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We discuss some effects associated to thin defects in extra dimensions.
After describing the generation of quantum corrections localized at orb-
ifold fixed points, we show some phenomenological implications of the lo-
calized terms and point out to generic problems of field theories in the
presence of infinitely thin defects, which signal a breakdown of the low-
energy expansion. We discuss possible physical interpretations and ways
out of these phenomena. Finally, we examine some of these issues in a de-
constructed orbifold, which can be regarded as an ultraviolet completion of
these models.
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1. Introduction

Many physical systems can be described by fields propagating in a space
with lower dimensional defects, possibly boundaries. These infinitely-thin
defects are typically idealizations of localized physical backgrounds with a fi-
nite size and a certain structure. In this talk we consider the case of field
theoretical models in extra dimensions with branes (see [1] for recent re-
views). In this setting the defects (or branes) can have different microscopic
origins: string-theory D-branes, stable classical field configurations, orbifold
fixed planes, etc. Nevertheless, their substructure is usually disregarded
when extracting phenomenological implications and doing model building
in field-theoretical models of extra dimensions. The basic assumption un-
derlying this simplification is that at low energies all observables are fairly
insensitive to these ultraviolet details, so that the Dirac-delta limit is a good
approximation.
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As a matter of fact, calculations in field theories in the presence of zero-
width defects are often plagued with divergences. These divergences arise in
the limit of zero thickness and can appear already at the classical level. They
signal a breakdown of the field theory at scales where the finite thickness of
the defect cannot be neglected, which filtrates into low-energy observables.
One example of this situation is classical electrodynamics with point charges.
Another one is the calculation of zero point energies of fluctuating fields with
boundary conditions (Casimir effect). Brane models in extra dimensions
are no exception. The singularities are more and more severe as the co-
dimension of the branes increases. In codimension 2, for instance, one finds
logarithmic classical divergences in the presence of mass terms localized on
the branes [2]. As we will see, models with branes of codimension 1 are
also singular when certain localized operators are present. One important
fact of interacting field theories in extra dimensions is that they are non-
renormalizable. Therefore, they must be regarded as effective theories, valid
below a certain ultraviolet cutoff Λ. Since the couplings have a power-law
running, the theory arrives quickly at a nonperturbative regime, so Λ cannot
be much larger than the compactification scale Mc = 1/R.

For definiteness we shall concentrate on orbifold models. An orbifold
is basically a manifold in which some points (related by a non-freely-acting
symmetry) are identified. Points identified with themselves constitute singu-
lar lower-dimensional hyperplanes (fixed “points”). Hence, these models con-
tain infinitely thin defects. Orbifold compactifications of extra dimensions
are nowadays standard in string and field theory model building. The main
reason is that they give rise to chiral 4D fermions without the complications
of smooth manifolds such as Calabi–Yau spaces. Here we will focus on the
physics of fixed points from a field-theoretical point of view and show that
radiative corrections generate divergences localized on them. These diver-
gences indicate that one should include localized operators (“brane terms”)
in the bare action. In particular, brane kinetic terms (BKT) are a generic
feature of brane theories, and many of their properties can be studied in
a model-independent way. One can distinguish two kinds of BKT: those
with derivatives in the directions parallel to the brane (“parallel BKT”) and
those with derivatives in the directions orthogonal to the brane (“orthogo-
nal BKT”). We shall first review the phenomenology associated to parallel
BKT, which in codimension 1 do not give rise to thin brane singularities.
Then, we describe the singularities which appear in the thin-brane limit in
the presence of orthogonal BKT. These singularities signify a breakdown of
the low-energy expansion of the effective theory. We discuss different inter-
pretations and ways out of this unpleasant situation, emphasizing the idea
of classical renormalization. Finally, in order to gain some insight of what
the correct, physical approach should be like, we reanalyze these issues in
an ultraviolet completion of these models: deconstructed orbifolds.



Field Theory in Extra Dimensions with Thin Defects 2797

2. Localized quantum corrections

In this section we give a simple example which shows that orbifold the-
ories have divergent quantum corrections localized on the fixed points [3].
This is allowed because translation invariance is broken there.

Consider a 5D φ4 scalar theory with the fifth dimension compactified
on an orbifold R/Z2. R is the real line, parametrized by y, and Z2 acts as
a parity: y ↔ −y, such that y = 0 is a fixed point. The Z2 projection is
carried out by identifying φ(−y) ∼ ±φ(y). In this section we will work in
Euclidean space. One way of performing the calculations would be to work
in the fundamental region [0,∞) imposing Neumann (Dirichlett) boundary
conditions at y = 0 for an even (odd) field. We follow instead the formalism
in [3] and work in the covering space R, with propagators which take into
account the even or odd character of φ. The interactions, on the other
hand, are local in the coordinate y. Using a mixed momentum–position
space representation, the Feynman propagator which incorporates the Z2

parity reads

∆±(p; y, y′) =
e−p|y−y′|

2p
± e−p|y+y′|

2p
, (1)

where here and in the following the upper (lower) sign applies to even (odd)
φ, and p is the modulus of the four-dimensional momentum. Observe that
the propagator depends on both y − y′ and y + y′. Thus, the momentum in
the fifth dimension is conserved up to a sign at tree level.

Fig. 1. Tadpole diagram contributing to the two-point function.

The one-loop correction to the two-point function is given by the diagram
in Fig. 1. It gives the following contribution to the quadratic part of the
quantum effective action:

S
(1)
2 = −λ

2

∫

dydy′δ(y − y′)φ(y)φ(y′)

∫

d4p

(2π)4
∆±(p; y, y′) (2)

= −λ

2

∫

dyφ(y)2
∫

d4p

(2π)4

(

1

2p
± e−2p|y|

2p

)

(3)

=
[

S
(1)
2

]

bulk
±
[

S
(1)
2

]

brane
, (4)
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where the 4D dependence of φ and the corresponding integration are im-
plicit. The bulk piece is y independent and hence translation invariant. In
fact, it coincides with the corresponding correction in the genuine 5D theory.

It has a cubic 4D ultraviolet divergence. On the other hand, [S
(1)
2 ]brane has

a profile in the extra dimension:

λ

128π2

∫

dyφ(y)2
1

y3

[

e−2µy (1 + 2µy + 2µ2y2) − e−2Λ4Dy

× (1 + 2Λ4Dy + 2Λ2
4Dy2)

]

, (5)

where Λ4D and µ are, respectively, ultraviolet and infrared 4D cutoffs. It is

apparent from (4) that the 4D UV divergences in [S
(1)
2 ]brane are exactly lo-

calized at the fixed point y = 0. They can be extracted by Taylor expanding
φ(y) about the fixed point and then performing the y integration. Finally,
we obtain

S
(1)
2 =

−λ

16π2

∫

dy

[

φ2(y)

(

Λ3
4D

6
± δ(y)

Λ2
4D

8

)

±
(

∂2
yφ2
)

δ(y)
log Λ4D/µ

16

]

+ UV finite . (6)

We see that the mass and kinetic terms receive, respectively, quadratic and
logarithmic 4D divergences localized on the fixed point. They should be
canceled by appropriate localized counter terms, with finite parts which play
the role of renormalized brane couplings. These are free parameters of the
theory which in general do not vanish at tree level. In the next sections we
study the impact of these new parameters. Note that they have dimensions
of length, so that they are expected to be of order of the inverse cutoff of
the effective theory, 1/Λ. This is consistent with the fact that the radiative
corrections are proportional to the dimensionful coupling λ.

Before finishing this section, let us make two observations. The first
is that both bulk and brane ultraviolet divergences are a short-distance ef-
fect. Therefore, they are unchanged in the compact case, S1/Z2, except
for a replication of brane divergences at the second fixed point, y = πR
(R is the radius of the circle). This can be seen explicitly in an expansion
in winding-modes: the divergences in the bulk and at y = 0 correspond to
zero winding [4]. The second observation is that we have regularized the
4D integral, while in the fifth dimension we have integrated over arbitrar-
ily short distances. This corresponds to the physical situation in which the
distance in the fifth dimension above which the effective theory is valid is
much smaller than 1/Λ4D. The opposite scenario corresponds to a lattice in
the 5th dimension coarser than 1/Λ4D, and is studied in Sec. 6. If instead
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we were to use a hard cutoff Λ5 in the fifth component of the loop momenta
(rather than in position space), we would obtain Eq. (6) with δ(y) replaced
by a regularized delta function

δ1/Λ5
=

sin(Λ5y)

πy
. (7)

Therefore, we see that although the fixed points in an orbifold are infinitely
thin, in a Wilsonian effective theory the brane terms generated by radiative
corrections have a finite width, of the order of the inverse cutoff in the fifth
dimension.

3. Phenomenology of parallel brane kinetic terms

We have seen that the general action of our orbifold theory should include
brane terms. We will concentrate hereafter on the effect of BKT (see [6])
for a general analysis). We can distinguish parallel BKT, with derivatives in
the directions parallel to the brane, and orthogonal BKT, with derivatives
in the directions orthogonal to the brane (such as the ones we have found in
the example above). In this section we consider parallel BKT, for which the
thin-brane limit is nonsingular in codimension 1. These are the brane terms
that have been most extensively studied. In particular, parallel BKT have
been used to construct interesting models of gravity [7], and to improve the
phenomenology of Higgsless models in flat space [8] and of models in which
the Higgs arises from a higher dimensional gauge boson [9]. Here we review
the phenomenology associated to parallel BKT for bulk fermions and gauge
bosons [10–12].

For gauge bosons propagating on an S1/Z2 orbifold, the free Lagrangian
including parallel BKT reads

L = −1

2

(

1 + aA
I δI

)

trFµνFµν − trF4νF 4ν , (8)

where δI(y) = δ(y− IR) and I = 0, π denotes two fixed points. The Lorentz
indices µ, ν run over the parallel directions: µ, ν = 0, 1, 2, 3. We will consider
the case in which the gauge symmetry is unbroken in the effective 4D theory,
which corresponds to even Aµ and odd A4. Furthermore, we take aA

I positive
to avoid tachions and ghosts in the spectrum. Working in the “axial” gauge
A4 = 0 (see [6] for a more rigorous gauge invariant approach), we can perform
the Kaluza–Klein (KK) decomposition

Aµ(x, y) =
∞
∑

n=0

fA
n (y)√
2πR

Aµ n(x) , (9)
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where {fA
n } is a basis of even functions in S1. We require that these functions

fulfill the differential equations

∂2
yfA

n = −m2
n

(

1 + aA
I δI

)

fA
n . (10)

Then, they are orthogonal with respect to the scalar product

〈g, h〉 =
1

2πR

∫

dy
(

1 + aA
I δI

)

g∗(y)h(y) (11)

and the tower of quadratic terms in the reduced 4D Lagrangian is diagonal.
Imposing the normalization

〈fn, fn〉 = 1 , (12)

the resulting 4D kinetic terms are automatically canonical. The solutions
are a massless mode with flat wave function,

fA
0 =

1
√

1 +
aA
0

+aA
π

2πR

(13)

and a tower of massive Kaluza–Klein modes

fA
n = Nn

[

cos(mny) − aA
0 sin(mn|y|)

]

(14)

with Nn fixed by (12) and masses determined by the equation

(

4 − aA
0 aA

π m2
n

)

tan(πmnR) + 2
(

aA
0 + aA

π

)

mn = 0 . (15)

We see that the spectrum and the shape of the wave functions are modified
by the BKT. The modifications depend to a great extent on whether the
sizes of the BKT at both fixed points are comparable or not. If they are,
and aA

0,π ≫ R, the first mode is much lighter than the compactification scale

1/R, with mass m2
1 ∼ 2(aA

0 + aA
π )/(aA

0 aA
π πR) and couplings to brane fields

equal in size to the one of the zero mode, while the rest of the massive modes
have masses which approach mn ∼ (n − 1)/R and suppressed couplings to
the branes (Fig. 2). In this scenario (with fermions on the branes) there is
the possibility of discovering the first KK mode (a sequential gauge boson)
at LHC even for a large compactification scale. When one of the BKT
coefficients, say aA

π , is negligible with respect to the other, all KK modes
behave similarly. For aA

0 ≫ 1 their masses approach mn ∼ (n− 1/2)/R and
their couplings to the brane at y = 0 are suppressed
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Fig. 2. Masses (left) and couplings to the brane at y = 0 normalized to the zero

mode coupling (right) for the first few KK modes, n = 1, 2, 3, 4 from bottom to top

(left) and from top to bottom (right), as a function of aA
0 = aA

π .

Let us now turn to bulk (massless) fermions with parallel BKT. Fermions
in 5D are Dirac spinors, with two chiral components from the four-dimen-
sional point of view: Ψ = ΨL + ΨR, γ5ΨL,R = ∓ΨR,L. Invariance of the bulk
kinetic term under Z2 requires that the left-handed and right-handed compo-
nents have opposite Z2 parities. We choose an even left-handed component.
The kinetic Lagrangian and gauge couplings read

L =
(

1 + aL
I δI

)

Ψ̄Li6DΨL + Ψ̄Ri6DΨR . (16)

The term proportional might be naively argued to vanish, based on the odd
character of ΨR. However, this is not necessarily so if ΨR is discontinuous
at the fixed points, and this is actually the case for aL

I 6= 0. The effect of aR
I

has been described in [6]. Here, in order to simplify the analysis, we take
aR

I = 0. The KK reduction is then very similar to the one for gauge bosons,
except for the presence of a chiral zero mode.

The couplings of the four-dimensional effective theory are given by the
overlap of wave functions times five-dimensional couplings. In particular,
the gauge interactions of the fermions have couplings

gmnr =
g5√
2πR

πR
∫

−πR

dy (1 + aL
I δI)

fL
mfL

n fA
r

2πR
. (17)

The couplings relevant for phenomenology are the ones with two fermion
zero modes and KK excitations of gauge bosons, g00r, which give rise to
effective four-fermion operators at low energies. They vanish when aL

0 = aA
0

and aL
π = aA

π , and in particular when BKT are absent. One must also take
into account the fact that the profile (and then the couplings) of the Z and
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W zero modes is modified by a localized Higgs. A fit to electroweak precision
observables including (universal) BKT for bulk fermions and gauge bosons
results in bounds on the compactification scale as a function of aL

I and aA
I ,

shown in the plots of Fig. 3 [12].
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Fig. 3. Bounds at 1 σ on the compactification scale as a function of aA
0 and aL

0 for

aL,A
π = aL,A

0
(left) and aL,A

π = 0 (right). The band along the diagonal corresponds to

Ueff being too small to give a meaningful lower bound. The other bands correspond,

from dark to light, to Mc ≥ 2, 3, 3.5, 4 TeV (left) and Mc ≥ 1, 2, 3, 4, 5, 6 TeV (right).

On the other hand, the localized Higgs also modifies the profile of fermion
wave functions. This in turn gives rise to a non-unitary CKM matrix, with
departures from the Standard Model proportional to the mass of the quarks
involved, i.e., most relevant for top physics [13]. The deviations, which
depend on the BKT of fermions as well, give stringent limits coming from
the T parameter, which become weaker when aL

0 ≫ aL
π [11] (see also the

corresponding plot in the contribution of F. del Aguila and R. Pittau to
these proceedings [14]).

4. Orthogonal BKT and thin brane singularities

In this section we study orthogonal BKT and show that they generate
singularities in the thin-brane limit [6]. Consider a theory with an even
massless complex scalar and a quadratic Lagrangian given by

L = ∂µφ†∂µφ − ∂yφ
†∂yφ +

b

2
δ0

[

φ†∂2
yφ + (∂2

yφ†)φ
]

. (18)

We could have included a BKT cδ0|∂yφ|2 as well, but it has no effect on the
exact KK masses and wave functions. We take b ≥ 0.

The KK reduction is performed in this case by expanding

φ(x, y) =
∑

n

fn(y)√
2πR

φ(n)(x) , (19)
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with fn given by the eigenvalue equation

[

(1 + bδ0)∂
2
y + bδ′0∂y +

b

2
δ′′0

]

fn = −m2
nfn . (20)

In order to make this problem well-posed, we regularize the delta functions:
δ → δε, with ε a small length. Then, we solve numerically the differential
equation with Neumann boundary conditions (imposed by periodicity and
the Z2 parity). In Fig. 4 we plot the wave function of the first KK mode
for a small b and three values of ε. It turns out that the solutions are
regularization independent in the limit ε → 0. They reduce to1

fn(y) =

{

Nn cos(mny) if b = 0 ,

Nn sin(mn|y|) if b 6= 0 ,
(21)

with masses mn = n/R if b = 0, mn = (n + 1/2)/R if b 6= 0. The same
solutions for b 6= 0 would be obtained in the presence of parallel BKT or
brane mass terms, i.e., the orthogonal BKT erases the effect of other brane
terms. We see that an arbitrarily small b brings about drastic changes in
the spectrum and couplings. In particular, the zero mode disappears2. This
signifies a breaking of perturbation theory in the effective orbifold theory.

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Fig. 4. Wave function of the 1st KK mode for b = 0.01 and regularized deltas with

ε = 10−1 (dots), 10−2 (dashes) and 10−3 (solid). The mass is m1 = 1.002, 0.589

and 0.501, respectively. b, ε and m1 are given in units of R.

1 In fact, these wave functions do not satisfy (20) when b 6= 0! The reason is that the
derivatives of fn do not converge uniformly, due to strong fluctuations near y = 0.
The safest procedure is to perform the integrals on y before taking the limit ε → 0.
Nevertheless, the wave functions in (21) can be used before integration in the absence
of derivative interactions.

2 More precisely, it is transformed into a tachyon with squared mass approaching −∞
when ε → 0, and wave function localized at y = 0 in that limit.
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In fact, if we use perturbation theory and treat the orthogonal BKT as an
insertion, we find thin-brane divergences δn(0). The resummation of these
divergences yields the singular behavior we have just exhibited.

In the case of fermions the singularities are somewhat milder. Again,
the orthogonal BKT generate thin-brane divergences in perturbation theory.
But in this case the (chiral) zero mode survives and the masses and wave
functions are only discontinuous at b = 0 when parallel BKT are present as
well. The effect of switching b on is basically to eliminate the dependence
on the coefficients of parallel BKT and to make the wave functions discon-
tinuously vanish at y = 0. Therefore, for an arbitrarily small nonzero b the
bulk fermions decouple from the fields living on the brane. In particular,
they cannot get a mass from a Higgs localized on the brane.

Finally, gauge bosons do not have these problems because a b BKT is
forbidden by gauge symmetry. The c BKT mentioned above is allowed and
it actually produce divergences at higher orders in perturbation theory, but
it has no effect when treated exactly.

5. Dealing with thin-brane singularities

We have seen that fields misbehave in the presence of certain orthogonal
BKT when the branes are infinitely thin. Taken at its faith value, this
result constrains strongly the construction of realistic brane models with
bulk fermions — due to the decoupling of the fields from the branes — and/or
bulk scalars, because of the absence of zero modes and the appearance of
tachyons. Even more problematic is the fact that perturbation theory breaks
down, so that possible higher order BKT are out of control. In this section
we sketch possible interpretations and ways out of this situation.

5.1. Supersymmetry and critical theories

The most obvious solution is to consider only theories with b = 0. Since,
as we have seen in Sec. 2, b is in general radiatively induced, we would need
a symmetry which protects this BKT against quantum corrections. This is
achieved in supersymmetric gauge theories in 5D thanks to a combination
of supersymmetry and gauge invariance [6]. Indeed, the b BKT for fermions
and sfermions in the hypermultiplet is an F term, whereas gauge bosons
and gauginos are protected by gauge symmetry. Hence, putting b = 0 by
hand at tree level we obtain a well-behaved theory. This could be natural in
superstring theory. However, in realistic scenarios supersymmetry must be
broken and in general one expects finite corrections to b which reintroduce
the thin-brane singularities.

It is interesting to note that in supersymmetric theories with BKT (par-
allel or orthogonal) the behavior of bosons and fermions in the same 4D N =1
supermultiplet is matched as the result of higher order (singular) BKT in
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the bosonic sector. This is an example which shows how higher order op-
erators can change drastically low-energy physics in the presence of thin
defects. We can take advantage of this effect and consider a class of theo-
ries with arbitrary b and a tower of higher-order brane terms such that the
low-energy physics be smooth. In such critical theories, the coefficients of
the higher-order operators are not arbitrary, but perfectly fine tuned func-
tions of b. At quantum level this corresponds to a reduction of couplings.
These relations among operators of different orders may be natural if the
effective theory comes from an appropriate fundamental theory with fewer
parameters. Since the higher-order terms are fixed by the first order terms,
it is plausible that the tower can be resummed. In fact, for a scalar we can
consider a theory described by

L =
1 − bδ0
(

1 − b
2δ0

)2 ∂µφ†∂µφ − ∂y

(

φ†

1 − b
2δ0

)

∂y

(

φ

1 − b
2δ0

)

. (22)

This Lagrangian reduces to (18) at first order in b. At higher orders, however,
the thin-brane divergences are canceled out, and the KK exact masses and
wave functions behave smoothly in the ε → 0 limit. As a matter of fact, after
a singular field redefinition φ = (1− bδ0/2)φ̃ the Lagrangian (22) reduces to

L = (1 − bδ0) ∂µφ̃†∂µφ̃ − ∂yφ̃
†∂yφ̃ , (23)

which has only inoffensive parallel BKT. Note, nevertheless, that this field
redefinition may introduce (or cancel) singularities in the interaction La-
grangian.

5.2. Thin coefficients and classical renormalization

Since the singularities appear only in the thin-brane limit, a trivial solu-
tion is to use thick branes, regularized by a finite ε. The problem here is that
the physics then depends on the shape and size of the branes. Moreover, the
radiative corrections suggest that 1/ε is of the order of the UV cutoff of the
effective theory, Λ. Then, from the point of view of an infrared observer (at
energies of order 1/R) the brane must be pretty thin, with the consequent
abrupt behavior. In order words, organizing the effective theory as a series
of powers of 1/Λ requires expanding about ε = 0.

If we identify ε = 1/Λ and the coefficients of BKT are also O(1/Λ),
then we have a = αε, b = βε with α, β of order one. This means that the
coefficients a, b are naturally “thin”3 and in the expansion in ε we should
keep α, β constant. Doing this, the effect of parallel terms vanishes in the

3 This picture could be changed by geometric factors if Λ was not very large [10].
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limit ε → 0. Note that this limit corresponds to Λ → ∞, in which all the
bulk couplings vanish as well. So, we must consider at least the first order
corrections. At order ε a nontrivial smooth result is obtained. This indicates
that parallel BKT give suppressed corrections to bulk physics. On the other
hand, the numerical calculations show that the effect of orthogonal terms is
still singular in terms of β. This is quite surprising because it means that an
operator proportional to a “weak” delta (we mean a function with support
{0} and vanishing integral) is able to change the physics dramatically. In
terms of the 1/Λ expansion, we find that the orthogonal BKT are stronger
than O(1).

On the other hand, preliminary numeric calculations suggest that, writ-
ing β = (ε/R)1/2ξ, the physics is smooth and nontrivial in the parameter ξ.
This is confirmed by the calculations in deconstructed theories below. If this
behavior is universal at small ε for any regularization of the brane (although
the adequate power of ε might depend on the regularization), it implies that
we can consider a, b as bare parameters with a convenient ε dependence,
a0 = aR, b0 = (ε/µ)3/2bR, such that the renormalized parameters aR and
bR describe smooth physics in the limit ε → 0 (see [2] for an application
of this method to 6D theories with mass brane terms and [15] for an al-
ternative approach). In this way, our ignorance about thin brane physics
is absorbed into the bare parameters. Since this procedure must be per-
formed already at tree level, it is often called classical renormalization. Of
course, it should be implemented at the quantum level as well. This can
be done by adding quantum counter terms with a finite part with an ε de-
pendence as in the bare parameters above. Classical renormalization can
be also carried out perturbatively by introducing counter terms with thin
brane divergences [6]. These counter terms are higher order operators. In
fact, implementing classical renormalization in this manner is equivalent to
working with the critical theories described in the previous subsection.

Classical renormalization of thin-brane singularities gives us a smooth
parametrization of the physics of brane models. This is clearly an improve-
ment, but one may worry about legitimacy of the procedure: does the renor-
malized theory describe correctly, at low-energies, the physics of defects?
The situation is analogous to the one in Casimir problems. There, the tradi-
tional approach is also to perform a “classical” thin-brane renormalization in
order to find a well-defined, finite Casimir energy. However, this approach
has recently been criticized by Graham et al. [16]. These authors argue
that classical renormalization arbitrarily eliminates divergences which have
a physical significance: they show that the zero-point energies depend on the
microscopic details of the interaction of the bulk fields with the branes. In
the problem at hand, there seems to be a universal behavior for small ε, which
allows to absorb the impact of the brane into bare parameters. However,
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we should still wonder about the natural size of the renormalized param-
eters. This depends in turn on the size of bare parameters, which will be
ultimately given by the fundamental theory completing our effective theory
at high energies. We will come back to this point in the next section, where
we study a toy-model completion. At the level of the effective action we can
estimate their size using radiative corrections: Assuming that there are no
strong cancellations and that ε ∼ 1/Λ, radiative corrections provide a lower
bound of the size of the bare couplings: a0, b0 ∼ ε. This means that the
renormalized coupling aR is naturally small (with α ∼O(1)) while bR is nat-
urally very large. But for large bR we recover the solutions displayed above
when b0 6= 0! This effect can be described in a dual manner as the renormal-
ization group flow of the bare BKT: the parallel BKT are irrelevant (just as
bulk gauge interactions in 5D), whereas the orthogonal BKT are relevant
operators in the infrared. b0 = 0 is an unstable fixed point of this flow. This
contrasts with the case of mass brane terms in 6D, which are marginal and
give rise to interesting logarithmic runnings [2].

6. Deconstructing orbifolds

In order to know better what the physically sensible treatment of thin
brane singularities should be like, we would need to match the low energy
effective theory to the microscopic theory describing the brane model at short
distances. In this section we follow this idea and try to gain some insight
on the problem by studying a deconstructed version of a 5D orbifold theory,
which can be regarded as an ultraviolet completion of the effective theory in
the continuum. We will just sketch the procedure. A more complete analysis
will be presented in [17].

Deconstructed theories of extra dimensions were introduced in [5]. A de-
constructed model is basically a 4D theory with a replication of gauge groups
with common gauge coupling g and a series of “link” scalars transforming
under couples of gauge groups. This structure of sites connected by links
is best represented by a moose diagram. Fig. 5 describes (before folding)
a moose with a linear periodic gauge structure. A discrete extra dimen-
sion with spacing s = 1/(gv) is generated when the link fields aquire a vev v.
Then, most of the gauge symmetry is Higgsed and the gauge bosons adquire
a mass matrix which is nothing but a discrete version of the extra dimen-
sional derivative. Translation invariance in the extra dimension corresponds
to having a common gauge coupling for all the groups and all the links get-
ting the same vev. One can also add scalar and fermionic matter at each
site to deconstruct bulk scalars and fermions. Alternatively, one can add,
for instance, a fermion at one site only. This is the deconstructed version
of a model with a fermion localized on a brane. Note that in this case
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translation invariance is broken. The nice thing about deconstructed the-
ories is that, unlike theories in extra dimensions, they are well-behaved in
the ultraviolet. For instance, the links can be linear-sigma-model fields with
a potential such that they spontaneously get a common vev.

SU(N)

SU(N)SU(N)

SU(N)

SU(N)

0

1-1

2-2

N

SU(N)

Fig. 5. Moose of a deconstructed circle. A site orbifold is constructed by folding it

across the vertical dashed–dotted line.

We can define deconstructed orbifolds by conveniently identifying the
fields at different sites and links. For example, a deconstructed S1/Z2 orb-
ifold is obtained when the periodic moose of Fig. 5 is folded across the
dashed–dotted line. In fact, for an even number of sites, we can define two
inequivalent deconstructed orbifolds: a “site orbifold” when we fold across
sites, as in the figure, and a “link orbifold” when we fold across links. For
odd number of sites there is only one possibility: a “site-link orbifold”. The
“site orbifolds” are particular cases of aliphatic models, which are non peri-
odic linear mooses with boundaries, and particular interactions at the border
sites (mimicking boundary conditions). It is worthwhile to note, however,
that the orbifold picture gives in a natural way the boundary interactions
which in the aliphatic picture are introduced ad hoc to reproduce the usual
5D spectra.

The orbifolding breaks translational symmetry at the fixed sites (links)
and therefore localized radiative corrections are expected. To see this ex-

plicitly, consider a moose with a global
N
∏

i=−N+1
SU(N )i symmetry, scalars φi

in the adjoint of SU(N )i and scalar link fields χj transforming under the
(N , N̄ ) of (SU(N )j−1/2,SU(N )j+1/2). It is convenient to use a notation in
which, for a site (link) orbifold, the indices for the sites are integer (semi-
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odd) and the indices for the links and semi-odd (integer). Then, the orbifold
projection is performed in both cases by identifying

φ−i ∼ ±φi , (24)

χ−i ∼ χ†
i . (25)

We should note that this toy model without gauge fields will have a bunch
of Goldstone bosons. This is unrealistic, but it does not interfere with the
problems we are studying here.

For a finite spacing (finite v), the quantum divergences are the same in
the unbroken and broken phases. Therefore, if we are only interested in
extracting the divergent parts we can work in the unbroken theory, which
has a diagonal free action, and put χ = v at the end. This is equivalent
to treating the discrete derivatives in the fifth dimension as insertions. In
this formalism, the propagator of the scalar field is simply the standard 4D
propagator times δii ± δi−i. To illustrate what sort of corrections one finds
at one loop, let us consider again the diagram in 1. Its contribution to the
effective action is proportional to

∑

i

∫

d4p φ2
i (δii ± δi−i)

1
p2 (26)

∼ Λ2
4D

∑

i
(1 ± δi0)φ

2
i . (27)

Therefore, there is again a divergence localized at the brane i = 0 for a site
orbifold. On the other hand, this diagram gives no localized divergence in
a link orbifold, since i is in this case semi-odd. This makes sense, since in
the link orbifold the field φ “jumps” the fixed point. The opposite result is
found for contributions to the discrete kinetic term, which come from the
same diagram with an insertion of the operator φ2|χ|2. This effect has no
counterpart in the continuum, where the positions of sites and links collapse.
On the other hand, we should also take into account diagrams with virtual
links. These go beyond a simple discretization of the 5D theory. The brane
terms generated by them can be understood as brane terms included at tree
level in the 5D effective theory.

In general, the bulk and brane one-loop contributions have the same
size. They are proportional to the adimensional coupling constants of the
deconstructed theory and to a factor of v for every insertion of χ. The
factors of v are precisely the ones needed to build the discrete derivatives. At
energies lower than Λ = 1/s the deconstructed theory can be described by an
effective 5D theory with cutoff Λ. Taking into account that in the continuum
limit δi0 → sδ(x), we see that our expectations above are confirmed in the
deconstructed scenario, namely, the coefficients of the brane terms have
a 1/Λ suppression.
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In [18] we have analyzed the effect on masses and wave functions of gen-
eral BKT in a deconstructed (discretized) theory. We have shown that if we
keep the continuum parameters a, b and the compactification radius R con-
stant, the results of the previous sections are reproduced in the continuum
limit. We can also show that, as we anticipated, physics is still singular in
the continuum when we keep the adimensional parameters α = a/s, β = b/s
fixed (which implies vanishing b). Finally, writing β = ξs1/2 one finds
smooth results in terms of ξ, a. Indeed, the wave functions and KK masses
in the continuum are given by (14) and (15) with aI → aI − ξ2

I/m
2 (for

m 6= 0). We shall give more details in [17].
At any rate, we stress again that the one loop corrections generate α, β

independent of s. The infrared of the deconstructed theory corresponds to
KK modes with mass ≪ 1/s 4. Therefore, the calculations in deconstructed
orbifolds support the interpretation at the end of Sec. 5. It seems then that
the correct low-energy physics of bulk fermions and scalars in noncritical
theories with branes is given by a large bR. However, it is not clear whether
this picture is stable under higher order quantum corrections. In particular,
one may worry about the generation of higher order BKT with thin brane
singularities. In this sense, two loop calculations in orbifold models can be
crucial to establish or invalidate the loop expansion in extra dimensional
models with thin defects.
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