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We present a computation of the leading two-loop corrections to the
MSSM Higgs boson masses and electroweak symmetry breaking conditions.
The computation is performed in the effective potential approach and in-
cludes corrections controlled by the third-family Yukawa couplings and the
strong gauge coupling. We discuss a renormalisation scheme that avoids
unphysically large threshold effects associated with the bottom Yukawa cou-
plings. We also discuss the implementation of our corrections in computer
programs that compute the MSSM mass spectrum from a set of unified
high-energy boundary conditions.

PACS numbers: 12.60.Jv, 14.80.Cp

1. Introduction

A crucial prediction of the Minimal Supersymmetric Standard Model
(MSSM) [1] is the existence of at least one light Higgs boson [2] which, at
the tree level, is bound to be lighter than the Z boson. If this upper bound
was not significantly raised by radiative corrections, the failure of detecting
this Higgs boson at LEP would have ruled out the MSSM as a viable theory
for physics at the weak scale. However, it was first realised in Ref. [3] that
the inclusion of the one-loop O(αt) corrections, which rise quartically with
the mass of the top quark and logarithmically with the mass of its scalar
superpartner, may push the lighter Higgs boson mass well above the tree-
level bound.

In the subsequent years, an impressive theoretical effort has been devoted
to the precise determination of the Higgs boson masses in the MSSM. A first
step was to provide the full one-loop computation, performed in Refs. [4,5].
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A second step was the addition of the dominant two-loop corrections which
involve the strongest couplings of the theory: the QCD coupling constant
and the Yukawa couplings of the third-generation fermions (although the
masses of the bottom quark and the τ lepton are relatively tiny compared
to the top quark mass, the b and τ Yukawa couplings can be strongly en-
hanced for large values of tan β, the ratio of the two Higgs vacuum ex-
pectation values). The leading logarithmic effects at two loops have been
included via appropriate RGEs [6, 7], and the genuine two-loop corrections
of O(αtαs) [8–12] have been evaluated in the limit of zero external momen-
tum. Subsequently, the two-loop Yukawa corrections of O(α2

t ) [8, 11, 13],
O(αbαs) [14], O(αtαb + α2

b) [15], O(α2
τ ) and O(αbατ ) [16] have been eval-

uated in the limit of zero external momentum. The tadpole corrections
needed to minimise the effective scalar potential, Veff , have also been cal-
culated at the one-loop [5, 17] and two-loop [15, 16, 18] levels for the strong
coupling and the third-generation Yukawa couplings. Finally, the full two-
loop corrections to the MSSM effective potential have been calculated [19],
together with a first study of the two-loop corrections to the lighter Higgs
boson mass controlled by the electroweak gauge couplings [20] and of the
leading momentum-dependent two-loop corrections [21].

The calculation of the radiative corrections to physical observables re-
quires the choice of a renormalisation scheme for the input parameters.
For example, the corrections can be expressed in terms of “On-Shell” (OS)
parameters, such as pole particle masses and suitably defined mixing an-
gles. This is straightforward when only the corrections involving the top
Yukawa couplings are taken into account; however, it is well known that in
the MSSM the relation between the physical bottom mass and the corre-
sponding Yukawa coupling can receive large, tan β-enhanced threshold cor-
rections [22]. If the physical bottom mass is used as input parameter in the
one-loop part of the computation, potentially large tan β-enhanced correc-
tions appear at two loops. To address this problem, a set of renormalisation
prescriptions for the parameters in the bottom/sbottom sector that avoid the
occurrence of unphysically large threshold effects at two loops was proposed
in Refs. [14, 15] for the O(αbαs) and O(αtαb + α2

b) parts of the corrections.
This OS renormalisation scheme has been adopted for the computation of
the MSSM Higgs boson masses by the computer code FeynHiggs [23], based
on the two-loop results of Refs. [9] and subsequently expanded to include
the results of Refs. [13–15] (see Ref. [24] for a discussion).

In alternative, the MSSM input parameters can be expressed in a mini-
mal renormalisation scheme such as modified dimensional reduction scheme,
or DR. This way of presenting the results is convenient for analyzing models
that predict, via the renormalisation group equations (RGE), the low-energy
DR values of the MSSM parameters in terms of a set of unified boundary con-
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ditions assigned at some scale MGUT much larger than the weak scale. This
is for instance the case of the models of gravity mediated (mSUGRA), gauge
mediated (GMSB) or anomaly mediated (AMSB) SUSY breaking. Several
computer codes have been developed in the past years to provide reliable
determinations of the supersymmetric mass spectra in models with high-
energy boundary conditions, including the calculations of the various radia-
tive corrections. In particular, the publicly available codes SoftSusy [25],
SuSpect [26] and SPheno [27] include a purely DR calculation of the neu-
tral MSSM Higgs boson masses, based on the one-loop results of Ref. [5]
and the two-loop results of Refs. [12,13,15,18] (for a detailed discussion see
Ref. [16]).

This talk has two purposes: the first is to review the results of Refs. [14, 15],
in which the leading two-loop corrections to the Higgs boson masses con-
trolled by the bottom Yukawa coupling were computed and a suitable renor-
malisation scheme avoiding the appearence of unphysically large tan β-en-
hanced terms was proposed. The second purpose is to review the results
of Ref. [16], where the implementation of the two-loop corrections to the
MSSM Higgs boson masses in the three public codes SoftSusy, SuSpect

and SPheno was discussed.

2. On-shell renormalisation scheme for large tan β

When they do not refer to boundary conditions at high scales, general
analyses of the MSSM are usually performed in terms of parameters that
allow for a direct physical interpretation, such as pole masses and appropri-
ately defined mixing angles in the squark sector. It is rather easy to devise
an OS renormalisation scheme for the parameters in the top/stop sector: we
can use the OS prescription for the top and stop masses and the stop mixing
angle, treat the trilinear stop interaction term At as a derived quantity and
retain a DR definition for the superpotential Higgs mass parameter µ and
for tan β [13]. Instead, some additional care is required in the choice of an
OS scheme for the parameters in the bottom/sbottom sector, due to the
potentially large one-loop threshold corrections [22], proportional to tan β,
that contribute to the pole bottom mass. For example, a definition of Ab

in terms of the OS bottom and sbottom masses and sbottom mixing angle,
similar to the definition of At, would produce a counterterm δAb propor-
tional to tan2 β [28]. When tan β is large, this would induce very large
corrections to the Higgs boson masses at two loops, questioning the validity
of the perturbative expansion.

To overcome this problem, we adopt a set of renormalisation prescrip-
tions for the parameters in the the bottom/sbottom sector that avoid the
occurrence of unphysically large threshold effects and at the same time en-
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force other desirable properties such as the decoupling of heavy particles, the
infrared finiteness and gauge-independence. Combining these prescriptions
with the usual prescriptions for the top/stop parameters [13], we obtain a
convenient OS renormalisation scheme for the O(αbαs) and O(αtαb + α2

b)
parts of the corrections to the Higgs boson masses. Since the corrections
controlled by the bottom Yukawa coupling can be sizeable only for large val-
ues of tan β, we work directly in the physically relevant limit of tan β → ∞,
i.e. v1 → 0 , v2 → v.

The OS definitions for the squark masses and mixing angles, the top
quark mass and the electroweak parameter v ≡ (

√
2 Gµ)−1/2 fix the finite

parts of the corresponding counterterms to:

δm2
q̃i

= Π
q̃
ii(m

2
q̃i

) , δθq̃ =
1

2

Π
q̃
12

(m2
q̃1
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12

(m2
q̃2

)

m2
q̃1

− m2
q̃2

,
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v

2

ΠT
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, (1)

where q̃ = (t̃ , b̃) , while Π
q̃
ij(p

2) , Σt(p) and ΠT
WW (p2) denote the real and

finite parts of the self-energies of squarks, top quark and W boson, respec-
tively. Following Ref. [13], we further treat µ as a DR parameter computed
at a reference scale Q0 = 175 GeV, and ht and At as derived quantities
that can be computed by means of the tree-level formulae for mt and s2θt

,
respectively. In principle, we still have to define mb , hb and Ab. However, in
the large tan β limit, the bottom mass is just zero, and the sbottom mixing
angle becomes

s2θb
= −

√
2hb µ v

m2

b̃1
− m2

b̃2

, (2)

which is independent of mb and Ab . We can thus treat hb as a quantity
derived from the sbottom mixing, and use Eqs. (1) and (2) to obtain a
prescription for δhb:

δhb = hb

(
δm2

b̃1
− δm2

b̃2

m2

b̃1
− m2

b̃2

+
δs2θb

s2θb

− δv

v

)
. (3)

Concerning the definition of Ab, we observe that the Yukawa coupling hb

multiplying Ab can be absorbed in a redefinition of the trilinear soft-breaking

term, Ãb ≡ hbAb. The counterterm of Ãb could be defined via a physical

process, e.g. one of the decays b̃1 → b̃2 A or A → b̃1 b̃∗
2
, but such a definition

would suffer from the problem of infrared (IR) singularities associated with
gluon radiation. To overcome this problem, and given our ignorance of the
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MSSM spectrum, we find less restrictive to define δÃb in terms of the (̃b1b̃
∗

2A)
proper vertex, at appropriately chosen external momenta and including suit-
able wave function corrections, so that the resulting combination is IR finite
and gauge-independent, and gives rise to an acceptable heavy gluino limit.
Denoting the proper vertex b̃1b̃

∗

2
A with iΛ12A(p2

1
, p2

2
, p2

A), we define
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Although we have used Eqs. (2)–(3) to define an OS bottom Yukawa
coupling hb through the sbottom mixing, we still need to exploit the exper-
imental information on the bottom mass in order to obtain the DR running
coupling ĥb. The OS coupling will then be computed through the relation
hb = ĥb − δhb. We thus define the running coupling ĥb at the reference scale
Q0 = 175 GeV to be

ĥb ≡ hb(Q0)
DR
MSSM =

mb

√
2

v1

1 + δb

|1 + εb|
, (5)

where: mb ≡ mb(Q0)
DR
SM

= 2.74 ± 0.05 GeV is the Standard Model bottom
mass, evolved up to the scale Q0 to take into account the resummation of the
universal large QCD logarithms; εb contains the tan β-enhanced threshold
corrections from both the gluino-sbottom and the higgsino-stop loops; δb

contains the residual threshold corrections that are not enhanced by tan β.
Notice that, as shown in Ref. [29], keeping εb in the denominator of Eq. (5)
allows to resum the tan β-enhanced threshold corrections to all orders in the
perturbative expansion. On the other hand, there is no preferred way of
including the threshold corrections parametrised by δb, whose effect on the
value of ĥb is anyway very small. It appears from Eq. (5) that ĥb blows
up when εb approaches −1, in which case the correct value of the bottom
mass cannot be reproduced with ĥb in the perturbative regime, and the
corresponding set of MSSM parameters must be discarded.

For the top/stop sector, we take as input the physical top mass and
the parameters (mQ,t̃ ,mU , At) that can be derived by rotating the diagonal

matrix of the OS stop masses by the angle θt̃, defined in Eq. (1). Concerning
the sbottom sector, additional care is required, because of our non-trivial
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definition of hb and of the fact that, at one loop, the parameter mQ,b̃ entering

the sbottom mass matrix differs from the corresponding stop parameter mQ,t̃

by a finite shift [28]. We start by computing the renormalised coupling hb as
given by Eq. (3) and (5). Then we compute mQ,b̃ following the prescription

of Ref. [28]. Finally, we use the parameters hb and mQ,b̃ to compute the

actual values of the OS sbottom masses and mixing angle.

We are now ready to discuss the numerical effect of our two-loop cor-
rections (for details on their calculation, see Refs. [14, 15]). In Fig. 1 we
show the lighter Higgs boson mass Mh as a function of tan β [we recall that,
although our OS prescription for the sbottom sector is defined in the limit
tan β → ∞, the corrections have an indirect dependence on tan β coming
from the input value for ĥb , see Eq. (5)]. The other input parameters are
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Fig. 1. Lighter Higgs boson mass Mh as a function of tan β. The input parameters

are MA = 120 GeV, At = 1 TeV, Ab = 2 TeV, mQ,t̃ = mU = mD = mg̃ = −µ = 1

TeV. The meaning of the different curves is explained in the text.

chosen as MA = 120 GeV, At = 1 TeV, Ab = 2 TeV, mQ,t̃ = mU = mD =
mg̃ = −µ = 1 TeV. The long-dashed curve corresponds to the value of Mh

obtained at O(αt +αtαs +α2
t ), i.e. by including only the one- and two-loop

corrections controlled by the top Yukawa coupling; the dot–dashed curve in-
cludes in addition the one-loop O(αb) corrections, controlled by the bottom
Yukawa coupling; the short-dashed curve includes the two-loop O(αbαs) cor-
rections computed in Ref. [14]; finally, the solid curve corresponds to the full
two-loop Yukawa computation of Mh, i.e. it includes also the O(αtαb + α2

b)
corrections computed in Ref. [15]. We can see from Fig. 1 that the correc-
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tions controlled by the top Yukawa coupling depend very weakly on tan β

when the latter is large. On the other hand, the O(αb) corrections lower
considerably Mh when tan β increases. Concerning the two-loop corrections
controlled by the bottom Yukawa coupling, the comparison between the dot-
dashed and short-dashed curves shows that the O(αbαs) corrections amount
to a small fraction of the O(αb) ones, but they can still lower Mh by several
GeV when tan β is large. The comparison between the short-dashed and
solid curves shows that the effect of the O(αtαb + α2

b) corrections can also
amount to several GeV when tan β is large.

It appears from Fig. 1 that the two-loop O(αbαs) and O(αtαb + α2
b)

corrections are a small fraction of the one-loop O(αb) ones. We stress that
this is a desirable consequence of our renormalisation prescription, which
allows to set apart the tan β-enhanced threshold corrections, resummed to
all orders in the renormalised coupling hb. If we were to adopt for the
bottom/sbottom sector the same renormalisation prescription that we use
for the top/stop sector, the dependence on tan β of the one-loop corrections
would be smoother, but very large corrections would appear at two loops,
questioning the validity of the perturbative expansion.

3. Radiative corrections in the DR renormalisation scheme

In alternative to defining an OS renormalisation scheme, it is always
possible to express the input parameters in a minimal subtraction scheme
such as DR. The DR renormalisation scheme is particularly convenient
in constrained scenarios where the MSSM parameters at the weak scale
are obtained from a set of unifying high-energy boundary conditions via
suitable RGE. In the following we discuss three codes for the computation
of the MSSM particle spectrum, SoftSusy, SPheno and SuSpect, which
employ the DR version of the results of Refs. [12–15] in the calculation of
the MSSM Higgs boson masses. We also compare their results with those of
FeynHiggs, which employs the OS scheme, and provide an estimate of the
residual theoretical uncertainties.

3.1. Higgs boson masses in the constrained MSSM

We first work in the framework of constrained MSSM scenarios, and
restrict ourselves to the case of mSUGRA, where the relevant input param-
eters are three universal soft SUSY-breaking terms at the high-energy scale,
m0 ,m1/2 and A0, the ratio of the Higgs vacuum expectation values tan β

(expressed in the DR scheme at the renormalisation scale Q = MZ) and the
scale-invariant sign of µ. For definiteness, we adopt the choice of parameters
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known as SPS1a point:

m0 = 100 GeV, m1/2 = 250 GeV, A0 = −100 , tan β = 10 , µ > 0 .

(6)
We start our discussion by presenting in the first three lines of Ta-

ble I the results of SoftSusy, SPheno and SuSpect for the physical masses
of the CP-even Higgs bosons, Mh and MH , for the physical mass of the
CP-odd Higgs boson, MA, and for the parameter µ (the latter interpreted
as a DR running parameter obtained by enforcing the EWSB conditions at
the default renormalisation scale MEWSB =

√
mt̃1

mt̃2
).

TABLE I

Neutral Higgs boson masses and µ (in GeV) as computed by SoftSusy, SPheno
and SuSpect. The CP-even Higgs boson masses resulting from FeynHiggs are also
shown.

Code Mh MH MA µ

SoftSusy 112.1 406.5 406.2 364.8
SPheno 112.2 406.0 405.7 364.3
SuSpect 112.1 406.5 406.1 364.7
FeynHiggs 113.8 406.5 — —

It can be seen from Table I that the agreement between the three codes
is very good, the discrepancies being contained in a half GeV. For other
choices of the SUSY-breaking parameters (see Ref. [16]) the discrepancies
can be somewhat larger, but generally below the 1% level. We find this
agreement very satisfactory, taking into account the fact that the results
are obtained with three independent codes that — although based on the
same set of formulae for the corrections to the Higgs boson masses and the
EWSB conditions — differ in many details of the calculation. We have
checked that, if we force the three codes to use the same computation of the
threshold corrections to the gauge and Yukawa couplings and the same set
of RGE, the residual discrepancies in the results for the neutral Higgs boson
masses and µ become negligible. However, we stress that the differences
among the three codes are a matter of choice, because they all correspond
to effects that are of higher order with respect to the accuracy required by
the calculation.

A first estimate of the residual theoretical uncertainties can be obtained
by comparing the results of our DR calculation of the Higgs boson masses
with those of the computer code FeynHiggs, which employs the OS renor-
malisation scheme. The resulting discrepancies must be due to terms that
are formally of higher order, i.e. two-loop terms controlled by the elec-
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troweak gauge couplings and three-loop terms, among which the most im-
portant are controlled by the top Yukawa and strong gauge couplings. As
FeynHiggs does not perform the evolution of the MSSM parameters from
the high-energy input scale to MEWSB, the input parameters at the weak
scale (including MA and µ) are taken from the output of SuSpect. The last
line of Table I shows the results of FeynHiggs for Mh and MH : it can be
seen that the difference with SuSpect in the value of Mh is of the order of
2 GeV (the same occurs for other typical scenarios of constrained MSSM).
The excellent agreement in the value of MH is due to the strict correlation
between the latter and the value of MA, which is taken from the output of
SuSpect.
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Another measure of the effect of the higher orders consists in studying
the numerical dependence of the results for the physical Higgs boson masses
on the renormalisation scale MEWSB at which the effective potential is min-
imised and the radiatively corrected masses are computed. In the ideal case
of an all-orders calculation, the physical observables should not depend on
the choice of the scale. The residual scale dependence still present in the real
case can be taken as a rough estimate of the magnitude of the corrections
that are left uncomputed.

The top and bottom panels of Fig. 2 show the renormalisation scale
dependence of the CP-even Higgs boson masses Mh and MH , respectively,
as computed by SoftSusy in the SPS1a scenario. The dotted line in each
plot corresponds to the one-loop computation of the relevant mass, whereas
the solid line corresponds to the two-loop computation. It can be seen
from the top panel of Fig. 2 that the one-loop results for the lighter Higgs
boson mass Mh show a sizeable scale dependence, varying by nearly 8 GeV
in the considered range of MEWSB. On the other hand, it appears that
the inclusion of the two-loop corrections significantly improves the scale
dependence of Mh, leaving a residual variation of the order of 2 GeV in the
considered range of MEWSB. The bottom panel of Fig. 2 shows that a similar
situation occurs in the case of the heavier Higgs boson mass MH , with the
inclusion of the two-loop corrections clearly improving the renormalisation
scale dependence. Again, similar results can be obtained for other typical
scenarios of constrained MSSM.

3.2. Higgs boson masses in the unconstrained MSSM

In alternative to setting the input parameters at the high-energy scale,
SPheno and SuSpect allow the user to set arbitrarily the MSSM input pa-
rameters at the weak scale as DR-renormalised quantities (the same option
will soon be implemented in SoftSusy). In Table II we show the values of
the lighter Higgs boson mass as obtained by SPheno, SuSpect and, for com-
parison, FeynHiggs, for three different values of the stop mixing parameter
Xt = At − µ cot β. The other relevant MSSM parameters, i.e. a common
stop mass term MS , the gluino mass M3, µ and MA are set to 1 TeV, and
tan β = 10.

It can be seen from Table II that the results of SPheno and SuSpect

agree well, the discrepancies being of the order of half GeV. The third line of
the table shows that for small or moderate stop mixing the discrepancy with
the OS calculation of FeynHiggs is of the order of 2 GeV, as was the case
in the constrained MSSM (see Table I). However, for large stop mixing the
difference between the DR and OS computations reaches 4–5 GeV, indicating
that in this case the uncertainty due to higher order corrections is larger.
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TABLE II

Lighter Higgs boson mass Mh (in GeV) in the unconstrained MSSM as computed by
SPheno, SuSpect and FeynHiggs for three values of the stop mixing parameter Xt.

Code Xt = 0 Xt = MS Xt =
√

6MS

SPheno 114.3 118.8 130.0
SuSpect 113.8 118.4 129.4
FeynHiggs 115.4 120.3 133.8

This work was partially supported by the European Community’s Hu-
man Potential Programme HPRN-CT-2000-00149 (Collider Physics).
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