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1. Preamble

Quantum Chromodynamics is the theory of strong interactions. It is a
well-defined quantum field theory, with elegant foundations, and an enor-
mous predictive power. In principle, QCD allows one to calculate ab initio

the properties of matter under extreme conditions where the strong forces
are dominant. Nevertheless, despite recent progress, QCD phenomenology
at finite temperature and baryon number density is still one of the least
known regimes of the theory. There are several experimental windows into
such a regime. One is the physics associated with the interior of neutron
stars. Another, which is the subject of the ongoing and planned experimen-
tal programs, is the physics of heavy ion collisions.

This lecture is a review of recent developments in our understanding,
mostly theoretical, but also experimental, of the phase diagram of QCD.
There exist a number of excellent recent reviews [1–6] which discuss many
of the questions addressed here as well as the related material not covered in
this report. The report focuses on the physics of the critical point of QCD
and its search. There are many open questions in this field, and some of
the theoretical as well as experimental results and expectations discussed
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here might not hold under further scrutiny. Nevertheless it is hoped that
these notes will provide a useful contemporary guide to both theorists and
experimentalists entering the field as well as a stimulating reading to the
field’s experts.

2. What is the QCD critical point?

2.1. The phase diagram

Fig. 1 shows a sketch of the QCD phase diagram as it is perceived by a
modern theorist. By a phase diagram we shall mean the information about
the location of the phase boundaries (phase transitions) as well as the physics
of the phases that these transitions delineate. The phase transitions are the
thermodynamic singularities of the system. The system under consideration
is a region (in theory, infinite) occupied by strongly interacting matter, de-
scribed by QCD, in thermal and chemical equilibrium, characterized by the
given values of temperature T and baryo-chemical potential µB. In practice,
it can be a region in the interior of a neutron star, or inside the hot and
dense fireball created by a heavy ion collision.
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Fig. 1. QCD phase diagram.

On the phase diagram, the regime of small T and large µB is of rel-
evance to neutron star physics. Because of low temperature, a very rich
spectrum of possibilities of ordering can be envisaged. The line separating
the Color-Flavor-Locked (CFL) phase, predicted in Ref. [7], from the higher
temperature disordered phase (quark-gluon plasma, or QGP) is the most
simplified representation of the possible phase structure in this region. This
regime is also of particular theoretical interest because analytical controllable
calculations are possible, due to asymptotic freedom of QCD. The reader is
referred to the reviews [1–5] which cover the recent developments in the
study of this domain of the phase diagram.
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The region of the phase diagram more readily probed by the heavy ion
collision experiments is that of rather large T ∼ 100 MeV, commensurate
with the inherent dynamical scale in QCD, and small to medium chemical
potential µB ∼ 0–600 MeV. Theorists expect that this region has an inter-
esting feature — the end point of the first order phase transition line, the
critical point marked E on Fig. 1. The physics of this point is the focus of
the review.

2.2. Why should there be a critical point?

The argument (which is not a proof) that the point E must exist is short,
and is based on a small number of reasonable assumptions. The two basic
facts that it relies on are as follows:

(1) The temperature driven transition at zero µB is not a thermodynamic
singularity. Rather, it is a rapid, but smooth, crossover from the regime
describable as a gas of hadrons, to the one dominated by internal
degrees of freedom of QCD – quarks and gluons. This is the result of
finite T lattice calculations [8].

(2) The µB driven transition at zero T is a first order phase transition.
This conclusion is less robust, since the first principle lattice calcula-
tions are not controllable in this regime (naive Euclidean formulation
of the theory suffers from the notorious sign problem at any finite
µB). Nevertheless a number of different model approaches [9–16] (see
Section 3.3) indicate that the transition in this region is strongly first
order.

(3) The last step of the argument is a logical product of (1) and (2). Since
the first order line originating at zero T cannot end at the vertical axis
µB = 0 (by virtue of (1)), the line must end somewhere in the midst
of the phase diagram.

The end point of a first order line is a critical point of the second order.
This is a very common critical phenomenon in condensed matter physics.
Most liquids possess such a singularity, including water. The line which
we know as the water boiling transition ends at pressure p = 218 atm and
T = 374◦C. Along this line the two coexisting phases (water and vapor)
become less and less distinct as one approaches the end point (the density
of water decreases and of vapor increases), resulting in a single phase at this
point and beyond.

In QCD the two coexisting phases are hadron gas (lower T ), and quark–
gluon plasma (higher T ). What distinguishes the two phases? As in the case
of water and vapor, the distinction is only quantitative, and more obviously
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so as we approach the critical point. Rigorously, there is no good order
parameter which could distinguish the two phases qualitatively. The chiral
condensate, 〈ψ̄ψ〉, which comes closest to being an order parameter, is non-
zero in both phases because of the finite bare quark mass. Deconfinement,
although a useful concept to discuss the transition from hadron to quark–
gluon plasma, strictly speaking, does not provide a good order parameter.
Even in vacuum (T = 0) the confining potential cannot rise infinitely — a
quark–antiquark pair inserted into the color flux tube breaks it. The energy
required to separate two test color charges from each other is finite if there
are light quarks.

2.3. Critical or tricritical?

There is an idealization of QCD where the distinction between the hadron
gas and quark gluon plasma is sharp. It describes the world with massless
quarks mq = 0. In this limit of QCD with 2 massless quarks (up and
down) the chiral symmetry SU(2)V×SU(2)A is exact. Although interactions
respect this symmetry, it is spontaneously broken in the QCD vacuum down
to SU(2)V. The Goldstone theorem then demands 3 massless bosons, which
are recognizable as π mesons. This breaking is a result of nonperturbative
dynamics in QCD (instantons provide a natural mechanism).

The breaking of a global symmetry, such as the chiral symmetry, can be
thought of as establishment of the long-range order in the vacuum. It is the
order which dictates the preferred SU(2)A direction in all points in space,
and over which the pions are quantized “ripples”. At sufficiently high T , the
order is melted as in any other such system (compare, e.g., to the disordering
of the ferromagnet at Curie temperature). The chiral symmetry is restored.
The two phases must be separated by a thermodynamic singularity — a
phase transition.

This argument can be made more rigorous by considering the order pa-
rameter, 〈ψ̄ψ〉, the expectation value, or the condensate, of a field trans-
forming non-trivially under the broken symmetry. Consider a fixed value of
µB, e.g., µB = 0. The chiral condensate 〈ψ̄ψ〉 as a function of T is identi-
cally zero (by symmetry) for all temperatures above some value Tc and is
nonzero function of T below (symmetry breaking). Such a function cannot
be analytic. A singularity must occur at Tc.

In QCD, lattice calculations show that this singularity is a second order
phase transition if Tc is approached at µB = 0 [8,17–23]. At other values of
µB the critical temperature Tc is different, but the line of transitions Tc(µB)
cannot terminate, since any path from the vacuum T = µB = 0 to the high
T phase must cross a singularity. Somewhere in the midst of the phase
diagram the order of the transition should change to first order (according
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to point (2) of Section 2.2) 1. The point where this happens is the tricritical

point. The resulting phase diagram is illustrated in Fig. 2.
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Fig. 2. Phase diagram of QCD with two massless quarks. The chiral symmetry

order parameter qualitatively distinguishes two phases: 〈ψ̄ψ〉 6= 0 in the broken

phase and 〈ψ̄ψ〉 = 0 in the symmetric phase.
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Fig. 3. The order parameter vs temperature in a Curie ferromagnet with zero and

non-zero applied magnetic field. In QCD, the chiral order parameter 〈ψ̄ψ〉 behaves

similarly as a function of T at mq = 0 and mq 6= 0.

Once the quark mass mq is turned back on, the distinction between
the symmetric and broken phases is blurred, and the second order phase
transition is replaced by a smooth crossover. The situation is analogous
to the ferromagnet — an arbitrary small magnetic field (the analog of mq)

1 We also assume that there is only one transition between the broken and symmetric
phases.
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smooths away the Curie singularity (Fig. 3). The first order phase transi-
tion, on the other hand, is associated with a finite discontinuity of the or-
der parameter and cannot be removed by an arbitrarily small perturbation
mq 6= 0. Thus we arrive back at the diagram in Fig. 1.

T

tricritical point, m = 0

critical line, mq = 0

mq

triple line, mq = 0

µB

line of end points, mq 6= 0

surface of 1st order
transitions

Fig. 4. A three-dimensional view (T , µB, mq) of the QCD phase diagram near the

tricritical point.

It is also useful to take a look at Fig. 4, where the 2-dimensional TµB

phase diagram is extended to 3-dimensions by adding the quark mass mq as
the third axis. One can see that the second order transition line at mq = 0
does not extend into mq 6= 0. This line can be seen as a boundary of the

2nd order

tricritical pt.

spinodal

1st orderspinodal
(triple line)

Fig. 5. Illustration of the shape of the effective potential for the chiral order pa-

rameter near the tricritical point in the mq = 0 plane. Two additional (spinodal)

lines, not present in Fig. 4 indicate the boundary of the existence of metastable

minima.
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coexistence surface of the two spontaneously broken phases with 〈ψ̄ψ〉 of
opposite signs. A first order line ending at a critical point, on the other
hand, exists for all nonzero (small) mq, thus making up a surface which
looks like two “wings” in Fig. 4. The tricritical point can be seen as the end
of a first order line where 3 phases coexist (line of triple points).

Another useful sketch is made in Fig 5. It shows, in a schematic way,
the shape of the effective potential in various regions around the tricritical
point. One can see that the three minima, which are equally deep on the
triple line fuse into one minimum at the tricritical point.

2.4. Critical behavior: static and dynamic universality class

Determining properties of QCD (equation of state, correlation functions,
etc.) near the critical point is difficult, for the same reason as it is difficult
to find the location of the critical point (see next Section). However, as it is
the case for any critical point, singular properties, such as critical exponents,
can be determined using universality arguments.

According to the scaling postulate, central to the theory of critical phe-
nomena, [24] all singular contributions to the thermodynamic quantities are
powers of the correlation length ξ, which diverges at the critical point. These
powers, or critical exponents, are universal, in the sense that they depend
only on the degrees of freedom in the theory and their symmetry, but not
on the other details of the interactions. Very different physical systems may
belong to the same universality class, as far as their critical behavior is
concerned.

One should distinguish static and dynamic universality classifications
[25]. From the point of view of static critical phenomena, the QCD critical
point falls into the universality class of the Ising model. This is a consequence
of the fact that at mq 6= 0 no symmetry remains which would require the
order parameter to have more than just one component. The field theory
which describes the static critical behavior, the one-component φ4 theory in
3 dimensions, has the critical exponents of the Ising model2.

What is the nature of this order parameter? A natural choice is the value
of the chiral condensate 〈ψ̄ψ〉, since it is distinct in two phases coexisting
across the first order phase transition terminating in the critical point. In the
close vicinity of the critical point the static (equal-time) correlation function

2 As another example, consider any of the critical points on the 2nd order line at mq = 0
on Fig. 2. Because of the O(4)∼ SU(2)V×SU(2)A symmetry, which is restored at
this critical point, the order parameter must carry 4 components — sigma and 3
pions (σ, π). The resulting field theory describes the universality class of the O(4)
ferromagnet [26–28].
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〈ψ̄ψ(x)ψ̄ψ(y)〉 develops divergent correlation length:

〈ψ̄ψ(x)ψ̄ψ(0)〉c ∼







1

|x|1+η
, |x| ≪ ξ ,

e−|x|/ξ , |x| ≫ ξ ,

(1)

where 〈ψ̄ψ(x)ψ̄ψ(0)〉c ≡ 〈ψ̄ψ(x)ψ̄ψ(0)〉− 〈ψ̄ψ〉2. The correlation length di-
verges, ξ → ∞, at the critical point. For all theories in the Ising universality
class η ≈ 0.04.

Another interesting quantity, both from theoretical and experimental
points of view, is the baryon number density nB(x). Because symmetry
(or, rather, the absence of such) allows mixing of nB(x) with ψ̄ψ(x), the
divergence of the baryon number susceptibility is related to the divergence
of the correlation length ξ:

∂nB

∂µB

=

∫

d3x〈nB(x)nB(0)〉c ∼
∫

d3x
〈

ψ̄ψ(x)ψ̄ψ(0)
〉

c
∼ ξ2−η. (2)

The baryon number density also jumps across the first order phase tran-
sition. One can equally well use nB as the degree of freedom in the effective
theory near the critical point, or any linear combination of ψ̄ψ and nB (or
any other field which can mix with ψ̄ψ) which is discontinuous across the
first order phase transition. Regardless of the choice, there is only one order
parameter, as far as the static critical behavior is concerned.

The situation resembles, but is a little more complicated, if one considers
dynamic critical behavior, e.g., the singularities of kinetic coefficients, etc.

The scaling postulate is similar in this case, but the universality classes
are now determined by the effective degrees of freedom which define the
effective hydrodynamic theory near the critical point [25]. In this case the
fundamental difference between ψ̄ψ and nB fields is that the latter is a
conserved density. The hydrodynamic equations for nB are diffusive, while
the dynamics of ψ̄ψ is relaxational. Because the two modes mix, there
is, again, only one independent hydrodynamic variable, and it is diffusive
[29, 30]. This mode involves fluctuations of both ψ̄ψ and nB in a fixed
proportion. The fluctuations of ψ̄ψ alone relax on a finite time scale even
at the critical point3.

The complete hydrodynamic theory near the critical point must also
involve the energy and momentum densities. Once the hydrodynamic equa-
tions are written down, and the mixing between ψ̄ψ, nB and the energy
density is taken into account, one finds the theory equivalent to the one
describing the liquid-gas phase transition, model H in the classification of

3 A related observation, that the sigma pole mass does not vanish at the critical point
in the large-N NJL model, was made in Ref. [14] and confirmed in Ref. [29].
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Ref. [25]. One consequence of this theory, interesting from phenomenological
point of view, is the vanishing of the baryon number diffusion rate at the
critical point: D ∼ ξ−xD , with exponent xD ≈ 1 [30].

3. Where is the critical point? Theory

Theoretically, finding the coordinates (T, µB) of the critical point is a
well-defined task. We need to calculate the partition function of QCD and
find the singularity corresponding to the end of the first order transition
line. The Lagrangian of QCD is known, and the partition function is given
by a path integral of the exponent of the QCD action, after Wick rotation
to the Euclidean space (with imaginary time compactified on a torus of
circumference 1/T ).

Of course, calculating such an infinitely dimensional integral analytically
is beyond our present abilities (perturbation theory is not applicable here, in
the relevant region of T and µB). We are thus left with numerical methods,
i.e., lattice Monte Carlo simulation. At zero µB this method allows us to
determine the equation of state of QCD as a function of T and reach the
conclusion (1) in Section 2.2. However, at finite µB the Nature guards its
secrets better.

3.1. Importance sampling and the sign problem

The notorious sign problem has been known to lattice experts since early
days of this field. Calculating the partition function using Monte Carlo
method hinges on the fact that the exponent of the Euclidean action SE is a
positive definite function of its variables (values of the fields on the lattice).
This allows one to limit calculation to a relatively small set of gauge field
configurations randomly picked with probability proportional to the value
of

exp(−SE) = exp

{

−
∫

d4x
1

2g2
TrFµνFµν

}

det
(

/∂ − i /A+mq + µγ0

)

, (3)

where Aµ is the gauge field and Fµν is the field strength, mq is the quark
mass and µ = µB/3 the quark chemical potential. The number of such
configurations needed to achieve reasonable accuracy is vastly smaller than
the total number of possible configurations. The latter is exponentially
large in the size V of the system, or, the number of the degrees of freedom:
exp(const ·V ). The method, also known as importance sampling, utilizes the
fact that the vast majority of these configurations contribute a tiny fraction
because of the exponential suppression by exp(−SE). Only configurations
with sizeable exp(−SE) are important.
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When µ 6= 0 the determinant in (3) is complex. To see this, first consider
µ = 0. The massless Dirac operator, /D = /∂ − i /A, is antihermitian (all
gamma matrices in Euclidean space are hermitian) and its eigenvalues are
purely imaginary. What is more important, for each eigenvalue λ, there is an
eigenvalue −λ (because for each eigenvector ψ, γ5ψ is also an eigenvector).
Eigenvalues of /D+mq are ±λ+mq, i.e., they turn up in complex conjugate
pairs, making the determinant real and positive, suitable for importance
sampling method. On the other hand, the term µγ0 is hermitian, but (unlike
mq) it does not commute with the massless Dirac operator. Thus no simple
relationship exists between the eigenvalues of the massless Dirac operator λ
and the full Dirac operator at finite µ. These eigenvalues are, in general,
complex numbers, and so is the value of the determinant4.

With the “weight” exp(−SE) being complex, what configurations are
important? The importance sampling method does not apply. A number
of ways to circumvent the problem have been attempted. For example,
using the absolute value of exp(−SE) or of Re exp(−SE) as a measure
of importance, or the value of exp(−SE) at zero µB. Unfortunately, none
provide a satisfactory solution to the problem, at present.

3.2. The overlap problem

For the latter choice, exp(−SE)|µB=0, the problem can be understood
physically and is known as the overlap problem. The important configura-
tions at µB = 0 differ from those of µB 6= 0. How bad is this quantitatively?
At finite volume, even at µB = 0, the configurations important for µB 6= 0
pop up, but with a small probability. This probability is exponentially small
as volume V → ∞: exp(−const · V ). When we calculate the partition func-
tion using this method, we correct for this by multiplying the contribution
of these rare configurations by the factor exp(+SE|µB=0 − SE). The proce-
dure is termed reweighting5. The reweighting factor is exponentially large as
V → ∞ — both the magnitude and the complex phase are exp(const · V ).
Fluctuations, or statistical noise, in the exponentially tiny number of the
rare important configurations completely washes out the significance of the
result.

In layman’s terms, imagine that we want to study ice, but can only run
experiments at normal room temperature and pressure. Using the reweight-
ing method is analogous to trying to glimpse the information by waiting for

4 For each configuration Aµ(x) the determinant is complex conjugate to that of the
configuration −Aµ(−x). Therefore, the imaginary parts of the determinants cancel
trivially. The indefinite sign of the real part of the determinant is the source of the
sign problem.

5 The reweighting method in application to finite µB calculations is known as the
“Glasgow method” (reviewed in Ref. [31]).
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rare configurations when all the water molecules accidentally gather in one
corner of the lab, forming a chunk of ice. The amount of time that this
experiment would require is exponentially large as V → ∞.

3.3. Theoretical predictions

The first lattice prediction for the location of the critical point has been
reported in Ref. [32]. The assumption is that, although the problem be-
comes exponentially difficult as V → ∞, in practice, one can get a sensible
approximation at finite V . In addition, simulations at finite T might suffer
lesser overlap problem because of large thermal fluctuations [33]. One can
hope that if the critical point is at a small value of µB, the volume V may
not need to be too large to achieve a reasonable accuracy. In particular,
numerical estimates show [34] that the maximal value of µB which one can
reach within the same accuracy shrinks only as a power of 1/V .

However, it is not possible to determine this accuracy, since the exact
result is unknown. Normally, one would estimate the error by going to
increasingly large volumes V , but, as discussed above, the method becomes
prohibitive too quickly (exponentially) in this limit. Ultimately, the result
of Refs. [32, 35] might turn out to be a good approximation to the exact
answer, but we can only tell once we have an independent result to compare
it to. A qualitatively new approach is needed to overcome the QCD sign
problem6.

In the absence of a controllable (i.e., systematically improvable) method,
one turns to model calculations. Many such calculations have been done
[9–16]. Figure 6 and Table I summarize the results. One can see that the
predictions vary wildly. An interesting point to keep in mind is that each of
these models is tuned to reproduce vacuum, T = µB = 0, phenomenology.
Nevertheless, extrapolation to nonzero µB is not constrained significantly
by this. In a loose sense, the existing lattice methods can be also viewed as
extrapolations from µB = 0, but finite T .

Two new lattice approaches are being developed. Each of them has the
capacity to determine the location of the critical point. One approach is
based on simulations at finite imaginary values of µB [40] and the other on
Taylor expansions around µB = 0 [39]. The curvature of the phase transition
line found using these methods is indicated by the upper parabola in Fig. 6.
Recent result [39] (lower parabola in Fig. 6) seems to indicate large sensi-
tivity of this curvature to the quark mass. This may or may not be related
to the strong sensitivity of the position of the critical point to the value

6 In theories similar, or approximating, the finite density QCD, the sign and/or over-
lap problems have been tackled recently, using various new methods see, e.g., Refs.
[36–38].
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TABLE I

Theoretical predictions of the location of the critical point. The predictions for
tricritical point are indicated as ‘TCP’. The last column gives the corresponding
label on Fig. 6.

Source (T, µB), MeV Comments Label

MIT Bag/QGP none only 1st order —

Asakawa,Yazaki ’89 (40, 1050) NJL, CASE I NJL/I

ibidem (55, 1440) NJL, CASE II NJL/II

Barducci, et al. ’89-94 (75, 273)TCP composite operator CO

Berges, Rajagopal ’98 (101, 633)TCP instanton NJL NJL/inst

Halasz, et al. ’98 (120, 700)TCP random matrix RM

Scavenius, et al. ’01 (93,645) linear σ-model LSM

ibidem (46,996) NJL NJL

Fodor, Katz ’01 (160, 725) lattice reweighting I LR-1

Hatta, Ikeda, ’02 (95, 837) effective potential (CJT) CJT

Antoniou, Kapoyannis ’02 (171, 385) hadronic bootstrap HB

Ejiri, et al. ’03 (–,420) lattice Taylor expansion LTE

Fodor, Katz ’04 (162, 360) lattice reweighting II LR-2
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Fig. 6. Theoretical (models and lattice) predictions for the location of the critical

point. The labels correspond to Table I. The two dashed lines indicate the mag-

nitude of the slope d2T/dµ2 obtained by lattice Taylor expansion [39]. The upper

curve agrees with Ref. [40]. The lower curve corresponds to smaller quark mass.

Errors/uncertainties are not shown. The open circles indicate location of freezeout

points at various collision energies (see Fig. 8).
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of the strange quark mass observed in Ref. [40]. Qualitatively, one should
expect that the critical point moves toward smaller µB as the strange quark
mass ms is decreased, since for sufficiently small ms the chiral transition
must turn first order according to renormalization group arguments [26].
The most recent lattice calculation [35], performed with smaller values of
the quark masses, also indicates that the point shifts towards smaller µB.

4. Scanning QCD phase diagram

Even though the exact location of the critical point is not known to us
yet, the available theoretical estimates strongly indicate that the point is
within the region of the phase diagram probed by the heavy-ion collision
experiments. This raises the possibility to discover this point in such exper-
iments [41].

The idea is illustrated in Fig. 7. It is known empirically that with in-
creasing collision energy,

√
s, the resulting fireballs tend to freezeout at de-

creasing values of the chemical potential. This is easy to understand, since
the amount of generated entropy (heat) grows with

√
s while the net baryon

number is limited by that number in the initial nuclei.
The trajectories on Fig. 7 terminating in the freezeout points indicate

(theoretically perceived) time history of a small, but thermodynamically
macroscopic, volume of the expanding fireball, at various initial collision
energies. In the approximation of ideal hydrodynamics these trajectories
follow lines of constant baryon per entropy ratio (baryon asymmetry), due

, GeVµB

T, GeV

10

0.1

CFL
nuclear

QGP

freezeout

incr. coll. energy

vacuum matter quark matter quark matter

Fig. 7. Example trajectories traced by a fireball created in a heavy ion collision on

the phase diagram of Fig.1. Increasing the collision energy one moves the freezeout

point (empty circle) to smaller µB, approaching and then receding away from the

critical point.
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to conservation of the baryon number and the entropy. The characteristic
discontinuity of the trajectory at the first order phase transition is a result
of the discontinuity of the baryon asymmetry across this transition. Be-
cause the shift is toward the end point E, this leads to the phenomenon of
focusing [41, 42]: the freezeout points tend to cluster near the critical point
for a wide range of initial trajectory points. Therefore, wider range of

√
s

leads to freezeout in the critical region, making the task of finding the point
somewhat easier.

Fig. 8. The freezeout points for different heavy-ion collision experiments. Figure is

reproduced from Ref. [43].

The information about the location of the freezeout point for given ex-
perimental conditions is obtained by measuring the ratios of particle yields
(e.g., baryons or antibaryons to pions), and fitting to a statistical model
with T and µB as parameters. Such fits are amazingly good [43], and the
resulting points for different experiments are shown in Fig. 8.

For comparison, the location of freezeout points from Fig. 8 are super-
imposed on the plot in Fig. 6 summarizing theoretical predictions. It may
appear that the critical point found in the first lattice calculation is some-
what away (at higher T ) from the freezeout curve. However, as emphasized
already in Section 3.3, the systematic error of the lattice result is not known,
since the volume V → ∞ limit is unattainable using the reweighting method.
Even if one takes the lattice result at face value, one still has to take into
account the fact that the position of the critical point must shift to smaller
values of µB once the quark masses (notably, the strange quark mass) are
reduced toward their true values, from those used in Ref. [32]. More recent
lattice results [35, 39, 40] support this expectation.
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Additional effect, which plays a significant role, is the critical slowing
down near the point E [30, 44, 45]. This phenomenon is the major limit-
ing factor (size limitation is less stringent [44]) for the maximal correlation
length that can be achieved realistically in a heavy ion collision experiment.
Although, as a result, the sharpness of the signatures of the critical point is
reduced, another consequence is the shift of the position (due to delay) of
the maximum of the correlation length toward lower temperatures [45].

150 200 250 300
µ [MeV]

90

100

110

120
T

 [M
eV

]

2.0
1.5
1.0
0.5

χq/χq
free

Fig. 9. The model calculation [16] of the shape of the critical region. Note that

µ = µB/3.

On the experimental side, one has some control over the freezeout tem-
perature by adjusting the size of the ions. Smaller systems freeze out some-
what earlier and thus at higher T . Also, due to the singularity in the specific
heat, the freezeout occurs at higher T for trajectories passing near the crit-
ical point [41].

Another interesting observation, potentially important for the search of
the critical point is that of the shape of the critical region [16]. One can see
in figure 9 a model calculation of a divergent susceptibility near the critical
point, which shows that the critical region is stretched in the direction of the
crossover line. This shape is easy to understand remembering that, in the
(T, µB,mq) space (see Fig. 4), the critical point is connected to the tricritical
point (the black dot in Fig. 9) by a whole line of critical points.

5. Signatures: event-by-event fluctuations

One of the actively pursued signatures of the critical point is the non-
monotonous dependence on

√
s (and thus, on µB) of the event-by-event

fluctuation observables [41, 44]. The idea can be understood qualitatively
by noting that: (1) the susceptibilities diverge at the critical point, and
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(2) the magnitude of the fluctuations are proportional to the corresponding
susceptibilities. For example, for the fluctuations of energy or charge, the
well-known relations are

∂E

∂T
=

1

T 2
〈(∆E)2〉; ∂Q

∂φ
=

1

T
〈(∆Q)2〉 . (4)

Ideally, one could determine susceptibilities on the left-hand side by mea-
suring the fluctuations on the right-hand side [46]. However, practically, the
measurement of the corresponding fluctuations, ∆E or ∆Q, is not feasible
because not all the particles end up in the detector [44, 47]. A more dif-
ferential measure of the fluctuations needs to be computed in theory and
compared to experiment.

5.1. Two-particle correlator

A number of such measures can be obtained starting from a two particle
correlator

〈

∆nα
p∆nβ

k

〉

=
〈

nα
pn

β
k

〉

− 〈nα
p〉

〈

nβ
k

〉

, (5)

where ∆nα
p = nα

p − 〈nα
p〉 is the event-by-event fluctuation of the number of

particles of the type α in the momentum bin centered around p. Experts fa-
miliar with Hanbury-Brown–Twiss (HBT) interferometry [48] may recognize
in (5) the HBT correlation function.

The two-particle correlator (5) can be directly measured. However, for
such a function of many variables, it might be difficult to represent the result
of this measurement. A useful representation, for example, is obtained by
limiting (projecting) the variables to transverse components of p and k. The
resulting plot of a function of two arguments, pT and kT, is often referred to
as a ‘Trainor plot’ (see, e.g., Ref. [49]). Interesting information can be also
obtained by projecting onto the rapidities of p and k. If in addition, one
weights each particle with its charge, the resulting correlator, as a function of
the rapidity difference yp−yk, is essentially the balance function introduced
in [50].

There also exist many cumulative measures, proposed by theorists and/or
used by experimentalists, [44, 47, 51–57] that can be expressed in terms of
correlator (5). As an example, the fluctuation of electric charge is given
by summing over momenta p and k of all particles in the experimental
acceptance window and weighting each particle with its charge qα:

∆Q =
∑

p,α

qα∆nα
p ; thus

〈

(∆Q)2
〉

=
∑

p,α

∑

k,β

qαqβ
〈

∆nα
p∆nβ

k

〉

. (6)

The same applies to the fluctuations of the baryon number, with qα substi-
tuted by the baryon number of the particles. Similar equation (see Eq. (8))
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also applies to the fluctuations of the mean transverse momentum pT, in
which case qα should be replaced with pT − pT — the deviation of the mo-
mentum pT from the all-event (inclusive) mean pT.

The correlator (5) can, in principle, be calculated, under assumption of
thermal equilibrium, once the relevant interactions are known. In the case of
the critical point, we need to concern ourselves with the interactions which
can lead to singular contribution to the correlator (and, as a consequence,
to susceptibilities) as the critical point is approached.

In a non-interacting gas in thermal equilibrium the correlator (5) vanishes
unless p = k and α = β 7. The hadrons, however, are interacting. One can
ask a question: what is the effect of the interaction on the correlator (5)? The
answer can be found to leading order [58]. The contribution is proportional
to the amplitude of the forward scattering Apk→pk of the particles with
momenta p and k. This is easy to understand using the following argument.
The amplitude of the forward scattering shifts the energy of the 2-particle
state relative to the sum of single particle energies. The statistical weight
of the two particle state is therefore changed relative to the product of the
single-particle weights. The difference is the two-particle correlator:

〈npnk〉−〈np〉〈nk〉 = fpfk

(

e−βEI − 1
)

≈ fpfk(−βEI) ∼ fpfkβApk→pk , (7)

where fp is the equilibrium distribution function and EI is the interac-
tion energy. The exact formula, obtained using diagrammatic analysis, [58]
contains additional factors (1 + fp)(1 + fk), which can be understood as
Bose enhancement (stimulated emission) factors (or, in the case of fermions,
(1 − fp)(1 − fk) — Pauli blocking).

Near the critical point the most singular contribution comes from the
exchange of the sigma field quanta in the t channel8. Since, by kinematics,
the quanta carry zero momentum, the singular contribution is proportional
to 1/m2

σ , which equals ξ2 — the square of the sigma field correlation length.

The absolute strength of the singularity depends on the coupling of the
critical mode sigma to the corresponding hadron in Fig. 10, which is difficult
to estimate reliably. Order of magnitude estimates have been made for
coupling to pions [44] and to protons [59].

As an example of the singular contribution in Fig. 10 consider baryon
number susceptibility. Let Q in equation (6) be the net baryon number.
Then one can see that the 1/m2

σ , or ξ2, singularity from Fig. 10 for scattering

7 We are not considering HBT correlations, which are a finite size effect.
8 Strictly speaking, what we call here, for simplicity, “sigma” is a mixture (a linear

combination) of chiral condensate, baryon density and energy density fluctuations.
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p

kk

p

1

m
2
σ

Fig. 10. Diagrammatic representation of the singular contribution to the correlator

〈∆np∆nk〉.

two baryons results in the divergence of the baryon number susceptibility
(2) (the critical exponent η = 0 at this order). If only charged baryons
are detected, the total baryon number cannot be measured event by event,
but the number of protons is measurable. Since, according to Fig. 10, the
proton number fluctuations should also be singular at the critical point,
measurement of such fluctuations may provide a signal of the critical point
[59].

In principle, knowing the correlator (5) one could make quantitative pre-
dictions for fluctuation measures used in experiment. In practice, calculating
the correlator is a very difficult task (what interactions should be included
and what is their strength?). Non-equilibrium effects make this task even
more difficult. Near the critical point these complications become somewhat
less relevant since, as long as we limit ourselves to the singular effects, we
only need to consider contributions such as in Fig. 10.

5.2. Fluctuations, correlations, and acceptance

Cumulative measures of fluctuations are often used to represent exper-
imental results. These measures suffer an important drawback — they de-
pend on the size and shape of the acceptance window of the detector. This
makes comparison of different experiments, as well as an experiment to a
theory, difficult. However, knowing certain properties of the correlator (5),
it is possible to correct for acceptance in such comparisons.

As an illustration consider event-by-event fluctuations of the mean trans-
verse momentum pT per particle. Most commonly used fluctuation measures
are based on the width of the distribution of the event mean pT, σ2

ebe. Similar
to (6), σ2

ebe can be expressed through the correlator (5) [44]:

σ2
ebe =

1

〈N〉2
∑

pk

∆pT∆kT 〈∆np ∆nk〉, (8)

where ∆pT ≡ pT − pT and 〈N〉 is the average multiplicity of accepted par-
ticles. In the thermodynamic limit 〈N〉 → ∞ the fluctuation σ2

ebe vanishes
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as 1/〈N〉. Thus in this limit, the quantity 〈N〉σ2
ebe does not depend on

the size of the system 〈N〉 and is therefore a natural subject of theoretical
predictions.

To make a closer comparison to experiment, it is useful to exclude the di-
agonal terms p = k from the sum in (8), since they give the trivial statistical
contribution 〈N〉−1σ2

inc, where σinc is the r.m.s. width of the inclusive dis-
tribution of pT. The remaining off-diagonal terms in (8) give the nontrivial
“dynamical fluctuation”, experimentally obtained after the subtraction:

σ2
dyn ≡ σ2

ebe − 〈N〉−1σ2
inc . (9)

In an experiment, the sum in (8) is limited to p and k which fall within
detector acceptance. Assume, for clarity, that the acceptance is limited in
rapidity, i.e., yp and yk belong to an interval [ymin, ymax]. The cumula-
tive measure σ2

ebe, or σ2
dyn, will then depend on yacc ≡ ymax − ymin. This

dependence simplifies in two regimes of yacc. The boundary between the
two regimes is determined by the characteristic range ycorr of the rapidity
correlator of the fluctuations:

〈N〉σ2
dyn

∣

∣

∣

yacc

=







O(yacc) , for yacc ≪ ycorr ,

〈N〉σ2
dyn

∣

∣

∣

∞
, for yacc ≫ ycorr .

(10)

In other words, cumulative measure 〈N〉σ2
dyn grows linearly with yacc for

small acceptance windows and saturates at its thermodynamic limit value
when the acceptance range exceeds the correlation range. In most current
experiments, the width of the rapidity window yacc is smaller or at most
comparable to the typical range of the rapidity correlator ycorr ∼ 1. This
means that in a typical experiment, for a cumulative measure, normalized to
be finite in the thermodynamic limit, the experimentally observed magnitude
is roughly proportional to the acceptance window size [54, 60, 61].

5.3. Experimental results and concluding remarks

As an example of the QCD phase diagram scan, the plot in Fig. 11 shows
the results of the measurements of the pT fluctuations using a cumulative
measure Σ pT

described in Ref. [62]. No clear non-monotonous signal, which
one would expect if the experiments probed the vicinity of the critical point,
was found.

It is also interesting to compare the magnitude of the observed fluctua-
tions to the singular contribution expected near the critical point [44]. After
correcting for acceptance using the method outlined in the previous section
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one finds:

ΣpT
∼ 2% ×

(

G

300 MeV

)2 (

ξ

3 fm

)2

, (11)

where G is the magnitude of the σππ coupling in the diagram Fig. 10 and
ξ = 1/mσ .
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Fig. 11. CERES and STAR results for different collision energies [62]. The corre-

sponding values of µB at freezeout are determined using statistical model analy-

sis [63].

It is important to note, that observation of a large magnitude of fluctu-
ations would not by itself constitute the signal of the critical point. There
are many possible contributions to the fluctuations, which are difficult to
estimate. The distinct signature of the critical point is the non-monotonous
behavior of fluctuation observables.

Another important experimental variable is the transverse momentum
window of acceptance. The two-particle correlations induced by critical
point have most significant effect on particles with small transverse momenta
(soft part of the spectrum). These correlations are thermodynamic and affect
particles with typical thermal momenta, i.e., p ∼ 3T ∼ 400–500 MeV. For
comparison, the results reported in [62] include particles in the range of
0.1 < pT < 1.5 GeV. The interesting (from the point of view of critical
fluctuations) signal can be enhanced by restricting this window to, e.g.,
pT < 500 MeV, eliminating potential contributions from correlations among
higher momentum particles, which have completely different origin (e.g.,
jets).
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Experiments at other energies, at CERN SPS, RHIC, and future GSI
facility, will be able to provide a complete scan of the reachable domain on
the QCD phase diagram and either discover or rule out the presence of the
critical point in this domain.

This review focused mainly on the signatures of the QCD critical point
based on the event-by-event fluctuations. Further study of the properties
of the critical point may reveal other, perhaps, even more sensitive and
experimentally cleaner signatures. For example, real-time correlation func-
tions and non-equilibrium dynamics near the critical point deserve further
investigation [64].

Finally, the lack of a controllable and reliable theoretical method to
calculate coordinates of the critical point impairs our ability to perform a
more focused search. It is hard to overemphasize the importance of such a
theoretical method.
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Mariusz Sadzikowski — the organizers of the 2004 Cracow School of The-
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pletion of this work. This work was supported in part by DOE grant
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