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Soft multiparticle production in hadron-hadron collisions is reviewed
with particular emphasis on its role as a standard for heavy-ion collisions
at SPS and RHIC energies and as a bridge interpolating between the most
simple e+e− and the most complex AA collisions.
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1. Single-particle (and resonance) inclusive spectra

1.1. Feynman-x and rapidity

Elastic scattering and diffraction dissociation lead to simple final states
with relatively few particles. The larger part of the collisions leads to
high particle multiplicities with complicated structure in highly-dimensional
phase space. The first and most simple approach is then to study an all-
inclusive density distribution in one of these dimensions.

Fig. 1.1(a) shows [1] the energy dependence of the invariant distribution

F (x) =

∫

E∗

p∗max

d2σ

dxdp2
T

dp2
T (1)

in the Feynman variable x = p∗‖/p
∗
max, the component of the particle cms

momentum in the beam direction, normalized to its maximum possible
value, in K+p collisions. The upper part (mind the change in scale) corre-
sponds to positive particles except for identified protons, the lower part to
π−-production. The large-|x| region shows energy scaling and a fall-off of
the distribution towards its tails which is steeper for the proton region (large
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negative x) than for the K+ region (large positive x). The large-|x| scaling
is in agreement with the early concept of limiting fragmentation [2] stating
that at high enough energy, the fragmentation of beam or target is expected
to reach an energy independent limit for particles produced with finite mo-
mentum in the rest frame of the fragmenting particle. Experimentally, this
was convincingly shown to hold at ISR energies for pp collisions between√
s = 31 and 53 GeV [3].

A scaling violation is, however, observed in the form of an increase
of F (x) with increasing beam momentum for the low-|x| (central) region.
An alternative variable, expanding the central region, is the rapidity y =
0.5 ln[(E+ p‖)/(E− p‖)]. The energy dependence for the cms y-distribution
for essentially the same data as above is shown in Fig. 1.1(b). The distri-
bution widens with increasing energy. In the center, a plateau develops at
high energies, reaching a width of about 3 rapidity units at 250 GeV/c beam
momentum, and the density increases for all y.

Fig. 1.1. (a) The invariant Feynman-x distribution for the inclusive reactions
K+p → C+ + X and K+p → π− + X between 8.2 and 250 GeV/c; (b) the ra-
pidity distribution for the same reactions between 12.7 and 250 GeV/c [1].

This low-|y| increase with increasing energy is in contradiction to the
early hypothesis of so-called Feynman scaling [4], based on the assumption
that, asymptotically, interaction between two colliding hadrons occurs only
through exchange of partons or parton systems of “wee” longitudinal mo-
mentum, i.e. of partons with a non-zero amplitude in both hemispheres.
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b)

c)

Fig. 1.2. (a) The central density ρ(0) of the c.m. pseudo-rapidity distribution as
a function of

√
s [1]. The solid, dashed and dashed-dotted curves are DPM, Lund

and FRITIOF. (b) The central density per participant pair for central heavy ion
collisions at SPS and RHIC. The lines are fits to the pp̄ data [13].

A lab momentum of 250 GeV/c corresponds to
√
s = 22 GeV, so not to

an asymptotic energy. Therefore, in Fig. 1.2(a) the central pseudo-rapidity
density ρ(0) = (1/σinel)[dσ/dη]η=0 is displayed versus

√
s [1, 5, 6] up to

1800 GeV, but an upward curvature rather than Feynman scaling is ob-
served. The lines correspond to quark string models, as examples for a first
comparison. The single-string Lund model [7] does not reproduce the rise of
the central pseudo-rapidity density in the energy range presented. The two-
string model FRITIOF (with hard parton scattering) [8] and a two-string
dual parton model (DPM) [9] agree reasonably well with the data up to√
s=60 GeV, but underestimate the rise for higher energies.

So, Feynman scaling does not hold, but limiting fragmentation does, and
it has turned out that this is the case in a much wider range of rapidities than
originally proposed, and not only in hadron–hadron [5], but also in hadron–
nucleus and nucleus–nucleus collisions [10, 11]. Fig. 1.3 shows that in these
types of collisions, the particle density in the fragmentation region increases
linearly with decreasing pseudorapidity η − Y (Y being the beam rapidity)
towards the central plateau. The range of this limiting fragmentation region
increases with increasing energy, so that the width of the central plateau
grows much slower than anticipated (see also W. Busza, these proceedings).

Abandoning Feynman scaling, Bialas and Jezabek [12] show that these
features can be understood from a two-step process, where a number of
color exchanges take place between two sets of partons (one in each of the
colliding hadrons) which are uniformly distributed in rapidity, so not just
“wee”, and the color charges created this way then emit particle clusters by
bremsstrahlung or color string decay with a flat distribution of clusters. The
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Fig. 1.3. Pseudorapidity distribution for (a) pp̄ collisions between
√
s = 53 and

900 GeV [5], (b) AuAu collisions between 19.6 and 200 GeV [11].

saturation in the form of a central plateau then is due to the fact that in the
cms only partons can participate with lifetime longer than the time needed
for the color exchange.

A remarkable difference is observed between the collider pp̄ data [5, 6]
and central heavy ion collisions at high energies [13]. In Fig. 1.2(b), ρ(0) is
given as a function of

√
s per participating nucleon pair for both types of col-

lisions. While the lower-energy NA50 point is compatible with the pp̄ trend,
the higher-energy central heavy ion collisions lead to a ρ0(0) per partici-
pant pair considerably higher than that for pp̄ collisions. Therefore, particle
production in the former cannot be explained as a simple superposition of
nucleon-nucleon interactions.

1.2. Transverse momentum distribution

The differential cross section dσ/dp2
T for positively charged particles

(C+) and for π− in hp interactions at 250 GeV/c is plotted in Fig. 1.4(a).
The data show a significant high-p2

T tail. Its further increase through ISR,
SPS and Tevatron energies [14–16] indicates the onset of a hard-scattering
regime. At low p2

T, on the contrary, the exponential slope is largely inde-
pendent of energy [14–16], and in Fig. 1.4(a), one observes no dependence
on the type of beam particle. It is, however, smaller for C+ than for π−.
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Fig. 1.4. (a) The dσ/dp2
T distributions for positively charged particles (C+) and

for π− in hp interactions at 250 GeV/c. The solid dashed and dashed-dotted curves
are DPM, Lund and FRITIOF predictions [1]. (b) The ratio of the central rapidity
density versus p2

T for K+p interactions at 250 and 32 GeV/c [1].

The curves in Fig. 1.4(a) reflect the pT parameters used in the particular
versions of Lund, DPM and FRITIOF. All models describe the region p2

T < 1
(GeV/c)2 fairly well, but Lund and DPM clearly do not account for the
high p2

T tail of the distributions. Taking into account gluon emission and
hard parton scattering processes, FRITIOF describes the inclusive dσ/dp2

T
distribution better, but still tends to underestimate the data for positive
particles in the region 1 < p2

T <2.5 (GeV/c)2.

In Sect. 1.1 we have analyzed the rise with energy of the central ra-
pidity plateau. Although the effect is well known and also seen in e+e−

annihilation and deep-inelastic lh processes, the dynamical origin of this
phenomenon is not fully understood. In [17] it was shown that part of the
central plateau rise is of kinematical origin and related to mass effects which
are still significant at top ISR energies. In the framework of the DPM, the
effect is purely dynamical and due to (i) the increasing overlap in rapidity
space of the fragmenting valence-quark chains, (ii) the contribution from
additional chains stretched between quarks and anti-quarks created in the
vacuum. In FRITIOF, the rise of the plateau is a consequence of non-scaling
behavior in each string separately, due to gluon emission and the presence
of hard scatterings. The latter ingredients are thus expected to reflect in the
pT-dependence of the plateau rise.

To investigate this question, we plot in Fig. 1.4(b) the ratio of (dσ/dy)y=0

for charged particles at 32 and 250 GeV/c, as a function of p2
T. It is clear
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that the largest contribution to the total central-plateau increase originates
from the small-p2

T region. The ratio is close to one at p2
T=0.5 (GeV/c)2 and

increases again for p2
T > 1 (GeV/c)2. A similar energy behavior is observed

in ISR data [18]. Furthermore, an additional excess at low pT and at high
pT is found when comparing heavy ion collisions to hadron–hadron collisions
at the same energy per nucleon [19].

Lund gives R ≈ 1 around p2
T=0.5 (GeV/c)2 and R > 1 at smaller and

larger p2
T, but on both sides R stays smaller than in the data. At least

some of this scaling violation derives from the decay of resonances more
abundantly produced at larger energies and from kinematics.

FRITIOF, on the other hand, more successful in describing the overall
p2
T-spectra, fails to account for the energy dependence in the region p2

T > 0.5
(GeV/c)2. The onset of hard parton scatters in this model is so strong be-
tween 32 and 250 GeV/c that the prediction overshoots the data by a factor
of 1.7 at p2

T=1.0 (GeV/c)2. DPM describes the rise at small p2
T reasonably

well, but remains almost constant for p2
T >0.75 (GeV/c)2. However, for

DPM the ratio in this p2
T region is particularly sensitive to the value of the

average primordial quark transverse momentum kT. If the value of 〈k2
T〉

is lowered from 0.42 (GeV/c)2 to 0.20 (GeV/c)2, the rise of the ratio for
p2
T > 0.75 GeV/c2 is similar as in the Lund prediction.

After a first indication in a cosmic ray experiment [20], the UA1 experi-
ment [21] has established an increase of the mean transverse momentum 〈pT〉
with increasing charged particle density ∆n/∆y in rapidity. A similar in-
crease has been observed in a second cosmic ray experiment [22], in UA5 [23]
and at the Tevatron [15]. Though much weaker at ISR energies, an increase is
also seen there [18,24,25]. Besides the growth of the effect between ISR and
Collider, the correlation between 〈pT〉 and ∆n/∆y becomes stronger when
low pT tracks are excluded and when the analysis is restricted to the central
region. Explanations have been proposed in terms of possible evidence for
a hadronic phase transition in a thermodynamical model [24, 26, 27], small
impact parameter scattering in a geometrical model [28] or the production
of mini-jets from semi-hard scattering [29–32].

At lower energies, on the other hand, a decrease of 〈pT〉 with increasing
n had been observed. This decrease is mainly visible at the high-n tail of
the distribution and is generally interpreted as a phase-space effect.

Comparing in Fig. 1.5(a) [33] the highest available energy data to in-
termediate and low energy data, we see that 〈pT〉 is surprisingly energy
independent for low multiplicities. The slope of 〈pT〉 vs. n, on the other
hand, is negative for low energies and becomes positive at ISR. This leads
to a fast increase of 〈pT〉 with increasing energy for high multiplicities. As
shown in Fig. 1.5(b), this increase depends on the particle type and is faster
for heavier particles than for pions [15].



General Characteristics of Hadron–Hadron Collisions 2823

Fig. 1.5. The average transverse momentum 〈pT〉 as a function of charged-particle
multiplicity n (a) for hh collisions at

√
s from 5.6 to 1800 GeV [33], (b) as a function

of
√
s for p̄, K± and π± [15], (c) for inclusive production as well as for 2-jet and ≥

3-jet events in e+e− collisions at 91 GeV [34].

The mini-jet interpretation of the development with increasing density
and energy in Fig. 1.5(a) gets support from the fact that a similar devel-
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opment is seen in e+e− collisions [34, 35]. At 91 GeV, part of the e+e−

collisions lead to a 2-jet topology, part to a three- or more-jet topology.
While the first two jets originate from the fragmentation of the original qq̄
pair, the third jet corresponds to a gluon radiated off by one of the quarks.
Fig. 1.5(c) shows the average transverse momentum 〈pIN

T 〉 in the event plane
as a function of the charged-particle multiplicity n for inclusive particle pro-
duction in e+e− collisions at 91 GeV [34], compared to that in 2-jet events
and ≥3-jet events. While the latter two still show a decrease of 〈pIN

T 〉 with
increasing n, the inclusive distribution shows a clear increase. This increase
can be interpreted as due to a change from a 2-jet regime at low n to a
≥3-jet regime at large n [36].

1.3. Differences between quark and gluon jets

The gluon structure function of the proton is considerably softer than the
quark ones. UA1 used this difference to perform a statistical separation of
quark and gluon jets in two-jet events [37]. In Fig. 1.6(a), the fragmentation
function D(z), with the momentum fraction z = pz(track)/p(jet) and pz

the momentum component along the jet axis, is shown for both types of
jets. The ratio of the two distributions is given in Fig. 1.6(b). The softer
fragmentation for gluons is indeed also observed in hadronically excited jets,
be it with very large errors.

Fig. 1.6. (a) Fragmentation function D(z) for quark jets and gluon jets, (b) their
ratio as a function of z. (c) W 2 and m2

jj evolution of the fragmentation function
per bin of z [37].
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Furthermore, also here gluon jets are observed to be wider than quark
jets, and scaling violations are observed to be stronger than gluon/quark jet
differences. In Fig. 1.6(c), the pure quark and gluon fragmentation functions
extrapolated from TASSO [38] are given in bins of z versus the two-jet mass,
together with UA1 data. In a detailed comparison of the jet shape in e+e−,
ep and pp̄ collisions [39], jets are shown to be narrower in the first two (from
OPAL and ZEUS) than in the latter (from CDF and D0). This difference can
be understood from the abundance of gluon jets in pp̄ collisions at Tevatron
energies.

Finally, an analysis of average jet charges demonstrates that gluon jets
are neutral, while u(ū)-quark-enriched jet samples show a significant positive
(negative) average charge.

1.4. The sea gull

A distribution particularly sensitive to the onset of hard effects in lepton-
hadron and e+e− collisions has turned out to be the energy dependence of
the average transverse momentum of particles produced around Feynman-
|x| = 0.4.

The dependence of the average transverse momentum on Feynman-x has
first been observed in hadron–hadron collisions at lower energies [40]. It has
a characteristic shape resembling a sea gull with its head lowered at x = 0
and its wings raised around |x| ≈ 0.4. This “sea-gull effect” is also visible
in e+e− [41] and lh [42,43] collisions and qualitative similarities between all
three types of collisions (hh, lh and e+e−) at comparable energies have been
observed [43, 44].

In e+e− annihilation, a dramatic rise with cms energy [41] has set in for
one of the wings, as a consequence of the onset of emission of a hard gluon
by one of the two leading quarks. This rise is satisfactorily reproduced
by a QCD model of independent quark fragmentation [45] and by a string
model [46] when hard processes are included. For e+e− annihilation, these
processes become significant at an energy of about 10 GeV and lead to a rise
of 〈p2

T〉 by a factor of two from 14 to 22 GeV.
Neutrino experiments [42] have shown that already at hadronic masses

W < 10 GeV, the sea gull is lifting its current-fragmentation wing with
increasing W . The EMC collaboration [43] has increased the W range up
to 20 GeV and shown that in terms of Lund fragmentation, this effect can
be reproduced only if gluon radiation is included.

The point is, that a rise of the sea-gull wings is also observed in hadron–
hadron collisions at comparable energy. As in lepton-hadron collisions, the
rise may have set in at lower energies [47, 48], but is clearly visible in K+p
collisions from 12.7 to 250 GeV/c (

√
s ≈ 5–22 GeV) in Fig. 1.7(a) [49].
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Fig. 1.7. (a) The energy weighted average transverse momentum 〈pT〉E as a func-
tion of Feynman-x for K+p→ C− +X between 12.7 and 250 GeV/c incident mo-
mentum. (b) The average squared transverse momentum 〈p2

T〉thrust with respect
to the thrust axis for the combined non-single-diffractive K+p and π+p sample
(indicated as M+p) with multiplicity n ≥ 4 at

√
s = 22 GeV, compared to that for

e+e− collisions at 14 and 22 GeV, and µp collisions with 10 < W < 20 GeV [49].

In Fig. 1.7(b), the combined non-single-diffractive K+p and π+p data
are compared to e+e− results at

√
s = 22 and 14 GeV and to µp results

at 10 < W < 20 GeV in terms of 〈p2
T〉thrust, the average of the square of

the particle pT with respect to the thrust axis. In the hh data, the wings
of the sea-gull distribution are significantly lower than the (folded) wings
from e+e− at the same energy, but higher than those from µp collisions
with hadronic energy 10 < W < 20 GeV. The meson fragmentation wing at
22 GeV is consistent with the folded e+e− wings at 14 GeV.

From Figs. 1.7(a) and b we, therefore, conclude that a rise of the sea-
gull wings with cms energy is also observed for hh collisions, but the rise
is less dramatic than in e+e− annihilation. Part of this difference can be
explained by heavy quark fragmentation contributing in e+e−, but not in
hh collisions. Furthermore, the hadronic energy (

√
s or W ) has to be shared

by more quarks in lh and hh collisions than in e+e− collisions.
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1.5. Resonances

About 50% of the pions shown in Fig. 1.1 come from vector mesons and
also tensor mesons and baryon resonances are not negligible as pion sources.
So, more direct information on the production mechanism can be expected
from the study of resonances.

1.5.1. Total yields and strangeness suppression

A systematic study of particle and resonance yields has been performed
[50] with pp interactions at

√
s = 52.5 GeV. As can be seen in Fig. 1.8,

the particle yield falls exponentially with particle mass, but separately for
strange and non-strange mesons. The line connecting the strange mesons lies
about a factor 1/λ ≈3 lower than that for the non-strange ones. An impor-
tant exception is the φ meson, which is an ss̄ quark state. This lies consid-
erably below the strange-meson line, in agreement with a double strangeness
suppression λ2.

Fig. 1.8. Resonance cross section from pp collisions at
√
s = 52.5 GeV as a function

of the resonance mass [50].
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The strangeness suppression factor has been measured at several en-
ergies. There is an indication of an s dependence at small s, but the
data are compatible for hadron–hadron, e+e− and lepton–hadron data with
λ = 0.295 ± 0.006 as the most accurate estimate [51].

It does, however, depend on the region of phase space studied [52, 53].
For example, as determined by the ratio σ(φ)/σ(K∗

892) in NA22, λ decreases
with increasing Feynman-x and drops to λ ≈ 0.1 near x = 1.

1.5.2. Feynman-x and rapidity dependence

Of particular importance in particle or resonance production is their
Feynman-x dependence. The yield of particles and resonances differs strongly
for different x regions, and the consequent x dependence depends strongly
on the quantum numbers of the beam and the produced particle.

A good demonstration for the existence of a quantum number depen-
dence of resonance production is the difference between positive and negative
Σ (1385) from K−p collisions studied at 4.2, 10, 14.3 and 16 GeV/c beam
momentum [54–56]. The Σ−(1385) is produced symmetrically with respect
to x = 0, with vanishing cross section for x near unity (see Fig. 1.9 for 10
GeV/c). The Σ+(1385) has a large cross section for all x < 0, but is about
equal to Σ−(1385) for x > 0. In the proton fragmentation region Σ− pro-
duction should be small, as it requires double charge exchange, whereas Σ+

is allowed. The difference shown in Fig. 1.9 then suggests a fragmentation
component, the equal part a central component.

The rapidity distribution for ρ±0 (Fig. 1.10(b)) produced from pp at
24 GeV/c [57] is in qualitative agreement with that of Σ−(1385) in K−p
reactions and thus suggestive of being due to largely central production. It
is interesting to note that the distributions for ρ+, ρ− and ρ0 are the same.

For ρ±0 produced from π+p at 16 GeV/c as shown in Fig. 1.10(a), equal-
ity of the rapidity distribution holds only for y < 0. For y > 0, only ρ− is
approximately symmetric to the negative y region. The cross section for ρ+

and ρ0 stays large for all y > 0 and about twice as large for ρ+ as for ρ− in
the beam fragmentation region. This is again in agreement with suppression
of ρ− in the π+ fragmentation region due to double charge exchange.

In Fig. 1.10(c), the rapidity density (1/σinel)(dσ/dy) is compared for
ρ− produced from pp (circles) and π+p (crosses). In the whole y region,
the distributions are quite similar, in agreement with the expectation of
dominant central production in both experiments. As can be deduced from
Figs. 1.10(a) and (b), this equality also holds for ρ+ and ρ0 production for
y < 0 where central production is expected to dominate. As expected for
a fragmentation component, for y > 0 the ρ0 and ρ+ production becomes
significantly larger in the π+p than in the pp reactions.
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Fig. 1.9. (a) Differential cross section dσ/dx for Σ+(1385) and Σ−(1385) inclu-
sive production at 10 GeV/c. (b) Difference between the dσ/dx distribution for
Σ+(1395) and that for Σ−(1385) [56].

We conclude from this that, in spite of the failure of central boost in-
variance observed in Sect. 1.1, there is good evidence for a two-component
picture of inclusive particle and resonance production, already at rather low
energy. The fragmentation component depends on the produced particle
or resonance and on the fragmenting incoming particle. The shape of the
central component is universal, i.e., does neither depend on the incoming
particles nor on the produced particle or resonance.

Furthermore, it has been noted that only of the order of 10% of the pions
are produced directly (the largest pion sources being ρ±0 and ω0) and that
strangeness is suppressed by a factor 1/λ ≈ 3.
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Fig. 1.10. Differential cross section dσ/dy for inclusive ρ±0 production as a function
of y in (a) π+p reactions at 16 GeV/c, (b) pp reactions at 24 GeV/c. (c) Comparison
of the inclusive ρ− density in 16 GeV/c π+p and 24 GeV/c pp interactions [57].

1.6. Reflection of the valence quark distribution

The antiquark distribution in the proton is concentrated at small
Bjorken-xB (say, xB ≤ 0.2, the sea region) and the same is true for glu-
ons which dissociate into a qq̄. The presence of an q̄ component in the
proton structure function implies that the proton, which primarily consists
of three quarks, is subject to fluctuations in which extra qq̄ pairs are formed.
According to the suggestion of Ochs [58], proton fragmentation in the col-
lision with other hadrons may then be viewed as a rearrangement of the
pre-existing partons preserving approximately their individual longitudinal
momenta.
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Fig. 1.11. Comparison of the invariant π+, π− and K+ cross section as a function
of Feynman x from pp collisions at

√
s = 45 GeV to the u- and d-quark distribution

functions u(xB) and d(xB), respectively [59].

In the fragmentation region of the proton, the π+ can be assumed to be
composed of a u valence and a d̄ sea quark. Since the latter carries very little
momentum, we expect to find a π+ = |ud̄〉 with momentum similar to that
of the u quark. The same holds for a π− = |dū〉 and the d quark. As a con-
sequence, the Feynman-x distribution of a pion in the fragmentation region
of an incident proton is expected to be similar to the xB distribution of the
valence quark which it shares with the proton. Fig. 1.11(a) shows [59] that
the x distribution of the π+ produced in pp collisions at ISR is indeed similar
to the proton u-quark distribution u(xB) ≡ F p

u (xB) derived from electron–
nucleon deep inelastic scattering. The π− distribution (Fig. 1.11(b)) agrees
with the proton d-quark distribution d(xB) ≡ F p

d (xB) up to xB ≈ 0.7, and
is only slightly above d(xB) for larger xB values.

Furthermore, the K+ distribution agrees again with u(xB), as expected
from the fact that it shares a u quark with the proton (Fig. 1.11(c)). The
K− has no valence quark in common with the target proton. Indeed, its
x distribution (not shown) falls much more steeply with increasing x than
either u(xB) or d(xB).

We conclude that the quantum numbers and the momentum distribu-
tion of the target–proton valence quarks can be found back in the particles
produced in the target fragmentation region.
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1.7. Conclusions

Within hadron–hadron collisions, meson (π±, K±)-proton collisions have
the advantage of being a simple q1q̄2 system and representing a large flavor
variety. Quite surprisingly, this quark flavor is observed to play an essential
role in these (soft!) collisions and its fragmentation is found to be simi-
lar to the fragmentation of the corresponding quark in e+e− collisions and
DIS. Furthermore, the quantum numbers and momentum distribution of the
target-proton valence quarks can be found back in the particles produced
in the target fragmentation region. On the other hand, hadron production
in the central region (near zero rapidity) is independent of the quantum
numbers of beam or target.

The disadvantage is that meson beams only exist up to 250 GeV lab
momentum (

√
s = 22 GeV), so that they have to be complemented by

p±p collisions at higher energies, for other important features, as scaling
violation in the central region or pT evolution with increasing energy and
particle multiplicity.

The fact that jets produced along the beam direction in ordinary hadron–
hadron collisions are similar to those produced in e+e− annihilation and deep
inelastic leptoproduction has led to the assumption of parton fragmentation
as a common underlying dynamical mechanism.

2. Final-state multiplicity

2.1. Average multiplicity and its energy dependence

The average number of particles, of all types or of a particular type, is
the first moment of the multiplicity distribution and the phase-space integral
of the corresponding singe-particle density. As such, it does not contain any
information on correlations, but is one of the basic observables characterizing
hadronic final states and their evolution with increasing energy.

An early question was how the average multiplicity and its energy evolu-
tion depend on the type of collision. The average multiplicity 〈n〉 of charged
hadrons produced in ν̄p collisions is plotted in Fig. 2.1(a) as a function of the
squared hadronic energy W 2 for W 2 < 100 GeV [61]. One can discuss the
small systematic differences between the three experiments shown, but one
cannot deny the success of the fit represented by the full line. However, the
fit is not to these ν̄p data, but to non-diffractive π−p data at corresponding
cms energy [60]! So, one observes the relation 〈n〉ν̄p = 〈n〉π−p.

Similarly, 〈n〉 is given as a function of the cms energy
√
s for early e+e−

annihilation [62] results in Fig. 2.1(b). Since no proton fragmentation is
involved in e+e− and protons fragment differently, proton fragmentation
has to be removed from the hadronic counterpart, here. This can be done
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dc

Fig. 2.1. Average charged-particle multiplicity of the hadronic system in (a) ν̄p
collisions [61] (the solid line shows a fit [60] to the non-diffractive component of
π−p collisions), (b) e+e− annihilation [62] (the solid line shows the prediction
from hadronic data according to (2)); (c) e+e− compared to pp± collisions [63];
(d) comparison after the transformation 〈n〉 → 〈n〉 − n0,

√
s → √

s/k for pp±

collisions [63].

by using

〈n〉e+e− = 〈n〉π+p + 〈n〉π−p − 〈n〉pp . (2)

Indeed, a fit through the right-hand-side combination of non-diffractive
hadronic multiplicities [60] reproduces the e+e− data for

√
s < 50 GeV.

In the meantime we have moved to higher energies, in particular with
e+e− and pp̄ collisions, but not with π−p collisions. So, other comparisons
have been made.
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Of course, it is evident that the simple similarities observed above cannot
persist. Besides the absence of proton fragmentation in e+e− collisions men-
tioned above, e.g., hard gluon radiation leads to 3- and 4-jet events in e+e−

collisions, while hard parton scattering leads to 4-jet events in hh collisions.
Both mechanisms cause an increase in the number of particles produced, but
the relative strength of these two mechanism is different in the two types of
collisions.

Nevertheless, Fig. 2.1(c) gives a comparison [63] of e+e− and pp± colli-
sions at higher energies. In both cases, the energy dependence of 〈n〉 can be
well described by [64]

〈n〉 = a0 + a1 exp
(

a2

√
ln s

)

, (3)

or

〈n〉 = c0 + c1 ln s+ c2(ln s)
2 , (4)

but at given energy, 〈n〉 is about 25% lower for pp± collisions than for e+e−

annihilation.
Following an earlier comparison [65], in Fig. 2.1(d) [63], the average pp±

inelasticity and leading system fragmentation have been taken into account
by the transformation 〈n〉 → 〈n〉 − n0,

√
s → √

s/k, with n0 and k as
additional fit parameters for the pp± data. Both parametrizations (3) and
(4) give excellent combined fits, with similar n0 and k values. The latter
suggest that together the leading pp± systems on average contribute about
2 charged particles, while the energy available to central particle production
is about 1/3 of the total energy.

2.2. The shape of the multiplicity distribution and its energy dependence

The shape of the multiplicity distribution Pn, and in particular its devi-
ation from a Poissonian, gives the amount of correlation in the production of
final-state particles. Positive correlations lead to a distribution wider than
Poisson, negative correlations to a distribution narrower than Poisson.

Examples are shown in Fig. 2.2 in terms of the so-called KNO (Koba–
Nielsen–Olesen) form [66],

ψ(z) ≡ 〈n〉Pn (5)

as a function of z = n/〈n〉, for pp± [67] and for e+e− collisions [68]. While
pp± collisions lead to a wide distribution, widening with increasing energy,
e+e− collisions lead to a relatively narrow distribution with only little energy
dependence.

To arrive at more quantitative statements, the shape can be fitted by an
analytical form parametrizing the multiplicity distribution in terms of two
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Fig. 2.2. The shape of the multiplicity distribution in KNO form for (a) pp±

collisions [67], (b) e+e− collisions [68].

or more free parameters or, alternatively, it can be studied in terms of its
moments of rank q ≥ 2.

One of the most striking phenomena emerging from studies of multiplic-
ity distributions is the wide occurrence of the negative-binomial distribution

Pn(n̄, k) =
1

n!

Γ (k + n)

Γ (k)

( n̄

k

)n (

1 +
n̄

k

)−n−k

. (6)

For the two independent parameters, one usually chooses the average mul-
tiplicity1 n̄ and a parameter k describing the shape of the distribution. The
dispersion D is given by

(

D

n̄

)2

= C2 − 1 =
1

n̄
+

1

k
. (7)

From (6), the negative binomial is wider than Poisson as long as k is positive
and finite. In the limit k → ∞ the negative binomial reduces to the Poisson
distribution

Pn = e−n̄ n̄
n

n!
. (8)

1 We denote by n̄ the average over the distribution as distinct from 〈n〉, the average
over the experimental sample.
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Fig. 2.3. (a) Charged-particle multiplicity distribution for non-single diffractive
π+p data

√
s = 22 GeV in different rapidity intervals |y| < ycut and full phase

space, in KNO form, together with the best-fit negative binomials [73]; (b) Charged-
particle multiplicity distribution for non-single-diffractive pp̄ data as measured by
UA5 and E735 at various collider energies. Data from the two experiments at the
corresponding energy are normalized to each other over a range of n just past the
peak of the distribution [79].

If k is a negative integer, the negative binomial becomes a (positive) binomial
distribution, which is narrower than Poisson.

The usefulness of the negative-binomial distribution in describing full-
phase-space multiplicity distributions was already shown in the early seven-
ties [69]. However, the interest was revived by the observation of the UA5
collaboration [70] that the charged-particle multiplicity of non-diffractive
pp and pp̄ collisions is well described by the even component of a negative-
binomial distribution, from a center of mass energy

√
s=10 to

√
s=546 GeV.

Moreover, the same collaboration found for non-diffractive pp̄ collisions
at

√
s = 546 GeV, that not only the full-phase-space multiplicity distribution

appears to be of this type, but also the distribution within central pseudo-
rapidity intervals [71]. Since then, negative binomials have been successfully
fitted to multiplicity distributions in full and in limited phase space for
hh, hA and AA collisions at other energies [63, 72–82], as well as for lh
[83–85] and e+e− collisions [86–90]. An example is given in Fig. 2.3(a).

Based on these findings, a large number of possible physical interpre-
tations have been given for negative-binomial or negative-binomial-like dis-
tributions. Summaries can be found in [91]. In general, the interpretations
can be classified [92] as being of (partial) stimulated emission or of cascading
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type. A number of critical comments on the applicability of negative bino-
mials in full phase space, mainly based on the influence of the conservation
laws, can be found in [93].

At the highest energies of
√
s = 900 GeV [78] and 1800 GeV [79, 81], a

shoulder is building up at high n (Fig. 2.3(b)), so that the distribution can
not be fitted by a single negative binomial any more. This is interpreted in
terms of the presence of two components, one corresponding to conventional
soft physics, the other to QCD semi-hard mini-jets [94], one to a pure birth,
the other to a Poisson process [95] or, alternatively, to multiparton collisions
and multichain production [79, 96].

Another approach [97] is to understand particle production as a two-
cascade process, where the first cascade is responsible for the partons or
strings, the second for their fragmentation into hadrons. The composition
of two Poisson distributions, each describing one of these two Markov type
branching processes, can lead to oscillations in Pn at the upper SPS and
Tevatron energies.

A similar structure, though less pronounced, is becoming visible in e+e−

collisions at the Z0 [88], but is not observed in DIS [85] so far.
Koba, Nielson and Olesen [66] have shown that, if Feynman scaling [4]

holds, the function ψ(z) of (5) becomes asymptotically (n → ∞, 〈n〉 → ∞,
z fixed) independent of

√
s. Note that (5) corresponds to rescaling the Pn

curves corresponding to the collision energy by stretching the vertical axis
and shrinking the horizontal axis both by 〈n(s)〉, thus maintaining normal-
ization. If ψ(z) is independent of

√
s then also its normalized moments

Cq = 〈nq〉/〈n〉q =
∫ ∞
0 zqψ(z)dz or its normalized factorial moments Fq (e.g.

F2 = C2 − 1/〈n〉).
Even though the original derivation from Feynman scaling turned out to

be wrong [98], Feynman scaling is known to be violated (see Sect. 1.1), and
the increase of 〈n〉 with s faster than logarithmic in Fig. 2.1, KNO scaling is
often claimed for full-phase-space and single-hemisphere multiplicity distri-
butions in e+e−, lepton–hadron and medium energy (ISR) hadron–hadron
collisions [93, 99]. It was demonstrated [100] even earlier, however, that
KNO scaling should hold approximately more generally in any model based
on a scale-invariant stochastic branching process with an energy-independent
coupling constant.

With high-energy (SPS and Tevatron) pp̄ collisions, UA5 [67,72,78,101]
and E735 [79] and to some extent also UA1 [102] could show that the scaling
at ISR energies was accidental and that KNO scaling is in fact violated in
hh collisions up to at least 2 TeV (see Fig. 2.4(a) for the energy dependence
of the Cq moments up to 0.9 TeV).
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Fig. 2.4. The energy variation of the C-moments of the charged-particle multiplicity
distribution for non-single diffractive pp± collisions [78].

In connection with the negative binomial it is important to note that,
according to Feynman scaling, it should be the factorial moments

Fq ≡ 〈n(n− 1) . . . (n − q + 1)〉/〈n〉q = k(k + 1) . . . (k + q − 1)/kq (9)

which are expected to be constant [103], and the reduced moments Cq (used
by KNO) only in the approximation 〈n〉 ≈ n̄ ≫ q. In fact, from Eq. (7),
a constant 〈n〉/D at non-zero 1/〈n〉 would require an increasing 1/k, in
particular up to the LEP energy range! Furthermore, contrary to the Cq,
the Fq and k tend to finite limits as n̄ → 0 and therefore provide a better
measure of the shape of a multiplicity distribution at small n̄.

In Fig. 2.5, a compilation [104] of the parameter 1/k is given as a function
of ln

√
s for hh, lh and e+e− collisions. At given

√
s, the value of 1/k is lower

for e+e− and lh than for hh collisions. However, in all cases, 1/k increases
with increasing energy from a negative value at low energies to a positive
one above a certain Poisson-like (1/k = 0) transition point. The transition
point is at

√
s ≈ 5 GeV for hh and

√
s ≈ 20 − 30 GeV for e+e− collisions,

but the increase is quite similar up to about 50 GeV. At LEP energies, 1/k
tends to flatten for e+e− collisions [88–90]. So, contrary to hh collisions,
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√
s GeV

Fig. 2.5. (a) Negative-binomial parameter 1/k for non-single diffractive pp± colli-
sions and for e+e− annihilation as a function of ln

√
s. The full line is a linear fit

to the pp± data, the dashed line to the e+e− data below 50 GeV. The dash–dot
lines correspond to the predictions from coherent gluon branching and single-string
plus second order corrections in JETSET, as indicated. (b) Negative-binomial pa-
rameter 1/k for non-diffractive π+p collisions and for lh collisions as a function of
ln
√
s. The full line is the linear fit to the pp± data of sub-figure (a). The dashed

line is a fit to the µp data (below 50 GeV) [104].

an approach to KNO scaling may be observed for e+e− collisions. It is
important to note, however, that the flattening takes place at a positive 1/k
value. So, the distribution is wider than Poisson, even for e+e− collisions.

The increase of 1/k for e+e− collisions up to 45 GeV and flattening above
that is reproduced by both the JETSET [105] (Fig. 2.5) and HERWIG [106]
models. At higher energies more than 2nd order corrections are needed but
coherent branching predicts negative-binomial-like multiplicity distributions
up to the highest energies (

√
s = 2 TeV) [107]. Above

√
s ≈ 25 GeV these

are wider than Poisson (1/k > 0).
The KNO form (5) can be generalized [108] as

P (n, s) =
1

λ(s)
ψ

(

n+ c(s)

λ(s)

)

, (10)

with an energy-dependent scale parameter λ(s) corresponding to 〈n〉 and
an energy-dependent location parameter c(s), associated with leading par-
ticle effects. Even though there is no experimental evidence for an energy-
dependent shift at very high energies (i.e. c(s) = 0), this form has led [109]
to the alternative ansatz

P (lnn, s) =
1

λ(s)
ϕ

(

lnn+ c(s)

λ(s)

)

. (11)

This ansatz is based on Polyakov’s original self-similar, scale-invariant branch-
ing model interpretation [100] leading to the negative-binomial type scaling
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Fig. 2.6. The LEPI data [88–90, 111] for the full-phase-space multiplicity distri-
butions (dots) compared to Eq. (13) with k = 5 and µ = 5/3 (solid line). (b)
ψ(z) with µ = 5/3 (dots) evolves to ψ(z) with µ = 1 (solid line) at s → ∞. (c)
The scaling behavior is recovered in ψ(µx)/µ versus µx. (d) Comparison of the
UA5 non-diffractive data at

√
s = 546 GeV [78] and the OPAL data at

√
s = 91.2

GeV [89]. The solid curve is (14) with k = 5. (e) Log-KNO scaling of the E735
data [79, 109].



General Characteristics of Hadron–Hadron Collisions 2841

function (gamma distribution in zµ, i.e. the rescaled multiplicity to the
power µ)

ψ(z) ∝ a(z) exp(−zµ) , µ > 1 , (12)

with a(z) being a monomial in z. In the language of QCD, taking into
account higher-order effects responsible for energy-momentum conservation
in parton jets [110], this reads

ψ(z) =
µDµk

Γ (k)
zµk−1 exp(−[Dz]µ) , (13)

with k = 3/2, µ = (1 − γ0)
−1 and D being a γ0 dependent scale parameter.

Obviously, this distribution shows KNO scaling (s-invariance) for fixed
coupling. On the contrary, violation of KNO scaling is expected from the
running of αs(s) in the form of a tail of ψ(z) widening with increasing s
(Fig. 2.6(a) and (b)).

Rewriting the Polyakov–Dokshitzer form (13) as

ψ(x) =
µ

Γ (k)
exp(kµx− eµx) , x = ln(Dz) , (14)

the multiplicity scaling violated by QCD effects is recovered by plotting
µ−1ψ(µx) as a function of µx, i.e. by a location and scale change of P (ln n, s)
governed by the QCD anomalous dimension (Fig. 2.6(c)). This property is
referred to as log-KNO scaling [109].

It comes as a surprise that even the non-diffractive pp̄ collisions [78] fall
onto the e+e− curve (see Fig. 2.6(d)).

Restricting oneself to n values above the shoulder observed in the E735
data in Fig. 2.3(b), log-KNO scaling is observed also there, but the scaling
function looks different (k = 1/2, µ decreasing from 2.2 to 1.7 between 300
and 1800 GeV). Note that scaling is observed within the two pp̄ experiments,
but not between the two. This difference, already visible in Fig. 2.3(b),
is a severe experimental problem, which will have to be solved by future
experiments.

3. Information-entropy scaling

As an alternative quantity characterizing the final-state multiplicity dis-
tribution Pn, a (momentum-integrated) information entropy can be de-
fined [112,113] as

S = −
∑

n

Pn lnPn . (15)

It is a measure of the uncertainty associated with a multiplicity distribution.
A wide distribution gives more uncertainty and a larger value of S than a
sharply peaked one. Important properties of S are:
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(i) This variable describes the general pattern of particle emission. The
total entropy produced from ν statistically independent sources (e.g.
clans or superclusters) is just the sum of entropies of the individual
sources:

S =

ν
∑

i=1

Si . (16)

(ii) Distortion of the multiplicity scale leaves S invariant, so does insertion
of zeros or mutual permutation. In particular, in full phase space,
the entropy is the same when calculated from all charged particles or
negatives (i.e. charged pairs) only.

(iii) From the identity

S − ln〈n〉 = − 1

〈n〉
∑

〈n〉Pn ln(〈n〉Pn) (17)

follows for large 〈n〉

S − ln〈n〉 =
1

c

∞
∫

0

ψ(z) lnψ(z)dz (18)

with ψ(z) normalized as
∫

ψ(z)dz =

∫

zψ(z)dz = c , (19)

where c = 2 for all charged particles and c = 1 for negatives (or pairs).

(iv) For the geometric distribution ψ(z) = exp(−z), an upper bound is

S − ln

(〈n〉
c

)

≤ 1 , (20)

so that at high enough
√
s

〈n〉 ≃ (
√
s)κ .

As is shown in Fig. 3.1(a), at high energies (
√
s & 20 GeV), the value

of S increases linearly with ln
√
s [113]. Extrapolating back, the intercept

is near lnmπ. Since the maximum rapidity is ymax = ln(
√
s/mπ), it follows

that the entropy per rapidity unit κ ≡ S/ymax is constant. This constancy is
indeed observed up to Tevatron energies [78,81,114] with κ = 0.437±0.004.
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a)

Fig. 3.1. (a) Entropy of the charged-particle multiplicity distribution as a function
of

√
s, (b) entropy of ψ(z) from (20) as a function of

√
s, (c) entropy per unit

rapidity for rapidity windows ξcut [113].

From Fig. 3.1(b) it is clear that the limit (20) is not reached at present
collider energies. However, at LHC the multiplicity distribution must be
governed by (20): either the entropy increase of Fig. 3.1(a) must slow down,
or 〈n〉 must grow faster than presently indicated.

Furthermore, approximate scaling is observed for the function κ(ξ) be-
tween NA22 at

√
s = 22 GeV and CDF at 1800 GeV [81, 113], when n is

restricted to negatives (or the number of oppositely charged pairs), with ξ =
yc/ymax and yc being half the size of a central rapidity window (Fig. 3.1(c)).

From the constancy of κ for full phase space, one can conclude that the
entropy per rapidity unit does not depend on energy. From the shape of the
scaling function κ(ξ) follows that the entropy reaches its full-phase-space
value κ at ξ=0.5, where n̄ and k of the negative binomial are still changing.
So, the fragmentation region does not contribute to entropy production.
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It is interesting to note that the increase in multiplicity is the main
source of entropy of high-energy hadronic matter. The entropy of transverse
momentum and rapidity increases much slower than ln〈n〉:

SpT
≈ ln〈pT〉 ,

Sy ≈ ln ymax ≈ ln ln
√
s .

In hadron–nucleus collisions, an extra contribution ∆SA to the entropy of
negative particles comes from a fluctuating number of nucleons participating
[113]. Indeed ∆SNe = 0.3± 0.05 is observed for hNe collisions, independent
of energy. Also heavy-ion collisions show a similar S-behavior [115,116] with
a fast increase of S in the central rapidity region and a rapid saturation of
S/ymax above ξ = 0.4. The results suggest that, with increasing energy, the
entropy per pion saturates.

There are hints that this behavior can be understood from cascading
processes [117]. The question remains, how heavy-ion collisions behave w.r.t.
the additivity of entropy as observed in hA collisions, and whether entropy
differences can be used as a signature for a quark-gluon plasma.

Entropy scaling is an interesting concept, but, contrary to KNO or log-
KNO scaling where a whole function is considered, it only concerns the
energy independence of one single number.

The information entropy S can be generalized [113] to the Rényi order-q
information entropy

Hq =
1

1 − q
ln

∑

n

(Pn)q , with H1 = S , (21)

and κ to Dq = Hq/ymax. Also the Dq turn out to be approximately energy
independent. Comparing hadron–hadron to e+e− data, one observes a small
but significant difference (Dq(hh) > Dq(e

+e−)), increasing with increasing
order q.

In order to measure higher-order (Rényi) entropies, an originally chosen
phase-space region is divided into M equal-size bins [118]. An event is then
characterized by the number of particles mi in each bin i, i.e., by a set of
integer numbers s ≡ mi, i = 1, . . .M . These sets represent different states
of the multiparticle system realized in a given experiment.

The basis of the method is the measurement of coincidence probabilities,
i.e., in simply counting the number ns of times any given set s appears in
the given event sample. The total number of observed coincidences of k
configurations is the qth factorial moment of the ns distribution,

Nk =
∑

s

ns(ns − 1) . . . (ns − q + 1) , k = 1, 2, 3 . . . (22)
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with only states with ns ≥ k contributing. The coincidence probability of q
configurations is

Ck =
Nq

N(N − 1) . . . (N − q + 1)
, (23)

where N =
∑

s
ns is the number of events in the sample, so that C1 = 1.

Rényi entropies [119], defined as

Hq ≡ − lnCq

q − 1
, q > 1 (24)

can then be used to extrapolate toH1 ≡ S, the standard statistical (or Shan-
non) entropy, Eq. (15). With the proper extrapolation formula, an effective
reproduction of S could be achieved for a number of typical multiplicity
distributions [118].

The advantage over the standard direct calculation of S is minimization
of the statistical error and increase of the stability of the result [144].

However, also the Rényi entropies themselves contain valuable informa-
tion about the multiparticle system. In principle, the entropies Hk (and from
their extrapolation also S) obtained depend on the method of discretization
of the momentum spectrum, in particular the binning. If the bins are small
enough and if the fluctuations are small (e.g. if the system is close to thermal
equilibrium), one expects [118] scaling of the form

Hq(ℓM) = Hq(M) + ln ℓ , (25)

with ℓ being the change in bin size. Strong fluctuations, as in cascading, on
the other hand, are expected to violate this scaling property.

Furthermore, if performed independently (and simultaneously) in differ-
ent phase space regions Ωi, the entropy density distribution over phase space
can be determined and the additivity property

Hq(Ω) = Hq(Ω1) +Hq(Ω − Ω1) (26)

can be verified. Deviations from this property give information about cor-
relations between the different regions. An NA22 analysis is under way, but
it would be important to be able to compare to heavy-ion results.

4. Rapidity gap probability

Interesting information on higher-order correlations is contained already
in the n = 0 bin of the multiplicity distribution in a given phase space
(e.g. rapidity) bin. With 〈n〉 as the average number of particles in bin ∆y,
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the probability of detecting no particles in ∆y is related to the generating
function through

P0(∆y) = G(z = −1) (27)

and can be used as a generating function for Pn(∆y):

Pn(∆y) =
(−〈n〉)n
n!

(

∂

∂〈n〉

)n

P0(∆y) , (28)

where the differentiation is carried out with the correlation functions fixed.
Its dependence on the (higher-order) cumulants is

lnP0(∆y) =
∞
∑

q=1

(−1)q

q!
fq =

∞
∑

q=1

(−〈n〉)q
q!

Kq , (29)

thus involving cumulants of all orders. Applying the so-called linked-pair
ansatz to the normalized cumulant moments Kq [120] gives

Kq = AqK
q−1
2 . (30)

If the linking coefficients Aq are independent of
√
s and ∆y, as confirmed

by the analysis of UA1 and UA5 data up to q = 5 [120], then the quantity

χ = − lnP0(∆y)/〈n〉 (31)

=
∞
∑

q=1

Aq

q!
(−〈n〉K2)

q−1 = χ(〈n〉K2) (32)

only depends on the moment product 〈n〉K2 [121].
Note that 〈n〉 = − lnP0(∆y) for the Poisson distribution, so that χ

measures the amount of deviation from independent emission, involving cor-
relations of all orders. The scaling feature was in fact already derived in [122]
for the study of void probability in galaxy clustering, where this scaling is
found to hold and χ is found to follow Aq = (q − 1)!, i.e. is equal to the
linking parameters of the NBD, χ = ln(1 + 〈n〉K2)/(〈n〉K2) [123].

In high energy collisions, the scaling was shown to hold [121] in the NA22
hydrogen- and nuclear-target data for ∆y < 1 and χ agrees with the NBD
expectation up to 〈n〉K2 ≈ 1, but falls below for larger values.

A systematic study of P0 values of UA5 in various central and non-
central rapidity bins [78] was done in [124] (Fig. 4.1(a)). Contrary to the
galaxy data of [123], most of the points fall somewhat below the NBD ex-
pectation (dashed), in agreement with the increase of the linking parameters
being somewhat weaker than expected by the NBD [120]. In general, they,
however, stay above the full line, representing the simple case of Aq = 1
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Fig. 4.1. Scaled rapidity gap probability χ as a function of 〈n〉K2 for (a) UA5
data [124], (b) 16O-AgBr, (c) FRITIOF and (d) independent emission at 60 A
GeV [125]. The upper curve corresponds to the NBD, the lower one to the minimal
model.

for all q (“minimal model”). The strongest deviation from the NBD scaling
curve appears for the most non-central rapidity bins indicating violation of
translation invariance of the correlation.

The UA5 data are scarce and have large errors for 〈n〉K2 & 3. This re-
gion has been extended to 30 in [125] from heavy-ion collisions at 60 AGeV
(Fig. 4.1(b))and 200 AGeV. Again, the results lie between the scaling curves
expected from NBD and from the minimal model. The authors also com-
pared to the expectations from FRITIOF (Fig. 4.1(c)) and from random
production of particles in η-space (Fig. 4.1(d)). While FRITIOF lies within
the region bounded by the NBD and the minimal model, be it distributed
over a wider 〈n〉K2 range than the data, random particle production is lim-
ited to 〈n〉K2 < 1 and scattered over a wide range in χ, showing no scaling.
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5. Forward-backward correlations

The correlation between the charged-particle multiplicity in one hemi-
sphere with that in the other was studied in a wide range of

√
s, from lowest-

energy bubble chamber experiments to the Tevatron, and for all types of
collisions. Examples are NA22 [126], NA27 [127], the ISR [128], UA5 [129],
E735 [130], ν [131, 132], EMC [133], TASSO [87, 134], HRS [86, 135], DEL-
PHI [88], OPAL [136], ZEUS [137].

The average charged-particle multiplicity 〈nF〉 in the forward hemisphere
is given as a function of the charged-particle multiplicity nB in the backward
hemisphere for the NA22 experiment [126] in Fig. 5.1. A comparison to three
low pT models shows that the single-chain Lund model, which reproduces the
e+e− data at comparable energies [134,135] does not reproduce the hh data
at all. The two-chain FRITIOF and a two-chain version of the Dual Parton
Model slightly overestimate the correlation. In all three models oscillations
are visible between odd and even nB.

In Fig. 5.1(b), the same distributions are shown, but now for (−−), (+−)
and (++) charge combinations, separately. The correlation is dominated by
unlike-charged particles (note the difference in scale). All three models are
able to reproduce the (+−) hp data, while FRITIOF I does quite well also
for (−−) and (++). For the latter, an anti-correlation is expected from
Lund. The e+e− results can be reproduced by the JETSET PS model.
From Fig. 5.1(c), one can see that the correlation is not completely gone
when the influence from short-range order is suppressed by eliminating the
central region.

Fig. 5.1. (a) The average number of charged forward particles versus the number
of charged backward particles for π+p, K+p and pp collisions at

√
s=22 GeV, with

MC predictions as indicated. (b) The same for different charge combinations in
the combined data sample. (c) Same for particles with |y| > 0.5 [126].
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The actual range of the correlation in hh collisions is investigated by the
UA5 collaboration [129], who give the slope b defined from

〈nB〉 = a+ bnF (33)

for two windows of one unit in pseudo-rapidity as a function of the size
of the gap separating them. From Fig. 5.2(a) it is clear that a correlation
persists up to a gap size of ∆η = 6. This (long-range) correlation effect can
be well reproduced by the UA5 Cluster Monte Carlo [129] of Poisson-like
clusters and a negative binomial total charged-particle multiplicity. It can
also be reproduced by the upgraded version of FRITIOF and reasonably
well by DPM, but is overestimated in PYTHIA. The energy dependence of
this effect between 22 and 900 GeV is given in Fig. 5.2(b) [126].

Forward–backward correlations, and in particular differences found for
hh and e+e− collisions, are expected and discussed in the geometrical models
[138–140].

Fig. 5.2. The forward–backward correlation strength b as a function of an excluded
central gap ∆η (a) for UA5 [129] (b) for the energies indicated [126].

In Fig. 5.3, a compilation is given for the correlation strength b in hh,
lh and e+e− collisions, when no central region is excluded. For hh collisions
(Fig. 2.5(a)) an approximately linear rise of b is found with increasing lns
with no saturation, so far. As for 1/k in Fig. 2.5, the slope b is lower for
lh collisions in Fig. 2.5(b) than for hh collisions, but the energy dependence
is the same, at least up to the highest values of W available. Furthermore,
b is lower for e+e− than for hh and lh collisions and the energy dependence
is flatter.
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b)a)

Fig. 5.3. Compilation of the values of the correlation strength b for (a) hh, (b) lh
and e+e− collisions, as a function of

√
s and W , respectively [126]. The lines are

obtained from those in Fig. 2.5 via Eq. (34).

This is not completely unexpected. If particle production follows a nega-
tive binomial with no further correlations from conservation laws or dynam-
ics, 1/k and b are related [103,141] by

b =
〈nB〉

k

1 + 〈nF〉
k

. (34)

The curves derived from the fits in Fig. 2.5 are drawn in Fig. 2.11. Relative
to the overall negative binomial, there is an anti-correlation building up at
high energy in hh collisions. This deviation can be expected if particles are
produced in clusters [103,141] or pairs [142,143]

From the increase of 1/k in Fig. 2.5, a positive slope b is also expected
for higher energy lh and e+e− collisions. This is shown by the dashed lines
in Fig. 5.3(b). Indeed, the TASSO [87], DELPHI [88] and OPAL [136]
points are well above b = 0, thus establishing positive forward–backward
correlations in e+e− collisions, as well.

We conclude

1. The energy evolution of the average multiplicity is similar for all types
of collisions.

2. For all types of collisions, the multiplicity distribution gets wider than
Poisson (i.e. correlations exist) above a certain transition energy de-
pending on type of collision and rapidity interval. At given energy,
multiplicity distributions are wider for hh than for lh collisions and
wider for lh than for e+e− collisions.
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3. For all types of collisions, in full phase space as well as in limited re-
gions of it, the negative binomial is a surprisingly successful parametri-
zation of the multiplicity distribution, but important deviations exist.
The latter have stimulated work on a large variety of extensions and
alternatives.

4. Up to the highest energy reached so far, KNO scaling neither holds
for full-phase-space multiplicity distributions, nor for multiplicity dis-
tributions in limited intervals. For all types of collisions, a log-scaling
law may be an interesting candidate for a replacement. Also entropy
scaling should be further investigated.

5. Positive forward-backward correlations exist for all types of collisions
at energies above the Poissonian transition point. At given energy,
they are stronger in hh than in lh collisions and stronger in lh than in
e+e− collisions. They grow with increasing energy, but less fast than
would be expected from the widening of the negative binomial. For hh
collisions at Collider energies, they are positive over a gap of at least
6 units in rapidity.

6. The momentum correlations and density fluctuations

6.1. The formalism

We start by defining symmetrized inclusive q-particle distributions

ρq(p1, . . . , pq) =
1

σtot

dσq(p1, . . . , pq)
q
∏

1
dpq

, (35)

where σq(p1, . . . , pq) is the inclusive cross section for q particles to be at
p1, . . . , pq, irrespective of the presence and location of any further parti-
cles, pi is the (four-) momentum of particle i and σtot is the total hadronic
cross section of the collision under study. For the case of identical particles,
integration over an interval Ω in p-space yields

∫

Ω

ρ1(p)dp = 〈n〉 ,
∫

Ω

∫

Ω

ρ2(p1, p2)dp1dp2 = 〈n(n− 1)〉 ,

∫

Ω

dp1 . . .

∫

Ω

dpqρq(p1, . . . , pq) = 〈n(n− 1) . . . (n− q + 1)〉 , (36)

where n is the multiplicity of identical particles within Ω in a given event
and the angular brackets imply the average over the event ensemble.
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Besides the interparticle correlations we are looking for, the inclusive q-
particle number densities ρq(p1, . . . , pq) in general contain “trivial” contribu-
tions from lower-order densities. It is, therefore, advantageous to consider a
new sequence of functions Cq(p1, . . . , pq) as those statistical quantities which
vanish whenever one of their arguments becomes statistically independent
of the others [145–147]:

C2(1, 2) = ρ2(1, 2) − ρ1(1)ρ1(2) , (37)

C3(1, 2, 3) = ρ3(1, 2, 3) −
∑

(3)

ρ1(1)ρ2(2, 3) + 2ρ1(1)ρ1(2)ρ1(3) , (38)

etc. In the above relations, we have abbreviated Cq(p1, . . . , pq) to
Cq(1, 2, . . . , q); the summations indicate that all possible permutations must
be taken. Expressions for higher orders can be derived from the related
formulae given in [148]. Deviations of these functions from zero shall be
addressed as genuine correlations.

It is often convenient to divide the functions ρq and Cq by the product
of q one-particle densities, which leads to the definition of the normalized
inclusive densities and correlations:

Rq(p1, . . . , pq) = ρq(pq, . . . , pq)/ρ1(p1) . . . ρ1(pq) , (39)

Kq(p1, . . . , pq) = Cq(p1, . . . , pq)/ρ1(p1) . . . ρ1(pq) . (40)

In terms of these functions, correlations have been studied extensively for
q = 2. Results also exist for q = 3, but usually the statistics (i.e. number
of events available for analysis) are too small to isolate genuine correlations.
To be able to do that for q ≥ 3, one must apply factorial moments Fq defined
via the integrals in Eq. (37), but in limited phase-space cells [149,150].

6.2. Density spikes

To see whether it is worth the effort, we first look for density fluctua-
tions in single events, signalling high-order correlations. A notorious JACEE
event [151] at a pseudo-rapidity resolution (binning) of δη = 0.1 has local
fluctuations up to dn/dη ≈ 300 with a signal-to-background ratio of about
1:1. An NA22 event [152] contains a “spike” at a rapidity resolution δy = 0.1
of dn/dy = 100, as much as 60 times the average density in this experiment.

Bialas and Peschanski [149] suggested that this type of spikes could be a
manifestation of “intermittency”, a phenomenon well known in fluid dynam-
ics [153]. The authors argued that if intermittency indeed occurs in particle
production, large density fluctuations are not only expected, but should also
exhibit self-similarity with respect to the size of the phase-space volume.
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Ideas on self-similarity and fractals in jet physics had already been formu-
lated in [154, 155]. For soft hadronic processes, fractals and self-similarity
were first considered in [156] and their quantitative measures in [157].

In multiparticle experiments, the number of hadrons produced in a single
collision is small and subject to considerable noise. To exploit the techniques
employed in complex-system theory, a method had to be devised to separate
fluctuations of purely statistical (Poisson) origin, due to finite particle num-
bers, from the possibly self-similar dynamical fluctuations of the underlying
particle densities. A solution, already used in quantum optics [158] and sug-
gested for multiparticle production in [149], consists in measuring Fq(δy) in
given phase-space volumes (resolution) δy of ever decreasing size.

Note, however, that this approach of explicitely eliminating “trivial” ef-
fects is recently being complemented by a more “holistic” approach [159].

6.3. Power-law scaling

Besides the property of noise-suppression, high-order factorial moments
act as a filter and resolve the large-multiplicity tail of the multiplicity dis-
tribution. They are thus particularly sensitive to large density fluctuations
at the various scales δy used in the analysis. As shown in [149], a smooth
density distribution, which does not show any fluctuations except for the
statistical ones, has the property of normalized factorial moments Fq(δy)
being independent of the resolution δy in the limit δy → 0. On the other
hand, if self-similar dynamical fluctuations exist, the Fq obey the power law

Fq(δy) ∝ (δy)−φq , (δy → 0) . (41)

The powers φq (slopes in a double-log plot) are related [160] to the
anomalous (or co-) dimensions dq = φq/(q − 1), a measure for the devia-
tion from an integer dimension. Equation (41) is a scaling law since the
ratio of the factorial moments at resolutions L and ℓ

R =
Fq(ℓ)

Fq(L)
=

(

L

ℓ

)φq

(42)

only depends on the ratio L/ℓ, but not on L and ℓ, themselves.
One further has to stress the advantages of normalized factorial cumu-

lants Kq compared to factorial moments, since the former measure genuine
correlation patterns.

As an example, high statistics data of the OPAL experiment [161] are
given in Fig. 6.1 in terms of Kq, as a function of the number M ∝ 1/δy
of phase space partitions for q = 3 to 5. In the leftmost column, the one-
dimensional rapidity variable y is used for the analysis. The data (black
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dots) show an increase of Kq with increasing M for small M , but a satura-
tion at larger M . Even though weaker, some saturation still persists when
the analysis is done in the two-dimensional plane of rapidity y and azimuthal
angle ϕ (middle column), but approximate power-law scaling is indeed ob-
served for the analysis in three-dimensional momentum space (right column).
Thus, in high-energy collisions, fractal behavior is fully developed in three
dimensions, while projection effects lead to saturation in lower dimension.

In Fig. 1, the data are also compared to a number of parametriza-
tions of the multiplicity distributions, as well as to the Monte Carlo models
JETSET and HERWIG. One can see that the fluctuations given by the neg-
ative binomial (NB) (dashed line) are weaker than observed in the data.
Contrary to the NB, the log-normal (LN) distribution (dotted line) overes-
timates the cumulants, while these expected for a pure birth (PB) process
(dash-dotted) underestimate the data even more significantly than the NB.
Among the distributions shown, a modified NB (MNB) gives the best re-
sults, even though significant underestimation is observed also there. The
Monte Carlo models do surprisingly well.

6.4. Density and correlation integrals

A fruitful development in the study of density fluctuations is the density
and correlation strip-integral method. [162] By means of integrals of the
inclusive density over a strip domain in y1, y2 space, rather than a sum of
box domains, one not only avoids unwanted side-effects such as splitting
of density spikes, but also drastically increases the integration volume (and
therefore the statistical significance) at given resolution. In terms of the
strips (or hyper-tubes for q > 2), the density integrals can be evaluated
directly from the data after selection of a proper distance measure, as e.g.
the four-momentum difference Q2

ij = −(pi − pj)
2, and after definition of a

proper multiparticle topology (GHP integral, [162] snake integral, [163] star
integral [164]). Similarly, correlation integrals can be defined by replacing
the density ρq in the integral by the correlation function Cq.

Of particular interest is a comparison of hadron–hadron to e+e− results
in terms of same and opposite charges of the particles involved. Such a
comparison is shown in Fig. 6.2 for q = 2. An important difference between
UA1 and DELPHI can be observed in a comparison of the two sub-figures:
For relatively largeQ2(> 0.03 GeV2), where Bose-Einstein effects do not play
a major role, the e+e− data increase much faster with increasing −2 logQ2

than the hadron–hadron results. For e+e−, the increase in this Q2 region is
very similar for same and for opposite-sign charges. At small Q2, however,
the e+e− results approach the hh results. For e+e− annihilation at LEP
at least two processes are responsible for the power-law behavior: Bose–
Einstein correlation at small Q2 following the evolution of jets at larger Q2.
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Fig. 6.1. Cumulants of order q = 3 to 5 as a function of M1/D in comparison
with the predictions of various multiplicity parametrizations and two Monte Carlo
models [161].



2856 W. Kittel

Fig. 6.2. Comparison of density integrals for q = 2 in their differential form ∆F2

(in intervals Q2, Q2 + dQ2) as a function of 2 log(1/Q2) for e+e− (DELPHI) and
hadron–hadron collisions (UA1). [166]
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6.5. Multifractal versus monofractal behavior

Anomalous dimensions dq fitted over the (one-dimensional) range
0.1 < δy < 1.0 are compiled in Fig. 6.3 [170]. They typically range from dq =
0.01 to 0.1, which means that the fractal (Rényi) dimensions Dq = 1 − dq

are close to one. The dq are larger and grow faster with increasing order q in
µp and e+e− (Fig. 6.3(a)) than in hh collisions (Fig. 6.3(b)) and are small
and almost independent of q in heavy-ion collisions (Fig. 6.3(c)). For hh col-
lisions, the q-dependence is considerably stronger for NA22 (

√
s = 22 GeV,

all pT) than for UA1 (
√
s = 630 GeV, pT > 0.15 GeV/c).

Fig. 6.3. Anomalous dimension dq as a function of the order q, for (a) µp and e+e−

collisions, (b) NA22 and UA1, (c) KLM [170].

In multiplicative cascade models, the one-dimensional moments follow
the generalized power law [171]

Fq ∝ (g(δy))φq , (43)

where g(δy) is a general function of δy. Expressing g in terms of F2, one
finds the linear relation

lnFq = cq +

(

φq

φ2

)

lnF2 , (44)

from which the ratio of anomalous dimensions is directly obtained. This
has been confirmed by experiment, not only in one dimension, but up to
3D [172]. Moreover, the ratios φq/φ2 are found to be largely independent
of the dimension of phase space and of the type of collision. The q depen-
dence is indicative of the mechanism causing intermittent behavior. For a
(multiplicative) cascade mechanism, in the log-normal approximation (long
cascades), the moments satisfy the relation
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dq

d2
=
φq

φ2

1

q − 1
=
q

2
. (45)

However, the use of the Central Limit Theorem for a multiplicative process,
such as in the α-model, is a very crude approximation [173] particularly in
the tails. As argued in [174], a better description is obtained if the den-
sity probability distribution is assumed to be a log-Lévy-stable distribution,
characterized by a Lévy index µ. In that case (45) generalizes to

dq

d2
=

1

2µ − 2

qµ − q

q − 1
. (46)

For µ = 0, implying an order-independent anomalous dimension, the
multifractal behavior characterized by (45)–(46) reduces to a monofractal
behavior [175, 176] with dq/d2 = 1. This would happen if intermittency
were due to a second-order phase transition.

The data are best fitted with a Lévy index of µ = 1.6, but important
exceptions exist: While a fit to the combined NA22 data [177] on all variables
and dimensions, as well as a weighted average over all individual fits give µ
values in rough agreement with those of [172], the 3D-data have µ > 2, not
allowed in the sense of Lévy laws. Even larger values of µ, ranging from 3.2
to 3.5, have been found for µp deep-inelastic scattering in [174].

6.6. Self-affinity versus self-similarity

Comparing log-log plots for one phase-space dimension, one notices that
the lnFq saturate, but at different Fq values for different variables y, ϕ or
lnpT. However, also in three-dimensional analysis the power law is not exact.
The 3D hh data even bend upward. It has been shown in [181] that this
can be understood by taking the anisotropy of occupied phase space into
account. In view of this phase-space anisotropy, also its partition should be
anisotropic. If the power law holds when space is partitioned by the same
factor in different directions, the fractal is called self-similar. If, on the other
hand, it holds and only holds when space is partitioned by different factors
in different directions, the corresponding fractal is called self-affine [182].

If the phase-space structure is indeed self-affine, it can be characterized
by a parameter called roughness or Hurst exponent [182], defined as

Hij =
lnMi

lnMj
(0 ≤ Hij ≤ 1) (47)

with Mi (i = 1, 2, 3; M1 ≤ M2 ≤ M3) being the partition numbers in the
self-affine transformations δyi → δyi/Mi, of the phase-space variables yi.
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The Hurst exponents can be obtained [181] from the experimentally observed
saturation curves of the one-dimensional F2(δyi) distributions,

F i
2(Mi) = Ai −BiM

−γi

i (48)

as Hij = (1 + γj)/(1 + γi). For hh collisions, Hij was indeed determined to
be of order 0.5 [183] for the longitudinal-transverse combinations, while it
was found consistent with unity within the transverse plane (ϕ, pT).

The anisotropy is consistent with the fact that the longitudinal direc-
tion is privileged over the transverse directions in hadron–hadron collisions.
On the contrary, no upward bending is observed in the three-dimensional
self-similar analysis of e+e− data [184], so the Hij are expected to be com-
patible with unity. This observation is confirmed with the help of a full
self-affine analysis performed with a JETSET 7.4 Monte-Carlo sample at
91.2 GeV [185] and a full analysis of L3 data is underway [186] indicating
an approximately self-similar behavior for full e+e− events, but a self-affine
one for single jets.

7. Local fluctuations and QCD

Substantial progress has been made to derive analytical QCD predic-
tions for fluctuations [167–169] in small angular phase-space intervals. As-
suming LPHD [187], these predictions for the parton level can be compared
to experimental data [188–190]. QCD is inherently intermittent and QCD
predictions [167–169] grant the scaling behavior

Fq(Θ) ∝
(

Θ0

Θ

)(D−Dq)(q−1)

, (49)

where Θ0 is the half opening angle of a cone around the jet-axis, Θ is the
angular half-width of a ring around the jet-axis centered at Θ0, D is the
underlying topological dimension (D = 1 for single angle Θ), and Dq are
the Rényi dimensions.

A new scaling variable [169], z = ln(Θ0/Θ)/ ln(EΘ0/Λ), where the max-
imum possible region (Θ = Θ0) corresponds to z = 0, is used in Fig. 6.1(a).
In a fixed coupling regime, for moderately small angular bins,

Dq = γ0(Q)
q + 1

q
, (50)

where γ0(Q) =
√

2CAαs(Q)/π is the anomalous QCD dimension calculated
at Q ≃ EΘ0, E =

√
s/2, and gluon color factor CA = Nc = 3. This

corresponds to the thin solid lines in Fig. 7.1(a). In the running-coupling
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regime, for small bins, the Rényi dimensions become a function of the size of
the angular ring (αs(Q) increases with decreasing Θ). Three approximations
derived in DLLA are compared in Fig. 7.1(a), according to (a) [168], (b)
[169], (c) [167]. In [168], an estimate for Dq has, furthermore, been obtained
in MLLA.

b)a)

Fig. 7.1. (a) The L3 data [189] compared to the analytical QCD predictions for
Λ = 0.16 GeV and Θ0 = 250: αs = const (thin solid line); DLLA (a) [168]; DLLA
(b) [169]; DLLA (c) [167]; MLLA [168]. b) Factorial moments for charged particles
in the current region of the Breit frame of e+p collisions at HERA, as a function
of pcut

t , compared to Monte-Carlo models at the hadron level (thick lines) and
ARIADNE with Q0 = 0.27 GeV at the parton level (thin solid line). The data are
corrected for Bose-Einstein correlations by the BE factor indicated [192].
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The fixed coupling approximates the running coupling for small z, but
does not exhibit the saturation effect seen in the data. For second order,
the running-αs predictions lead to the saturation effects observed in the
data, but significantly underestimate the observed signal. Predictions for
the higher moments are too low for low values of z, but tend to overestimate
the data at larger z. The DLLA approximation differs significantly at large
z. The MLLA predictions do not differ significantly from the DLLA result.

Using transverse momentum pt rather than Θ , within DLLA, the nor-
malized factorial moments of gluons which are restricted as pT < pcut

T are
expected [191] to follow,

Fq(p
cut
T ) ≃ 1 +

q(q − 1)

6

ln(pcut
T /Q0)

ln(P/Q0)
, (51)

where P is again the initial energy of the outgoing quark and pT is defined
relative to the direction of this quark.

Again, the DLLA predictions are on the parton level and should be
regarded asymptotic, i.e. valid at small pcut

T . Therefore, they should be con-
sidered only as qualitative predictions when compared to the data in con-
jungation with the LPHD hypothesis. Such a comparison has been made by
ZEUS [192] (see Fig. 7.1(b)). While DLLA (Eq. (51)) predicts the moments
to approach unity from above as pcut

T decreases, the data show the oppo-
site. The Monte-Carlo models follow the trend of the data, with ARIADNE
giving the best overall description.

To check the effect of energy-momentum conservation, the moments were
also determined at the parton level of ARIADNE, the physics implementa-
tion of which strongly resembles the analytic calculations [191]. To satisfy
LPHD, the cut-off parameter Q0 was reduced to 0.27 GeV, also ensuring the
parton multiplicity to equal that of the hadrons. The results are given as the
thin solid line in Fig. 7.1(b). They indeed show the behavior expected from
Eq. (51), i.e., they disagree with the hadronic data. Analogous differences
between the hadron and parton levels of ARIADNE have been observed
in e+e− annihilation [191]. So, one has to conclude with the authors that
here the limits of LPHD are crossed, i.e. the Fq are particularly sensitive to
dynamical details of non-perturbative QCD.

8. Bose–Einstein Correlations

Whether derived as Fourier transform of a (static and chaotic) pion
source distribution, a covariant Wigner-transform of the (momentum de-
pendent) source density matrix, or from the string model, identical-pion
correlation leads to a positive, non-zero two-particle correlator K2(Q) (see
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Eqs. (40) and (41)), i.e. to

R2(Q) = 1 +K2(Q) > 1 (52)

at small four-momentum difference Q. These Bose–Einstein Correlations, by
now, are a well-established effect in all types of collisions, even in hadronic
Z0 decay (for recent reviews see [193, 194]) originally expected to be too
coherent to show an effect. If existent also as inter-W BEC in fully hadronic
WW decay at LEP2, this could serve as an important laboratory for research
on the behavior of two (partially) overlapping strings.

Other important recent observations are given in abstract from below.
1. When evaluated in two (or better three) dimensions in the Bertsch–

Pratt system, an elongation of the emission region (better region of ho-
mogeneity [195] is observed along the event axis in all types of collisions
(hadron–hadron [196], all four LEP experiments [197], ZEUS [198], RHIC
[199]). However, it is important to note that the longitudinal radius of
homogeneity is much shorter than the length of the sting (of order 1%).

The recent observation that the out-radius does not grow beyond the
side-radius at RHIC [199] points to a short duration of emission and causes
a problem for some hydrodynamical models, but not for e.g. the Buda–Lund
hydro model. The latter, in fact gives a beautifully consistent description of
single-particle spectra and BEC in hadron–hadron and heavy-ion collisions
at SPS and RHIC [200]. The emission function resembles a Gaussian shaped
fire-ball for AA collisions, but a fire-tube for hh collisions.

2. The form of the correlator at small Q is steeper than Gaussian, in fact
consistent with a power law as would be expected from the intermittency
phenomenon described above. Recent unifying progress is reported in [201].

3. The approximate m
−1/2
T scaling first observed in heavy-ion collisions

at the SPS [202] and usually blamed on collective flow, is now observed at
RHIC [203], but also in e+e− collisions [204]. Quite generally, it follows from
a strong position momentum correlation [205], be it due to collective flow or
to string fragmentation.

4. Genuine three-pion correlations exist in all types of collisions and, in
principle, allow a phase to be extracted from

cosφ ≡ ω(Q3) = K3(Q3)/2
√

K2(Q3) . (53)

At small Q, this ω is near unity (as expected from incoherence) for hh
[206] and e+e− [207] collisions, as well as for PbPb [208, 209] and AuAu
[210] collisions at SPS and RHIC, while it is near zero (compatible with
full coherence) in collisions of light nuclei [208]. This contradiction can
be solved [193, 211] if ω is interpreted as a ratio of normalized cumulants

(Eq. (41)). Since K
(N)
q of N independent overlapping sources gets diluted
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like 1/N q−1, ω would be reduced if strings produced by light ions (or in
WW decay!) do not interact. If, in heavy ion collisions, the string density
gets high enough for them to coalesce, some kind of percolation sets in and
full inter-string BEC gets restored.

5. Azimuthal anisotropy is now also observed in configuration space of
non-central heavy-ion collisions at AGS energies [212], but also at RHIC
[213]. Contrary to elliptic flow, it is directed out of the event plane, but
consistent with the elliptic nuclear overlap in a non-central collision. Due to
larger pressure in the event plane, the anisotropy gets reduced but not de-
stroyed at RHIC. Also this is evidence for a short duration of pion emission.

Since a reaction plane also exists in hA, hh, and three-jet e+e− collisions,
application to those would be interesting. Of course, a three-dimensional
analysis in Φ bins requires a very high statistics.

9. Summary

Since conclusions were already given at the end of the individual sections,
we will not repeat them here, but limit ourselves to a comment. Multipar-
ticle production in high-energy collisions is an ideal field to study genuine
higher-order correlations. They are directly accessible in their full multi-
dimensional characteristics, under well controlled experimental conditions.
Methods also used in other fields are being tested and extended here for gen-
eral application. Indications for genuine, approximately self-similar higher-
order correlations are indeed found in high-energy particle collisions. At
large four-momentum distance Q2, they are not only expected to be an in-
herent property of perturbative QCD, but are directly related to the anoma-
lous multiplicity dimension and, therefore, to the running coupling constant
αs. At small Q2, the QCD effects are complemented by Bose–Einstein inter-
ference of identical mesons carrying information on the unknown space-time
development of particle production during the collision. The interplay be-
tween these two mechanisms, important for an understanding of the process
of hadronization, is a particular challenge at the moment.
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