non-exceptional phase-space
points).

We use two different schemes for the inclusion of the finite Z-boson decay
width. In the fixed-width scheme, each resonant Z-boson propagator 1/(sνν̄−
MZ

2), where sνν̄ is the invariant mass of the neutrino–antineutrino pair, is
replaced by 1/(sνν̄ − MZ

2 + iMZΓZ), while non-resonant contributions are
kept untouched. This potentially violates gauge invariance, because the
resonant part of the amplitude alone is not gauge invariant. As a second
option, we applied a factorization scheme where the full (gauge-invariant)
ZH-production amplitude with zero Z-boson width is rescaled by a factor
(sνν̄−MZ

2)/(sνν̄−MZ
2+iMZΓZ). However in this scheme the non-resonant

part of the ZH-amplitude is neglected on resonance. Nevertheless both
schemes give the same results for the total cross section within integration
errors.

The matrix elements for the real photonic corrections are evaluated using
the Weyl–van der Waerden spinor technique as formulated in Ref. [14] and
have been successfully checked against the result obtained with the package
Madgraph [15]. The soft and collinear singularities are treated both in the
dipole subtraction method following Refs. [16, 17] and in the phase-space
slicing method following closely Ref. [18].

The emission of photons collinear to the incoming electrons or positrons
leads to corrections that are enhanced by large logarithms of the form
ln(me

2/s). In order to achieve an accuracy at the few 0.1% level, the corre-
sponding higher-order contributions, i.e. contributions beyond O(α), must
be taken into account. These are included in our calculation at the leading-
logarithmic level using the structure functions given in Ref. [19] (for the
original papers see references therein).
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The calculation is done in the so-called Gµ-scheme, i.e. we derive the
electromagnetic coupling α = e2/(4π) from the Fermi constant Gµ accord-

ing to αGµ
=

√
2GµM2

W sw
2/π. This procedure absorbs the corrections pro-

portional to mt
2/M2

W in the fermion–W -boson couplings and the running of
α(Q2) from Q2 = 0 to the electroweak scale. In the relative radiative cor-
rections, we use α(0) as coupling parameter, which is the correct effective
coupling for real photon emission.

The cross section for e+e− → νν̄H is dominated by the WW -fusion dia-
gram, which gets its main contribution from the region of small momentum
transfers. Consequently, the corresponding corrections are determined by
the eνeW and WWH vertex corrections for small invariant W masses. The
correction to the eνeW vertex and the main contributions to the WWH ver-
tex in the relevant kinematical region are well approximated by ∆r. Thus,
parametrizing the lowest order in terms of Gµ (Gµ-scheme) absorbs a large
part of the universal corrections. Further universal corrections have been
obtained by extracting the leading mt-dependent corrections of the WW -
contribution in the heavy-top limit in the Gµ-scheme. These reproduce the
full mt-dependent corrections rather well for the WW channel, which is
dominated by small momentum transfers. Therefore, we have defined the
following improved Born approximation (IBA)

dσnon-photonic
IBA = dσ0 − dσWW

0

5α

16πsw
2

mt
2

M2
W

. (1)

The corresponding expression for the mt → ∞ limit of the ZH contribu-
tion is not included in the definition of the IBA, since it does not give a
good description. In the ZH channel

√
s is a typical scale for the momen-

tum transfer, which is larger than mt in the physically interesting region of

e+e− → νν̄H. Finally, dσnon-photonic
IBA is convoluted with the ISR structure

functions to yield the cross section of the full IBA.
The phase-space integration is performed with Monte Carlo techniques

in both computer codes. The first code employs a multi-channel Monte
Carlo generator similar to the one implemented in RacoonWW [17, 20] and
Lusifer [21], the second one uses the adaptive multi-dimensional integration
program Vegas [22].

2.2. Comparison to related work

We have compared our results for the O(α) corrections to Ref. [7] and
the contributions from closed fermion loops with Refs. [3, 4].

Adapting the input parameters and the parametrization of the lowest-
order matrix element to those used by Belanger et al. [7], we reproduced
the numbers for the total cross section given in Table 2 of the first paper of
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Ref. [7]. Note that we switch off the ISR beyond O(α) in this comparison.
In Table I we list for each Higgs-boson mass the results of Ref. [7]1 together
with our results. The numbers in parenthesis indicate the errors in the last
digits. We find agreement within 10−4 for the total lowest-order cross section
and within 0.3% for the corrected cross section. The corrections relative to
the lowest-order cross section agree within 0.2%. This is of the order of the
statistical error of Ref. [7], which is about 0.1%. Note that Belanger et al.

use α(0) to parametrize the lowest-order cross section. As a consequence
their relative corrections are shifted by 3∆r ≈ +9% compared to those in
the Gµ-scheme.

TABLE I

Total cross section in lowest order and including the full O(α) corrections and the
relative corrections for

√
s = 500 GeV and various Higgs masses for the input

parameter scheme of Ref. [7].

MH [ GeV] σtree [fb] σ [fb] δ [%]

150 61.074(7) 60.99(7) −0.2 Ref. [7]
61.076(5) 60.80(2) −0.44(3) this work

250 21.135(2) 20.63(2) −2.5 Ref. [7]
21.134(1) 20.60(1) −2.53(3) this work

350 4.6079(5) 4.184(4) −9.1 Ref. [7]
4.6077(2) 4.181(1) −9.27(3) this work

We have also reproduced the cos θH and EH distributions in figures 1
and 2 of the first paper of Ref. [7]. We found agreement within the accuracy
of these figures.

When considering only fermion-loop corrections, we find agreement with
the calculations of Refs. [3, 4], once the appropriate renormalization and
input-parameter schemes are adopted. For more details on this compari-
son we refer to Ref. [6].

2.3. Numerical results

The results for the total cross section in lowest order and including the
radiative corrections are shown in figure 1 on the l.h.s. as a function of
the CM energy for MH = 150 GeV. The relative corrections shown on
the r.h.s are large (. −20%) and vary strongly in the ZH-threshold region

1 According to F. Boudjema, the numbers for the lowest-order cross section in Table 2
of Ref. [7] have integration errors of the order of 0.2%. Table I contains updated
numbers obtained with increased statistics.
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Fig. 1. Lowest-order and corrected cross sections (l.h.s.) as well as relative correc-

tions with respect to Born result and improved Born approximation (r.h.s.) in the

Gµ scheme for a Higgs-boson mass MH = 150 GeV.

while they are flat and about −10% for energies above 500 GeV. They are
always negative because they are dominated by initial-state radiation and
the cross section is monotonously rising. Also shown in figure 1 on the r.h.s
are the residual relative corrections normalized to the IBA which are about
1% near the threshold and reach 3–4% at high energies. Although they are
systematically smaller than the corrections relative to the lowest order in
the Gµ scheme, the inclusion of the full O(α) corrections is necessary for a
precision analysis.

3. The process e
+

e
−

→ tt̄H

We have also investigated the process e+e− → tt̄H, which is interesting
since it permits a direct access to the top-quark Yukawa coupling gtt̄H , which
is by far the largest Yukawa coupling (gtt̄H ≈ 0.5) in the SM. This is possible
because the process proceeds mainly through Higgs-boson emission off top
quarks, while emission from intermediate Z bosons plays only a minor role
if the Higgs-boson mass is not too large, i.e. MH ∼ 100–200 GeV. For a
light Higgs boson with a mass around MH ∼ 120 GeV, a precision of about
5% can be reached at an e+e− linear collider operating at

√
s = 800 GeV

with a luminosity of
∫

Ldt ∼ 1000 fb−1 [23]. An even better accuracy
can be obtained by combining the tt̄H channel with information from other
Higgs-production and decay processes in a combined fit [24].

Within the SM the O(αs) corrections have been calculated for the domi-
nant photon-exchange channel in Ref. [25], while the full set of diagrams has
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been evaluated in Ref. [26]. The O(αs) corrections to the photon-exchange
channel in the MSSM have been considered in Ref. [27]. In Ref. [28] all QCD
diagrams have been taken into account, while the SUSY-QCD corrections
have been worked out in Ref. [29]. The evaluation of the electroweak O(α)
corrections in the SM has made considerable progress recently. Results have
been presented in Refs. [30–32], with agreement between Refs. [31, 32] while
Ref. [30] shows deviations close to threshold and at high energies.

Our calculation [32] includes the O(α) electroweak and the O(αs) QCD
corrections. Though the calculation of the virtual corrections for this pro-
cess is much more involved than for the process e+e− → νν̄H, the same
calculational techniques could be used.

3.1. Comparison to related work

The results on the QCD corrections have been reproduced with the (pub-
lically available) computer code based on the calculation of Ref. [26]. We
found agreement within the statistical integration errors.

For a comparison of the electroweak O(α) corrections with the results
of Ref. [30] we changed our input parameters to the ones quoted there and
switched to the α(0)-scheme. In Table II we compare some representative
numbers2 from the calculation of Ref. [30] with the corresponding results
from our Monte Carlo generator. The numbers in parentheses give the er-

TABLE II

Total cross section in lowest order and including the full electroweak O(α) correc-
tions as well as the relative corrections for MH = 150 GeV and various CM energies
for the input-parameter scheme of Ref. [30]. The statistical errors of Ref. [30] are
estimated by the authors to be below 1%.

√
s [ GeV] σtree [fb] σ [fb] δ [%]

500 4.8142 · 10−4 3.401 · 10−4 −29.35 Ref. [30]

4.8140(8) · 10−4 3.168(4) · 10−4 −34.19(8) this work

800 1.58 1.63 3.60 Ref. [30]
1.5749(2) 1.6243(4) 3.14(2) this work

1000 1.47 1.53 4.47 Ref. [30]
1.4664(2) 1.5273(4) 4.15(2) this work

2000 0.6270 0.6297 0.43 Ref. [30]
0.6269(1) 0.6526(3) 4.11(5) this work

2 These numbers were kindly provided to us by Zhang Ren-You and You Yu quoting a
statistical error below 1%.
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rors in the last digits of our calculation. The tree-level cross sections coincide
within 0.03%. Most of the numbers for the one-loop corrected cross sections
agree within 1–2%, i.e. roughly within the estimated error of Ref. [30]. How-
ever, for the corrected cross sections at

√
s = 2 TeV, i.e. at high energies, and

the one very close to threshold, i.e. for
√

s = 500 GeV and MH = 150 GeV,
we find differences of 4% and 7%, respectively. The same holds for the rel-
ative corrections. Ours are larger by about 4% at

√
s = 2 TeV and smaller

by about 5% for the selected cross section close to threshold.
Finally, we have also compared the electroweak O(α) corrections with

Ref. [31], where the α(0)-scheme has been used. In Table III we list the
results of Table 2 of Ref. [31] for MH = 120 GeV together with the corre-
sponding results from our Monte Carlo generator. Again the numbers in
parentheses give the errors in the last digits. We reproduce the results for
the lowest-order cross section within the integration errors, which are about
2–3 × 10−4. The results for the cross section including electroweak correc-
tions as well as the relative corrections coincide to better than 0.1% which
is of the order of the integration error of the results of Ref. [31].

TABLE III

Total cross section in lowest order and including the full electroweak O(α) correc-
tions as well as the relative corrections for MH = 120 GeV and various CM energies
for the input-parameter scheme of Ref. [31].

√
s [ GeV] σtree [fb] σ [fb] δ [%]

600 1.7293(3) 1.738(2) 0.5 Ref. [31]
1.7292(2) 1.7368(6) 0.44(3) this work

800 2.2724(5) 2.362(4) 3.9 Ref. [31]
2.2723(3) 2.3599(6) 3.86(2) this work

1000 1.9273(5) 2.027(4) 5.2 Ref. [31]
1.9271(3) 2.0252(5) 5.09(2) this work

3.2. Numerical results

Results for the total cross section in lowest order and the corrected cross
section including both the electroweak and QCD corrections are shown in
figure 2 on the l.h.s. Away from the kinematic threshold at

√
s = 2mt +MH

the size of the cross section is typically a few fb, with a maximum at about
800 GeV. On the r.h.s. of figure 2 the relative corrections are shown. The
QCD corrections are large and positive close to threshold where soft-gluon
exchange in the tt̄ system leads to a Coulomb-like singularity. For larger
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Fig. 2. Lowest-order and corrected cross sections (l.h.s.) as well as relative correc-

tions (r.h.s.) in the Gµ scheme for a Higgs-boson mass MH = 150 GeV.

energies the QCD corrections decrease, eventually turn negative and reach
about −8% at an energy of

√
s = 1.5 TeV. The electroweak corrections

are about −10% and vary only weakly with energy away from the threshold
region, and are thus of a comparable size as the QCD corrections. Close to
threshold they reach about −20% due to the large ISR QED corrections in
this region. The behaviour of the combined electroweak and QCD correc-
tions is dominated by the Coulomb-like singularity close to threshold while
turning negative and reaching about −15% at high energies.

Summarizing, for both of the processes e+e− → νν̄H and e+e− → tt̄H
the O(α) corrections are sizeable and typically of the order ±10%. They will
thus be an important ingredient of precise theoretical predictions for future
e+e− colliders. Our results agree with the ones of an independent calculation
within the integration errors, which are around 0.1–0.2%. Moreover, these
calculations show that techniques for the calculation of one-loop corrections
to 2 → 3 processes are available and work well in practical applications.

4. Numerical calculation of one-loop integrals

In this section we present a technique for a fast and reliable numerical
calculation of multi-leg one-loop integrals and describe an implementation in
Mathematica/C++. The method is numerically stable also for exceptional
momentum configurations and easily allows the introduction of complex
masses and the calculation of higher orders in the expansion around D = 4.
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Using the conventional analytic approach of Ref. [11] all scalar loop in-
tegrals can be expressed in terms of dilogarithms and logarithms. Further-
more, using the reduction algorithm of Ref. [10] all tensor loop integrals,
i.e. integrals containing loop momenta in the numerator, can be expressed
in terms of scalar integrals. Therefore, a full analytic solution for one-loop
integrals exists. However this approach has a number of drawbacks. First of
all, with an increasing number of external legs the number of dilogarithms
in the analytic expression of a scalar integral increases rapidly. This can
lead to cancellations for multi-leg integrals in certain kinematic regions [33].
Furthermore the tensor reduction of Ref. [10] introduces inverse Gram de-
terminants. These can vanish at the phase space boundary even though
the tensor coefficients themselves are regular in this region. There are thus
cancellations among terms in the numerator that can lead to numerical in-
stabilities. Unstable particles are also an important issue in multi-leg loop
calculations, since they appear as virtual particles in the diagrams. One way
of dealing with them is the introduction of complex masses for the unstable
particles. This requires the evaluation of loop integrals with complex masses
which is cumbersome in analytic calculations. Finally, within dimensional
regularization the evaluation of the loop-by-loop contribution to a 2-loop
calculation makes it necessary to expand the one-loop integrals beyond the
constant term in the expansion around D = 4. An analytic calculation of
these higher-order terms is rather complicated

It seems therefore worthwhile to explore alternative numerical approaches
to the evaluation of one-loop tensor and scalar integrals. The strategy
adopted here is described in detail in Ref. [34]. It is based on the Bernstein–
Tkachov theorem [35] which can be used to rewrite one-loop integrals in
Feynman-parametric representation in a form better suited for numerical
evaluation. The general method is outlined in the next section and a de-
scription of an implementation in Mathematica and C++ is given in the last
section.

4.1. Description of the method

Within dimensional regularization in D = 4 − 2ε dimensions any scalar
one-loop integral can be expressed as an integration over Feynman parame-
ters

ID
N =

(2πµ)4−D

iπ2

∫

dDq
1

[q2 − m2
1][(q + p1)2 − m2

2] · · · [(q + pN−1)2 − m2
N ]

= (4πµ2)ε Γ (N − 2 + ε)(−1)N
∫

dSN−1V (xi)
−(N−2+ε),

(2)
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where the integration over Feynman parameters is defined as

∫

dSn =

1
∫

0

dx1

x1
∫

0

dx2 · · ·
xn−1
∫

0

dxn

and V is a quadratic form in the N − 1 Feynman parameters xi

V (x) = xT Hx + 2KT x + L − iδ .

The coefficients H, K and L of V are given in terms of the momenta pi and
the masses mi. Note that we use dimensional regularization not only for
ultraviolet but also for infrared (IR) and collinear singularities.

In general the quadratic form V can vanish within the integration region,
though the zeros are shifted into the complex plane by the small imaginary
part iδ. Since the limit δ → 0 has to be taken in the end, the form given
above is not suited for a direct numerical integration.

Instead, the integral can be rewritten before attempting a numerical
evaluation using the Bernstein–Tkachov theorem [35]. Applied to the case
of one-loop integrals it states that for any quadratic form V (x) raised to any
real power β

[

1 − (x − X)i∂i

2(1 + β)

]

V 1+β(xi) = B · V β(xi) , (3)

where X = −KTH−1, B = L − KT H−1K and ∂i = ∂/∂xi. Inserting this
relation into a Feynman-parameter integral and integrating by parts one
obtains

∫

dSnV β =
1

2B(1 + β)

[

(2 + n + 2β)

∫

dSnV 1+β −
∫

dSn−1

n
∑

i=0

χiV
1+β
i

]

,

(4)
where χi = Xi − Xi+1 with X0 = 1 and Xn+1 = 0 and

Vi(x1, . . . , xn−1) =











V (1, x1, . . . , xn−1) for i = 0 ,

V (x1, . . . , xi, xi, . . . , xn−1) for 0 < i < n ,

V (x1, . . . , xn−1, 0) for i = n .

Applied to the one-loop integral (2) the first term inside brackets in (4)
corresponds to the N -point integral in D+2 dimensions, while the last term
is a sum over (N − 1)-point integrals in D dimensions obtained by pinching
one propagator.
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Recursive application of (4) allows to express any scalar one-loop integral
as a linear combination of terms of the form

∫

dSk V (xi)
m−ε with any integer

m ≥ 0. A Taylor expansion up to O(εa) will then result in terms of the form
∫

dSk V m log1+a V . For m = 0 the integrand still contains an integrable
(logarithmic) singularity while it is smooth for m > 0. Although larger
values of m will lead to smoother integrands, the expressions also grow larger
due to the repeated application of the BT identity (4). The optimal choice
for m depends on the chosen numerical integration routine and its ability to
deal with integrable singularities. Note that the calculation of higher orders
of the ε expansion is straightforward in this approach. Furthermore complex
masses can also be introduced easily.

If the integral is infrared or collinear divergent, the repeated application
of the BT-identity (4) will eventually result in divergent 3-point integrals.
For these B = 0 and using a modified identity the singularities are automat-
ically extracted as poles in ε.

In the case of tensor integrals the parametric representation of the in-
tegral contains in general Feynman parameters in the numerator. The pro-
cedure outlined above can also be applied in this case so that no separate
reduction to scalar integrals is needed. Furthermore, no inverse Gram deter-
minants are introduced using this approach, making it numerically reliable
also for exceptional kinematic configurations.

4.2. Implementation

The method outlined above has been implemented in Mathematica and
C++ with an emphasis on the full automatization of the whole procedure.
The user only has to supply the algebraic values of the Lorentz invariants
calculated from the external momenta and the internal masses of the integral.
As a result a set of C++ routines with a simple interface is generated. These
can then be used for a numerical evaluation.

The implementation first generates the parametric representation for the
tensor coefficients for a given integral up to the maximum desired tensor
rank. The tensor coefficients are defined according to the conventions of
Ref. [9]. In the next step consecutive applications of the BT-identities raise
the powers of the quadratic forms. IR and collinear singularities show up as
poles in ε during this procedure. Then the expansion in ε is performed. The
power in ε up to which the integrals are expanded can be chosen by the user.
The results of this last algebraic step are a number of Feynman-parameter
integrals of different dimensions and in some cases additional constant terms.
Each of the integrands is a vector with components corresponding to the
tensor coefficients and the components themselves are truncated power series
in ε.
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Fig. 3. Box-diagram for heavy quark pair production.

The last step is the generation of C++ routines for the calculation of
the various integrands. Furthermore, a driver routine is generated that per-
forms the necessary initializations, calls the numerical integration code and
constructs the results for the tensor coefficients from the results of the nu-
merical integrations. This driver routine is the only part of the code the user
interacts with directly. It needs only the values for the Lorentz invariants
and masses as input and returns the coefficients of the ε expansion of the
tensor coefficients.

As an example we consider the integral shown in figure 3, which is both
IR and collinear divergent. It has been evaluated up to the constant term in
the context of the calculation of the next-to-leading order QCD corrections
to heavy quark pair production at hadron colliders [36]. Recently also the
O(ε) coefficient has been calculated analytically in Ref. [37]. Using our
numerical program we obtain for s = −t = (500 GeV)2 and m = 175 GeV

D0 = ε−2·(−2.85078 · 10−11 +i · 0)
+ ε−1·( 3.87554(7) · 10−10−i · 4.47800 · 10−11)
+ 1 ·(−2.49772(5) · 10−9 +i · 6.6096(3) · 10−10)
+ ε1 ·( 9.9934(2) · 10−9 −i · 4.4041(2) · 10−9)
+ ε2 ·(−2.78060(4) · 10−8 +i · 1.81859(4) · 10−8) ,

Dµν = gµν [ 1 ·(−4.59(4) · 10−7 −i · 5.019(5) · 10−6)
+ ε1·(+1.228(2) · 10−5+i · 4.810(2) · 10−8)
+ ε2·(−6.697(6) · 10−5−i · 2.259(1) · 10−4)

]

+ . . . ,

where numerical integration errors in the last digit are given in parentheses.
These results agree with the analytical results within integration errors.

Our implementation is currently capable of handling all triangle inte-
grals up to tensor rank 3 and all box integrals up to rank 4 including IR and
collinear divergent integrals. All of these can be calculated up to O(ε2). A
comparison of the finite part and the IR pole with the results of the Loop-
Tools integral library [38] has shown numerical agreement within integra-
tion errors for all tensor coefficients of the 3- and 4-point functions. For the
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5- and 6-point functions only the scalar integrals are available so far. The
implementation of the remaining tensor coefficients is expected to be finished
in the near future.

This work was supported by the Swiss Bundesamt für Bildung und Wis-
senschaft and by the European Community’s Human Potential Programme
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