
Vol. 35 (2004) ACTA PHYSICA POLONICA B No 12

HYDRO-INSPIRED PARAMETERIZATIONS OF

FREEZE-OUT IN RELATIVISTIC HEAVY-ION

COLLISIONS∗ ∗∗

Wojciech Florkowski
a,b

and Wojciech Broniowski
b

aInstitute of Physics, Świȩtokrzyska Academy
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Popular parameterizations of the freeze-out conditions in relativistic
heavy-ion collisions are discussed. Similarities and differences between the
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interpret the RHIC data, are outlined. A non-boost-invariant extension of
the single-freeze-out model is proposed and applied to describe the recent
BRAHMS data.
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1. The blast-wave model of Siemens and Rasmussen

In 1979 Siemens and Rasmussen formulated a model describing the hadron
production in Ne + Na F reactions at the beam energy of 800 MeV per
nucleon [1]. The physical picture behind the model was that the fast hy-
drodynamic expansion of the produced hadronic matter leads to a sudden
decoupling of hadrons and freezing of their momentum distributions, which
retain their thermal character (although modified by the collective expan-
sion effects) until the observation point. In their own words, Siemens and
Rasmussen described the collision process as follows: “central collisions of
heavy nuclei at kinetic energies of a few hundred MeV per nucleon produce
fireballs of hot, dense nuclear matter; such fireballs explode, producing blast
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waves of nucleons and pions”. In this way, with Ref. [1], the concept of the
blast waves of hadrons and the blast-wave model itself entered the field of
relativistic heavy-ion collisions.

Although the model of Siemens and Rasmussen was motivated by an ear-
lier hydrodynamic calculation by Bondorf, Garpman and Zimanyi [2], the
results presented in Ref. [1] were not obtained by solving the hydrodynamic
equations but followed from the specific assumptions on the freeze-out con-
ditions. The most important ingredient of the model was the spherically
symmetric expansion of the shells of matter with constant radial velocity.
With an additional assumption about the times when such shells disintegrate
into freely streaming hadrons (this point will be discussed in a greater detail
in Sec. 3) Siemens and Rasmussen obtained the formula for the momentum
distribution of the emitted hadrons [1]

dN

d3p
= Z exp

(

−
γE

T

)[(

1 +
T

γE

)

sinha

a
−

T

γE
cosha

]

. (1)

In Eq. (1) Z is a normalization factor, E =
√

m2 + p2 denotes the hadron
energy, T is the temperature of the fireball (the same for all fluid shells),
and γ = (1−v2)−1/2 is the Lorentz gamma factor with v denoting the radial
collective velocity (radial flow). A dimensionless parameter a is defined by
the equation

a =
γvp

T
. (2)

Small values of v (and a) correspond to small expansion rate and, as ex-
pected, a simple Boltzmann factor is obtained from Eq. (1) in the limit
v → 0

dN

d3p
→ Z exp

(

−
E

T

)

. (3)

The fits to the data based on the formula (1) gave T = 44MeV and v =
0.373. Interestingly, the value of the radial flow v turned out to be quite
large suggesting the strong collective behavior. This was an unexpected
feature summarized by the authors with the statement: “Monte Carlo studies
suggest that Ne + Na F system is too small for multiple collisions to be
very important, thus, this evidence for a blast feature may be an indication
that pion exchange is enhanced, and the effective nucleon mean free path
shortened in dense nuclear matter”.
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2. Cooper–Frye formula

Below we shall analyze the formal steps leading to Eq. (1). Our starting
point is the expression defining the momentum distribution of particles as
the integral of the phase–space distribution function f(x, p) over the freeze-
out hypersurface Σ, i.e., the renowned Cooper–Frye formula [3],

E
dN

d3p
=

dN

dy d2p⊥
=

∫

d3Σµ(x)pµf(x, p) . (4)

The three-dimensional element of the freeze-out hypersurface in Eq. (4) may
be obtained from the formula

d3Σµ = εµαβγ
dxα

dα

dxβ

dβ

dxγ

dγ
dα dβ dγ , (5)

where εµαβγ is the Levi–Civita tensor and α, β, γ are the three independent
coordinates introduced to parameterize the hypersurface.

We note that for systems in local thermodynamic equilibrium we have

E
dN

d3p
=

∫

d3Σµ(x) pµfeq (uµ(x) pµ) , (6)

where the function feq is the equilibrium distribution function

feq(E) =
1

(2π)3

[

exp

(

E − µ

T

)

+ ǫ

]−1

. (7)

Here the case ǫ = +1 (−1) corresponds to the Fermi–Dirac (Bose–Einstein)
statistics, and the limit ǫ → 0 yields the classical (Boltzmann) statistics.
For a static fireball one finds

d3Σµ = (dV, 0, 0, 0) , uµ = (1, 0, 0, 0) , (8)

and Eq. (6) is reduced to the formula

dN

d3p
= V feq(E) , (9)

where V is the volume of the system. Eq. (9) agrees with Eq. (3) in the
classical limit if the normalization constant Z is taken as

Z =
V

(2π)3
exp

( µ

T

)

. (10)
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3. Spherically symmetric freeze-outs

For spherically symmetric freeze-outs it is convenient to introduce the
following parameterization of the space–time points on the freeze-out hyper-
surface [4]

xµ = (t, x, y, z) = (t(ζ) , r(ζ) sin θ cos φ , r(ζ) sin θ sin φ , r(ζ) cos θ) . (11)

The freeze-out hypersurface is completely defined if a curve, i.e., the map-
ping ζ −→ (t(ζ), r(ζ)) in the t − r space is given. This curve defines the
(freeze-out) times when the hadrons in the shells of radius r stop to inter-
act, see Fig. 1. The range of ζ may be always restricted to the interval:
0 ≤ ζ ≤ 1. The three coordinates: φ ∈ [0, 2π], θ ∈ [0, π], and ζ ∈ [0, 1] play
the role of the variables α, β, γ appearing in Eq. (5). Hence, the element of
the spherically symmetric hypersurface has the form

d3Σµ =
(

r′(ζ), t′(ζ) sin θ cos φ, t′(ζ) sin θ sin φ, t′(ζ) cos θ
)

× r2(ζ) sin θ dθ dφ dζ , (12)

where the prime denotes the derivatives taken with respect to ζ. Besides the
spherically symmetric hypersurface we introduce the spherically symmetric
(hydrodynamic) flow

uµ = γ(ζ) (1 , v(ζ) sin θ cos φ , v(ζ) sin θ sin φ , v(ζ) cos θ) , (13)

where γ(ζ) is the Lorentz factor, γ(ζ) = (1 − v2(ζ))−1/2. In a similar way
the four-momentum of a hadron is parameterized as:

Fig. 1. Left: A priori possible, different freeze-out curves in Minkowski space. The
dotted and dashed lines describe the cases where both the space-like and time-like
parts are present. The solid lines describe the cases where only the time-like part is
present. Right: The (time-like) freeze-out curve assumed in the blast-wave model
of Siemens and Rasmussen, compare Eq. (19).
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pµ = (E , p sin θp cos φp , p sin θp sin φp , p cos θp) , (14)

and we find the two useful expressions:

p · u = (E − pv(ζ) cos θ) γ(ζ) , (15)

d3Σ · p =
(

Er′(ζ) − pt′(ζ) cos θ
)

r2(ζ) sin θ dθ dφ dζ . (16)

We note that the spherical symmetry allows us to restrict our considerations
to the special case θp = 0.

In the case of the Boltzmann statistics, with the help of Eqs. (4), (15)
and (16) we obtain the following form of the momentum distribution

E
dN

d3p
=
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]

r2(ζ)dζ .

(17)
Here v, γ, r and t are functions of ζ, and the parameter a is defined by Eq. (2).
The thermodynamic parameters T and µ may also depend on ζ. To proceed
further we need to make certain assumptions about the ζ-dependence of
these quantities. In particular, to obtain the model of Siemens and Ras-
mussen we assume that the thermodynamic parameters as well as the trans-
verse flow velocity are constant

T = const , µ = const , v = const (γ = const , a = const) . (18)

Moreover, we should assume that the freeze-out curve in the t − r space
satisfies the condition

dt = v dr , t = t0 + vr . (19)

In this case we obtain the formula

dN

d3p
=

e−(Eγ−µ)/T

2π2

[(
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)

sinha

a
−

T

γE
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]

1
∫

0

r2(ζ)
dr

dζ
dζ . (20)

Equation (20) coincides with Eq. (1) if we use Eq. (10) and make the fol-
lowing identification

1
∫

0

r2(ζ)
dr

dζ
dζ =

r3
max

3
, V =

4

3
πr3

max . (21)

Note that the quantity rmax does not necessarily denote the maximum value
of the radius of the system, see the dotted line on the left-hand side of Fig. 1.
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An interesting and perhaps unexpected feature of the model proposed
by Siemens and Rasmussen is the relation between the times and positions
of the freeze-out points, see Eq. (19) illustrated on the right-hand side part
of Fig. 1. Eq. (19) indicates that the fluid elements which are further away
from the center freeze-out later. Moreover, taking into account Eq. (19) in
the formula (12) we find that the four-vector describing the hypersurface is
parallel to the four-vector describing the flow, compare Eqs. (12) and (13)
giving d3Σµ ∼ uµ in this case. As we shall see the same features are assumed
in the single-freeze-out model [5–7].

It is worth to emphasize that in the hydrodynamic approach the t − r
freeze-out curves contain the space-like and time-like parts1. The treat-
ment of the space-like parts leads to conceptual problems since particles
emitted from such regions of the hypersurface enter again the system and
the hydrodynamic description of such regions (combined with the use of the
Cooper–Frye formula) is inadequate. Recently much work has been done to
develop a consistent description of the freeze-out process from the space-
like parts [8, 9]. However, very often only a quantitative argument is pre-
sented [10] that the contributions from the space-like parts are small andmay
be neglected compared to the contributions from the time-like regions. The
choice of Siemens and Rasmussen seems to have anticipated such arguments.

4. Boost-invariant blast-wave

model of Schnedermann, Sollfrank and Heinz

The model presented above is appropriate for the low-energy scattering
processes where the two nuclei completely merge at the initial stage of the
collision and further expansion of the system is, to large extent, isotropic.
At higher energies such a picture is not valid anymore and, following the fa-
mous paper by Bjorken [11], the boost-invariant and cylindrically symmetric
models have been introduced to describe the collisions2.

The boost-invariance (symmetry with respect to the Lorentz transfor-
mations) may be incorporated in the hydrodynamic equations, kinetic equa-
tions, and also in the modeling of the freeze-out process. In the latter
case, the appropriate formalism was developed by Schnedermann, Sollfrank
and Heinz [12]. The ansatz for the boost-invariant, cylindrically symmetric
freeze-out hypersurface has the form

xµ = (t, x, y, z) =
(

τ̃(ζ)cosh α‖ , ρ(ζ) cos φ , ρ(ζ) sin φ , τ̃ (ζ)sinh α‖

)

. (22)

1 We use the convention that in the space-like (time-like) region the vector normal to
the freeze-out curve is space-like (time-like).

2 As is discussed in greater detail below, the data delivered by the BRAHMS Collabo-
ration indicate that the systems produced at RHIC may be treated as boost-invariant
only in the limited rapidity range −1 < y < 1. Moreover, the assumption about the
cylindrical symmetry is valid only for the most central data.
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Here, the parameter α‖ is the space–time rapidity. At α‖ = 0 the longitu-
dinal coordinate z is also zero and the variable τ̃(ζ) coincides with the time
coordinate t. Similarly to the spherical expansion discussed in Sec. 3, the
boost-invariant freeze-out hypersurface is completely defined if the freeze-
out curve ζ → (τ̃(ζ), ρ(ζ)) is given. This curve defines the freeze-out times
of the cylindrical shells with the radius ρ. Because of the boost-invariance
it is enough to define this curve at z = 0, since for finite values of z the
freeze-out points may be obtained by the Lorentz transformation.

The volume element of the freeze-out hypersurface is obtained from
Eq. (5)

d3Σµ =

(

dρ

dζ
cosh α‖,

dτ̃

dζ
cos φ,

dτ̃

dζ
sinφ,

dρ

dζ
sinh α‖

)

ρ(ζ)τ̃(ζ)dζdα‖dφ .

(23)
Similarly to Eq. (22) the boost-invariant four-velocity field has the structure

uµ = cosh α⊥(ζ)cosh α‖

(

1, tanh α⊥(ζ) cos φ, tanh α⊥(ζ) sin φ, tanh α‖

)

.
(24)

We note that the longitudinal flow is simply vz =tanh α‖=z/t (as in the one-
dimensional Bjorken model), whereas the transverse flow is vr = tanh α⊥(ζ).

With the standard parameterization of the particle four-momentum in
terms of rapidity y and the transverse mass m⊥,

pµ = (m⊥coshy , p⊥ cos ϕ , p⊥ sin ϕ ,m⊥sinhy) , (25)

we find

p · u = m⊥cosh(α⊥)cosh(α‖ − y) − p⊥sinh(α⊥) cos(φ − ϕ), (26)

and

d3Σ · p =

[

m⊥cosh(y − α‖)
dρ

dζ
− p⊥ cos(φ − ϕ)

dτ̃

dζ

]

ρ(ζ)τ̃(ζ) dζ dα‖ dφ.

(27)
For the Boltzmann statistics, with β = 1/T , the Cooper–Frye formalism

gives the following momentum distribution

dN

dyd2p⊥
=

eβµ

(2π)3

2π
∫
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dφ

∞
∫

−∞

dα‖

1
∫

0

dζ ρ(ζ)τ̃(ζ) (28)

×
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m⊥cosh(α‖ − y)
dρ

dζ
− p⊥ cos(φ − ϕ)

dτ̃

dζ

]

× exp
[

−βm⊥cosh(α⊥)cosh(α‖ − y) + βp⊥sinh(α⊥) cos(φ − ϕ)
]

.
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The form of Eq. (29) shows explicitly that the distribution dN/(dyd2p⊥) is
independent of y and ϕ, in accordance with our assumptions of the boost-
invariance and cylindrical symmetry. The integrals over α‖ and φ in Eq. (29)
are analytic and lead to the Bessel functions K and I,

dN

dyd2p⊥
=

eβµ

2π2
m⊥K1 [βm⊥cosh(α⊥)] I0 [βp⊥sinh(α⊥)]

1
∫

0

dζ ρ(ζ)τ̃ (ζ)
dρ

dζ

−
eβµ

2π2
p⊥K0 [βm⊥cosh(α⊥)] I1 [βp⊥sinh(α⊥)]

1
∫

0

dζ ρ(ζ)τ̃(ζ)
dτ̃

dζ
.

(29)

In the spirit of the blast-wave model of Siemens and Rasmussen we have
assumed here that the radial velocity is constant, vr = tanh α⊥(ζ) = const,
otherwise the Bessel functions should be kept under the integral over ζ.

In order to achieve the simplest possible form of the model, the common
practice is to neglect the second line of Eq. (29). This procedure means that
one assumes implicitly the freeze-out condition dτ̃/dζ = 0 (τ̃ = τ = const).
In this case the boost-invariant blast-wave model is reduced to the formula

dN

dyd2p⊥
= constm⊥K1 [βm⊥cosh(α⊥)] I0 [βp⊥sinh(α⊥)] , (30)

where the constant has absorbed the factor eβµτρ2
max/(4π

2). Eq. (30) forms
the basis of numerous phenomenological analyses of the transverse-momen-
tum spectra measured at the SPS and RHIC [13] energies.

5. Resonances

The main drawback of the formalism outlined above is that it neglects
the effect of the decays of hadronic resonances. Such an approach may be
justified at lower energies but should be improved at the relativistic ener-
gies where most of the light particles are produced in the decays of heavier
resonance states. The expressions giving the rapidity and transverse mo-
mentum spectra of particles originating from two- and three-body decays
of the resonances with a specified momentum distribution were worked out
by Sollfrank, Koch and Heinz [14, 15]. Their formulae may also be used to
account for the feeding from the resonances in the blast-wave model, as al-
ready proposed in Ref. [12]. In other words, we wish to stress that the choice
of the freeze-out hypersurface and of the flow profile are elements completely

independent of the treatment of the resonances. Both are important with
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the latter being the basic ingredient in the calculation of particle abundances
and the key to success of thermal models.

At the SPS and RHIC energies it is important to include not only the
decays of the most common resonances such as η, ρ, ω,K∗ or ∆, but also
of much heavier states. Although their contributions are suppressed by the
Boltzmann factor, their number increases strongly with the mass [16, 17],
hence their role can be easily underestimated. The effects of sequential
decays of heavy resonances were first realized in statistical analyses of the
ratios of hadronic abundances/multiplicities (for recent results see [18–21])
which showed that the statistical models give a very good description of the
data, provided most of the hadrons appearing in the Particle Data Tables
are included in the calculations.

In order to discuss the role of the sequential decays of the resonances it
is convenient to start with a general formalism giving the Lorentz-invariant
phase–space density of the measured particles [22]

n1 (x1, p1) = E1
dN1

d3p1d4x1

=

∫

d3p2

Ep2

B (p2, p1)

∫

dτ2Γ2e
−Γ2τ2

∫

d4x2δ
(4)

(

x2 +
p2τ2

m2
− x1

)

. . .

×

∫

d3pN

EpN

B (pN , pN−1)

∫

dτNΓNe−ΓN τN

×

∫

dΣµ (xN ) pµ
N δ(4)

(

xN +
pN τN

mN
− xN−1

)

fN [pN · u (xN )] .

(31)

Here the indices 1, 2, . . . , N label hadrons in one chain of the sequential
decays. The first resonance is produced on the freeze-out hypersurface and
has the label N . The final hadron has the label 1, for more details see [6,7].
The function B(k, q) is the probability distribution for a resonance with
momentum k to produce a particle with momentum q in a two-body decay

B(k, q) =
b

4πp∗
δ

(

k · q

mR
− E∗

)

. (32)

The function B(k, q) satisfies the normalization condition

∫

d3q

Eq
B(k, q) = b , (33)

where b is the branching ratio for a given decay channel and p∗(E∗) is the
momentum (energy) of the emitted particle in the resonance’s rest frame
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(a generalization to three-body decays is straightforward and explained in
Ref. [18]).

Integration of Eq. (31) over all space–time positions gives the formula
for the momentum distribution

Ep1

dN1

d3p1
=

∫

d4x1 n1 (x1, p1)

=

∫

d3p2

Ep2

B (p2, p1) . . .

∫

d3pN

EpN

B (pN , pN−1)

×

∫

dΣµ (xN ) pµ
N fN [pN · u (xN )] . (34)

Eq. (34) serves as the starting point to prove that for constant values of
the thermodynamic parameters on the freeze-out hypersurface the ratios in
the full phase–space (4π) are the same as in the local fluid elements. In this
way, a connection between the measured ratios and the local thermodynamic
parameters is obtained [23]. One may also check that for the boost-invariant
systems it is enough to consider the ratios at any value of the rapidity to
infer the values of the thermodynamic parameters [5, 7].

The experimental RHIC data show, however, that the rapidity distribu-
tions are of Gaussian shape3 and the thermodynamic parameters vary with
rapidity (the measured p̄/p ratio depends on y), hence, the system created at
RHIC is, strictly speaking, not boost-invariant. In this situation the relation
between the measured ratios and thermodynamic parameters is not obvious.
Fortunately, the RHIC data show also a rather flat rapidity distribution and
constant ratios in the rapidity range −1 < y < 1 [27,28]. In this region (the
central part of the broad Gaussian) the system to a good approximation
may be treated as boost-invariant and the standard analysis of the ratios
may be performed to obtain the thermodynamic parameters at y = 0.

6. Single-freeze-out model

The analysis of the ratios of hadron multiplicities measured at RHIC
gives a typical temperature of 170 MeV. On the other hand, the analy-
sis of the spectra based on Eq. (30) gives a lower temperature of about
100–140 MeV. Such a situation was observed already at the SPS energies,
which motivated the introduction of the concept of two different freeze-outs.

Certainly, if the spectra contain important contributions from high lying
states, the value of T obtained from the blast-wave formula fitted to the
spectra cannot be interpreted as the temperature of the system in the precise

3 This feature has revived the interest in the Landau hydrodynamic model [24,25], see,
for example, Ref. [26].
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thermodynamic sense. First, the contributions from the resonances (feeding
mostly the low-momentum region) should be subtracted from the spectra of
light hadrons, giving the insight to the properties of the primordial particles.
Using other words, we may argue that the calculation of the ratios should
include the same number of the resonances as the corresponding calculation
of the spectra.

An example of such a calculation is the single-freeze-out model formu-
lated in Refs. [5,6]. In this model the decays of the resonances as well as the
transverse flow change the spectra of the primordial particles in such a way
that it is possible to describe well the spectra and the ratios with a single
value of the temperature. The basic effect here is that the hadronic decays
lead to effective cooling of the spectra.

Similarly to the original blast-wave models discussed above, the single
freeze-out model assumes a certain form of the freeze-out hypersurface in
the Minkowski space. In this case it is defined by the constant value of the
proper time

τ =
√

t2 − r2
x − r2

y − r2
z = const . (35)

The transverse size of the system is defined by the parameter ρmax,

ρ =
√

r2
x + r2

y , ρ < ρmax (36)

and the velocity field at freeze-out is taken in the Hubble-like form4

uµ =
xµ

τ
=

t

τ

(

1,
x

t
,
y

t
,
z

t

)

. (37)

The natural parameterization of the freeze-out hypersurface has the form

t = τ cosh α‖ cosh α⊥, z = τ sinhα‖ cosh α⊥,

x = τ sinhα⊥ cos φ , y = τ sinhα⊥ sin φ , (38)

which may be considered as the special case of the formula (22). Eq. (5)
leads to the following expression defining the volume element

dΣµ(x) = uµ(x) τ3 sinh(α⊥)cosh(α⊥) dα⊥ dα‖ dφ . (39)

A very important feature of the choice (35)–(37) is that the volume
element is proportional to the four-velocity field. This feature holds also in
the model of Siemens and Rasmussen. In this case the treatment of the
resonance is very much facilitated. In particular, Eq. (34) may be rewritten
in the form:

4 For a recent attempt to connect the parameterization (35)–(37) with hydrodynamic
calculation see Ref. [29].
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Ep1

dN1

d3p1
=

∫

dΣ (xN )

∫

d3p2

Ep2

B (p2, p1) . . .

×

∫

d3pN

EpN

B (pN , pN−1) pN · u (xN ) fN [pN · u (xN )]

=

∫

dΣ (xN ) p1 · u (xN ) f1 [p1 · u (xN )] , (40)

where we have introduced the notation

pi−1 · u (xN ) fi−1 [pi−1 · u (xN )] =

∫

d3pi

Epi

B (pi, pi−1)

× pi · u (xN ) fi [pi · u (xN )] . (41)

In the local rest frame, the iterative procedure defined by Eq. (41) becomes
a simple one-dimensional integral transform

fi−1 (q) =
bmR

2Eq p∗q

k+(q)
∫

k−(q)

dk k fi (k) , (42)

where k±(q) = mR|E
∗q ± p∗Eq|/m

2
1. Eqs. (41) and (42) allow us to deal

with a very large number of decays in the very efficient way, very similar to
that used in the calculation of the hadron abundances.

7. Non boost-invariant single-freeze-out model

The model described above may be generalized to the non boost-invariant
version in the minimal way by the modification of the system boundaries.
Introducing a dependence of the transverse size on the longitudinal coordi-
nate z (or α‖), we break explicitly the assumption of the boost-invariance.
At the same time, however, the local properties of the hypersurface and flow
remain unchanged allowing us to treat the resonances in the same simple
way as described in the previous section.

Since the measured rapidity distributions are approximately Gaussian,
it is natural to start with the Gaussian ansatz for the dependence of the
transverse size on the parameter α‖ and restrict the region of the integration
over α⊥ to the interval

0 ≤ α⊥ ≤ αmax
⊥ exp

[

−α2
‖/(2∆

2)
]

. (43)
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The original boost-invariant version is recovered in the limit ∆ −→ ∞.
Using the values of the thermodynamic parameters obtained from the boost-
invariant version of the model applied to the hadronic ratios measured at
midrapidity (T = 165.6 MeV and µB = 28.5 MeV), we are left with three
extra parameters (τ , ρmax = τ sinhαmax

⊥ , and ∆), which should be fitted to
the p⊥-spectra collected at different values of the rapidity.

Fig. 2. The single-freeze-out model fit to the transverse-momentum spectra mea-
sured by the BRAHMS Collaboration for different values of the rapidity [28]. The
successive curves correspond, from top to bottom, to the rapidity bins centered
at: y = −0.05, 0.05, 0.5, 0.7, 0.9, 1.1, 1.3, 2.2, 2.5, 3.05, 3.15, 3.25, 3.35, 3.53 [28].
The data in the third, fourth etc. bin are subsequently divided by factors of 2,
which is indicated by the 2−n label.



2908 W. Florkowski, W. Broniowski

The result of such a fit to the available BRAHMS data on π+, π−,
K+, and K− production are shown in Fig. 2. The optimal values of the
parameters found in the fit are: τ = 8.33 fm, αmax

⊥ = 0.825, and ∆ = 3.33.
One can see that the model reproduces the data very well in a wide range
of the transverse-momentum and rapidity. In Fig. 3 we show the model
rapidity distributions compared to the data. Small discrepancies (of about
10%) between the model and the data may be seen for the pions at y = 0.
Note that the comparison of the rapidity distributions in Fig. 3 is done with
a linear scale; definitely, small discrepancies may be expected for a such
simplified description of the freeze-out.

Fig. 3. Comparison of the measured rapidity distributions [28] with the results of
the single-freeze-out model. The theoretical curves were obtained by the integration
of the spectra shown in Fig. 2.

It should be emphasized that the non-boost invariant version of the
model presented above is not capable of describing correctly the p̄/p ra-
tio. In the present framework this requires an introduction of the rapidity
dependence of the baryon chemical potential.

8. Conclusions

We have discussed several parameterizations of the freeze-out conditions
in the relativistic heavy-ion collisions. We have argued that the single freeze-
out model used to describe the RHIC data is a natural development of
the blast-wave models worked out, among others, by Siemens, Rasmussen,
Heinz, Schnedermann and Sollfrank. The main advantage of the single-
freeze-out model is that it includes all well established resonance decays,
allowing us to treat the chemical and thermal freeze-out as essentially one
phenomenon. In this respect, the single-freeze-out model is very similar to
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the original blast-wave model. Further similarities concern the shape of the
freeze-out hypersurface (only the time-like parts are considered) and the
strict use of the Cooper–Frye formula. Due to the limited space, we have
not discussed here the variety of models where, instead of the Cooper–Fry
formula, the so-called emission functions are introduced and modeled. An
example of such an approach is the Buda–Lund model [30].

One of us (WF) acknowledges clarifying discussions with Jan Rafelski
and Giorgio Torrieri.
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