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Physics of the low-lying and high-lying hadrons in the light flavor sector
is reviewed. While the low-lying hadrons are strongly affected by the spon-
taneous breaking of chiral symmetry, in the high-lying hadrons the chiral
symmetry is restored. A manifestation of the chiral symmetry restoration
in excited hadrons is a persistence of the chiral multiplet structure in both
baryon and meson spectra. Meson and baryon chiral multiplets are clas-
sified. A relation between the chiral symmetry restoration and the string
picture of excited hadrons is discussed.
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1. Introduction

It was believed by many people (and is still believed by some) that there
should be some universal physical picture (model) for all usual hadrons1. If
we consider, as example, atoms, there is indeed a universal picture for all
excitations: electrons move in the central Coulomb field of the nucleus. Such
a system is essentially nonrelativistic and relativistic effects appear only as
very small corrections to the nonrelativistic description. However, hadrons
in the u, d, s sector are more complex systems. This complexity comes in
particular from the very small masses of u and d quarks. These small masses
guarantee that the role of relativistic effects, such as creation of pairs from
the vacuum, should be important. If so in the u, d, s quark sector a descrip-
tion should incorporate valence quarks, sea quarks and gluonic degrees of
freedom.

∗ Presented at the XLIV Cracow School of Theoretical Physics, Zakopane, Poland
May 28–June 6, 2004.

1 Under “usual” hadrons we assume those ones which are not glueballs and with quan-
tum numbers which are provided by the minimal q̄q or qqq quark Fock component.
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The main message of these lectures is that physics of the low-lying
hadrons in the u, d, s sector is essentially different from the physics of the
highly excited states. In the former case spontaneous breaking of chiral
symmetry is crucial for physics implying such effective degrees of freedom
as constituent quarks (being essentially quasiparticles [1]), constituent quark
— Goldstone boson coupling [1,2], etc. In the latter case, on the other hand,
spontaneous breaking of chiral symmetry in the QCD vacuum becomes irrel-
evant, which is referred to as effective chiral symmetry restoration or chiral
symmetry restoration of the second kind [3–7]. Hence in this case other de-
grees of freedom become appropriate and probably the string picture [8] with
“bare” quarks of definite chirality at the ends of the string [9] is a relevant
description.

It is not a surprise that physics of the high-lying excitations and of
the low-lying states is very different in complex systems. Remember that in
Landau’s Fermi-liquid theory (QCD is a particular case of such a theory) the
quasiparticle degrees of freedom are relevent only to the low-lying excitations
while high-lying levels are excitations of bare particles.

These lectures consist of the following sections. In the second one we re-
view chiral symmetry of QCD. The third section is devoted to a description
of the low-lying hadrons, which are strongly affected by spontaneous break-
ing of chiral symmetry. Empirical hadron spectra are reviewed in Section 4.
In the fifth section we introduce chiral symmetry restoration in highly ex-
cited hadrons. In the next section a toy pedagogical model will be discussed
which clearly illustrates that there is no mystery in symmetry restoration
in high-lying spectra. Implications of the quark–hadron duality in QCD for
spectroscopy are discussed in Section 7. In Sections 8 and 9 we will classify
chiral multiplets of excited mesons and baryons respectively. In Section 10
it is shown that a simple potential constituent quark model is incompatible
with the chiral symmetry restoration in excited hadrons. A relation between
the chiral symmetry restoration and the string picture of excited hadrons is
discussed in Section 11. Finally, a short summary will be presented in the
conclusion part.

2. Chiral symmetry of QCD

Consider the chiral limit where quarks are massless. It is definitely justi-
fied for u and d quarks since their masses are quite small compared to ΛQCD

and the typical hadronic scale of 1 GeV; in good approximation they can be
neglected. Define the right- and left-handed components of quark fields

ψR = 1
2 (1 + γ5)ψ, ψL = 1

2 (1 − γ5)ψ. (1)
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If there is no interaction, then the right- and left-handed components of the
quark field get decoupled, as it is well seen from the kinetic energy term

L0 = iΨ̄γµ∂
µΨ = iΨ̄Lγµ∂

µΨL + iΨ̄Rγµ∂
µΨR, (2)

see Fig. 1.

PS

PS

Fig. 1. Left-handed and right-handed massless fermions.

In QCD the quark–gluon interaction Lagrangian is vectorial, ψ̄γµψAµ,
which does not mix the right- and left-handed components of quark fields.
Hence in the chiral limit the left- and right-handed components of quarks
are completely decoupled in the QCD Lagrangian. Then, assuming only one
flavor of quarks such a Lagrangian is invariant under two independent global
variations of phases of the left-handed and right-handed quarks:

ψR → exp (ıθR)ψR; ψL → exp (ıθL)ψL. (3)

Such a transformation can be identically rewritten in terms of the vectorial
and axial transformations:

ψ → exp (ıθV)ψ; ψ → exp (ıθAγ5)ψ. (4)

The symmetry group of these phase transformations is

U(1)L × U(1)R = U(1)A × U(1)V. (5)

Consider now the chiral limit for two flavors, u and d. The quark–gluon
interaction Lagrangian is insensitive to the specific flavor of quarks. For
example, one can substitute the u and d quarks by properly normalized
orthogonal linear combinations of u and d quarks (i.e. one can perform a
rotation in the isospin space) and nothing will change. Since the left- and
right-handed components are completely decoupled, one can perform two
independent isospin rotations of the left- and right-handed components:
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ψR → exp

(

ı
θa
Rτ

a

2

)

ψR; ψL → exp

(

ı
θa
Lτ

a

2

)

ψL, (6)

where τa are the isospin Pauli matrices and the angles θa
R and θa

L parame-
terize rotations of the right- and left-handed components. These rotations
leave the QCD Lagrangian invariant. The symmetry group of these trans-
formations,

SU(2)L × SU(2)R, (7)

is called chiral symmetry.
Actually in this case the Lagrangian is also invariant under the variation

of the common phase of the left-handed uL and dL quarks, which is the
U(1)L symmetry and similarly — for the right-handed quarks. Hence the
total chiral symmetry group of the QCD Lagrangian is

U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)L × U(1)R

= SU(2)L × SU(2)R × U(1)V × U(1)A. (8)

This is a symmetry of the QCD Lagrangian at the classical level. At the
quantum level the U(1)A symmetry is explicitly broken due to axial anomaly,
which is effect of quantum fluctuations. The U(1)V symmetry is responsible
for the baryon number conservation and will not be discussed any longer.

Now generally if the Hamiltonian of a system is invariant under some
transformation group G, then one can expect that one can find states which
are simultaneously eigenstates of the Hamiltonian and of the Casimir oper-
ators of the group, Ci. Now, if the ground state of the theory, the vacuum,
is invariant under the same group, i.e. if for all U ∈ G

U |0〉 = |0〉, (9)

then eigenstates of this Hamiltonian corresponding to excitations above the
vacuum can be grouped into degenerate multiplets corresponding to the
particular representations ofG. This mode of symmetry is usually referred to
as the Wigner–Weyl mode. Conversely, if (9) does not hold, the excitations
do not generally form degenegerate multiplets in this case. This situation is
called spontaneous symmetry breaking.

If chiral symmetry were realized in the Wigner–Weyl mode, then the
excitations would be grouped into representations of the chiral group. The
representations of the chiral group are discussed in detail in the following
sections. The important feature is that the every representation except
the trivial one necessarily implies parity doubling. In other words, for every
baryon with the given quantum numbers and parity, there must exist another
baryon with the same quantum numbers but opposite parity and which
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must have the same mass. In the case of mesons the chiral representations
combine, e.g. the pions with the f0 mesons, which should be degenerate.
This feature is definitely not observed for the low-lying states in hadron
spectra. This means that Eq. (9) does not apply; the continuous chiral
symmetry of the QCD Lagrangian is spontaneously (dynamically) broken
in the vacuum, i.e. it is hidden. Such a mode of symmetry realization is
referred to as the Nambu–Goldstone one.

The independent left and right rotations (6) can be represented equiva-
lently with independent isospin and axial rotations

ψ → exp

(

ı
θa
Vτ

a

2

)

ψ; ψ → exp

(

ıγ5
θa
Aτ

a

2

)

ψ. (10)

The existence of approximately degenerate isospin multiplets in hadron spec-
tra suggests that the vacuum is invariant under the isospin transformation.
Indeed, from the theoretical side the Vafa–Witten theorem [10] guarantees
that in the local gauge theories the vector part of chiral symmetry cannot
be spontaneously broken. The axial transformation mixes states with oppo-
site parity. The fact that the low-lying states do not have parity doublets
implies that the vacuum is not invariant under the axial transformations. In
other words the almost perfect chiral symmetry of the QCD Lagrangian is
dynamically broken by the vacuum down to the vectorial (isospin) subgroup

SU(2)L × SU(2)R → SU(2)I . (11)

The noninvariance of the vacuum with respect to the three axial transfor-
mations requires existence of three massless Goldstone bosons, which should
be pseudoscalars and form an isospin triplet. These are identified with pions.
The nonzero mass of pions is entirely due to the explicit chiral symmetry
breaking by the small masses of u and d quarks. These small masses can be
accounted for as a perturbation. As a result the squares of the pion masses
are proportional to the u and d quark masses [11]

m2
π = − 1

f2
π

mu +md

2
(〈ūu〉 + 〈d̄d〉) +O(m2

u,d). (12)

That the vacuum is not invariant under the axial transformation is di-
rectly seen from the nonzero values of the quark condensates, which are order
parameters for spontaneous chiral symmetry breaking. These condensates
are the vacuum expectation values of the ψ̄ψ = ψ̄LψR + ψ̄RψL operator and
at the renormalization scale of 1 GeV they approximately are

〈ūu〉 ≃ 〈d̄d〉 ≃ −(240 ± 10MeV)3. (13)
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The values above are deduced from phenomenological considerations [12].
Lattice gauge calculations also confirm the nonzero and rather large val-
ues for quark condensates. However, the quark condensates above are not
the only order parameters for chiral symmetry breaking. There exist chi-
ral condensates of higher dimension (vacuum expectation values of more
complicated combinations of ψ̄ and ψ that are not invariant under the ax-
ial transformations). Their numerical values are difficult to extract from
phenomenological data, however, and they are still unknown.

To summarize this section. There exists overwhelming evidence that
the nearly perfect chiral symmetry of the QCD Lagrangian is spontaneously
broken in the QCD vacuum. Physically this is because the vacuum state
in QCD is highly nontrivial which can be seen by the condensation in the
vacuum state of the chiral pairs. These condensates break the symmetry of
the vacuum with respect to the axial transformations and as a consequence,
there is no parity doubling in the low-lying spectrum. However, as we shall
show, the role of the chiral symmetry breaking quark condensates becomes
progressively less important once we go up in the spectrum, i.e. the chiral
symmetry is effectively restored, which should be evidenced by the system-
atical appearance of the approximate parity doublets in the highly lying
spectrum. This is the subject of the following sections.

3. A few words about chiral symmetry breaking
and low-lying hadrons

A key to understanding of the low-lying hadrons is spontaneous breaking
of chiral symmetry (SBCS). Hence it is instructive to overview physics of
SBCS. An insight into this phenomenon is best obtained from the pre-QCD
Nambu and Jona-Lasinio model [1]. Its application to such questions as
formation of constituent quarks as quasiparticles in the Bogoliubov sense,
their connection to the quark condensate and appearance of the low-lying
collective excitations — Goldstone bosons — was a subject of intensive re-
search for the last two decades and is reviewed e.g. in Ref. [13]. Actually
all microscopical models of SBCS in QCD, such as based on instantons [14]
or other topological configurations, or on nonperturbative resummation of
gluon exchanges [15], or on assumption that the Lorentz scalar confining
interaction is an origin for SBCS [16], all share the key elements and ideas
of the NJL picture. The only essential difference between all these models
is a specification of those interactions that are responsible for SBCS.
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Any interquark interaction in QCD mediated by the intermediate gluon
field, in the local approximation, contains as a part a chiral-invariant
4-fermion interaction

(ψ̄ψ)2 + (ψ̄iγ5~τψ)2. (14)

The first term represents Lorentz-scalar interaction. This interaction is an
attraction between the left-handed quarks and the right-handed antiquarks
and vice versa. When it is treated nonperturbatively in the mean-field ap-
proximation, which is well justified in the vacuum state, it leads to the
condensation of the chiral pairs in the vacuum state

〈0|ψ̄ψ|0〉 = 〈0|ψ̄LψR + ψ̄RψL|0〉 6= 0. (15)

Hence it breaks chiral symmetry, which is a nonperturbative phenomenon.
This dynamics is described by the famous gap equation which is similar
to the one of Bardeen–Cooper–Schrieffer theory of superconductivity. This
attractive interaction between bare quarks can be absorbed into a mass of
a quasiparticle. This is provided by means of Bogoliubov transformation:
Instead of operating with the original bare quarks and antiquarks one in-
troduces quasiparticles. Each quasiparticle is a coherent superposition of
bare quarks and antiquarks. Bare particles have both well-defined helicity
and chirality, while quasiparticles have only definite helicity and contain a
mixture of bare quarks and antiquarks with opposite chirality. This trick
allows us to absorb the initial Lorentz-scalar attractive interaction between
the bare quarks into a mass of the quasiparticles. These quasiparticles with
dynamical mass can be associated with the constituent quarks. An impor-
tant feature is that this dynamical mass appears only at low momenta, below
the ultraviolet cutoff Λ in the NJL model, i.e. where the low-momentum at-
tractive interaction between quarks is operative. All quarks with momenta
higher than Λ remain undressed. In reality, of course, this step-function
behaviour of the dynamical mass should be substituted by some smooth
function. Hence in the vaccum a system of massless interacting quarks at
low momenta can be effectively substituted by a system of the noninteract-
ing quasiparticles with dynamical mass M . This mechanism of dynamical
symmetry breaking and of creation of quasiparticles with dynamical mass is
a very general one and persists in different many-fermion systems — from
the superconductors to the atomic nuclei.

Once the chiral symmetry is spontaneously broken, then there must ap-
pear collective massless Goldstone excitations. Microscopically their zero
mass is provided by the second term of Eq. (14). This term represents an
attraction between the constituent quark and the antiquark with the pion
quantum numbers. Without this term the pion would have a mass of 2M .
When this term is nonperturbatively and relativistically iterated, see Fig. 2,
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π

gluon exchange, or instanton−induced int, or ...

Fig. 2. Pion as a relativistic bound state in the quark–antiquark system.

the attraction between the constituent quarks in the pion exactly compen-
sates the 2M energy and the pion becomes massless. This happens because
of the underlying chiral symmetry since it is this symmetry dictates that
the strengths of the interactions represented by the first and by the second
terms in Eq. (14) are equal. So the pion is a relativistic bound state of
two quasiparticles. It contains Q̄Q, Q̄QQ̄Q, ... Fock components. The pion
(as any Goldstone boson) is a highly collective excitation in terms of the
original (bare) quarks and antiquarks q and q̄ because the quasiparticles Q
and Q̄ themselves are coherent collective excitations of bare quarks.

Now we will go to the low-lying baryons. A basic ingredient of the chiral
quark picture of Manohar and Georgi [2] is that the constituent quarks
inside the nucleon are strongly coupled to the pion field and this coupling
is regulated by the Goldberger–Treiman relation. Why this should be so
can be seen directly from the Nambu and Jona-Lasinio mechanism of chiral
symmetry breaking. In terms of the massless bare quarks the axial current,
Aµ = ψ̄γµγ5~τψ, is conserved, ∂µAµ = 0. If one works in terms of free
massive quasiparticles, then it is not conserved, ∂µAµ = 2iMψ̄γ5~τψ. How
to reconcile this? The only solution is that the full axial current in the
symmetry broken regime (which must be conserved) contains in addition a
term which exactly cancels 2iMψ̄γ5~τψ. It is straightforward to see that this
additional term must represent a process where the axial current creates
from the vacuum a massless pseudoscalar isovector boson and this boson in
turn couples to the quasiparticle, see Fig. 3. It is this consideration which
forced Nambu to postulate in 1960 an existence of the Nambu–Goldstone
boson in the symmetry broken regime, which must be strongly coupled to
the quasiparticle.

It was suggested in Ref. [17] that in the low-momentum regime (which
is responsible for masses) the low-lying baryons in the u, d, s sector can
be approximated as systems of three confined constituent quarks with the
residual interaction mediated by the Goldtone boson field. Such a model was
designed to solve a problem of the low-lying baryon spectroscopy. Micro-
scopically this residual interaction appears from the t-channel iterations of
those gluonic interactions in QCD which are responsible for chiral symmetry
breaking [18], see Fig. 2. An essential feature of this residual interaction is
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Fig. 3. A full axial current in the symmetry broken regime.

that it is a flavor- and spin-exchange interaction of the form

−flavor(i) · flavor(j) spin(i) · spin(j).

This specific form of the residual interaction between valence constituent
quarks in baryons allows us not only to generate octet-decuplet splittings but
what is more important to solve at the same time the long-standing puzzle
of the ordering of the lowest excitations of positive and negative parity in
the u, d, s sector. This physics is a subject of intensive lattice studies and
recent results [19–22] do show that the correct ordering is achieved only
close to the chiral limit and hence is related to spontaneous breaking of
chiral symmetry. The results [21] also evidence a node in the wave function
of the radial excitation of the nucleon (Roper resonance) which is consistent
with the 3Q leading Fock component of this state.

4. Low- and high-lying hadron spectra

If one looks carefully at the nucleon excitation spectrum, see Fig. 4, one
immediately notices regularities for the high-lying states starting approx-
imately from the M ∼ 1.7 GeV region. Namely the nucleon (and delta)
high-lying states show obvious patterns of parity doubling: The states of
the same spin but opposite parity are approximately degenerate. There are
couple of examples where such parity partners have not yet experimentally
been seen. Such doublets are definitely absent in the low-lying spectrum.
The high-lying hadron spectroscopy is a difficult experimental task and the
high-lying spectra have never been systematically explored. However, it is
conceptually important to answer a question whether the parity partners
exist systematically or not. If yes, and the existing data hint at it, then
it would mean that some symmetry should be behind this parity doubling
and this symmetry is not operative in the low-lying spectrum. What is this
symmetry and why is it active only in the high-lying part of the spectrum?
Clearly, if the parity doubling is systematic, then it rules out a description
of the highly-excited states in terms of the constituent quarks (it will be
discussed in one the following sections). Hence the physics of the low-lying
and high-lying states is very different.
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Fig. 4. Nucleon excitation spectrum. Those states which are not yet established

are marked by ** or * signs according to PDG classification.

It has been suggested some time ago that this parity doubling reflects
restoration of the spontaneously broken chiral symmetry of QCD [3]. We
have already discussed in the previous sections that the underlying chiral
symmetry of the QCD Lagrangian would imply, if the QCD vacuum was triv-
ial, a systematical parity doubling through the whole spectrum. However,
the chiral symmetry of QCD is dynamically broken in the QCD vacuum,
which leads to the appearance of the constituent quarks. The constituent
(dynamical) mass of quarks results from their coupling to the quark conden-
sates of the vacuum. We have also discussed that a description in terms of
the constituent quarks makes sense only at low momenta. Typical momenta
of valence quarks in the low-lying hadrons are below the chiral symmetry
breaking scale, hence the chiral symmetry is broken in the low-lying states.
The idea of Ref. [3] was that the typical momenta of valence quarks in
highly excited hadrons are higher than the chiral symmetry breaking scale
and hence these valence quarks decouple from the quark condensates of the
QCD vacuum. Consequently the chiral symmetry is effectively restored in
highly excited hadrons.

Clearly, if the chiral symmetry restoration indeed occurs, then it must be
seen also in excited mesons. There are no systematic data on highly excited
mesons in PDG. If one uses results of the recent systematic partial wave
analysis of the proton–antiproton annihilation at LEAR at 1.8–2.4 GeV,
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performed by the London–St.Petersburg group [23, 24], then once a careful
chiral classification of the states is done [6,7] one clearly sees direct signs of

chiral symmetry restoration, see, e.g., Fig. 5 where π and n̄n = ūu+d̄d√
2

f0

states are shown (which must be chiral partners in the chiral symmetry re-
stored regime). These facts force us to take seriously the possibility of chiral
symmetry restoration in excited hadrons and also to concentrate experimen-
tal efforts on the systematical study of highly excited hadrons. Clearly the
results on meson spectroscopy from the p̄p annihilation at LEAR as well
as on highly excited baryons must be checked and completed at the future
facilities like PANDA at GSI as well as at JPARC and at the existing accel-
erators like at JLAB, Bonn, SPRING8, BES, etc. This should be one of the
priority tasks.

M (GeV)

1

0
fπ

22

1

Fig. 5. Pion and n̄n = ūu+d̄d
√

2
f0 states.

5. Chiral symmetry restoration in excited hadrons by definition

The systematic approach to the symmetry restoration based on QCD has
been formulated in Ref. [4,5]. By definition an effective symmetry restoration
means the following. In QCD the hadrons with the quantum numbers α are
created when one applies the local interpolating field (current) Jα with such
quantum numbers on the vacuum |0〉. This interpolating field contains a
combination of valence quark creation operators at some point x. Then all
the hadrons that are created by the given interpolator appear as intermediate
states in the two-point correlator, see Fig. 6,

Π = ı

∫

d4x eıqx〈0|T{Jα(x)J†
α(0)}|0〉, (16)
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X0

Fig. 6. Two-point correlator.

where all possible Lorentz and Dirac indices (specific for a given interpolating
field) have been omitted. Consider two local interpolating fields J1(x) and
J2(x) which are connected by chiral transformation,

J1(x) = UJ2(x)U
†, (17)

where U is an element of the chiral group. Then, if the vacuum was invariant
under chiral group,

U |0〉 = |0〉,
it follows from (16) that the spectra created by the operators J1(x) and
J2(x) would be identical. We know that in QCD one finds

U |0〉 6= |0〉.

As a consequence the spectra of two operators must be in general different.
However, it may happen that the noninvariance of the vacuum becomes
unimportant (irrelevant) high in the spectrum. Then the spectra of both
operators become close al large masses (and asymptotically identical). This
would mean that chiral symmetry is effectively restored. We stress that this
effective chiral symmetry restoration does not mean that chiral symmetry
breaking in the vacuum disappears, but only that the role of the quark con-
densates that break chiral symmetry in the vacuum becomes progressively
less important high in the spectrum [4, 5]. One could say, that the valence
quarks in high-lying hadrons decouple from the QCD vacuum. In order to
avoid a confusion with the chiral symmetry restoration in the vacuum state
at high temperature or density one also refers this phenomenon as chiral
symmetry restoration of the second kind.

6. A simple pedagogical example

It is instructive to consider a very simple quantum mechanical example
of symmetry restoration high in the spectrum. Though there are concep-
tual differences between the field theory with spontaneous symmetry break-
ing and the one-particle quantum mechanics (where only explicit symmetry
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breaking is possible), nevertheless this simple example illustrates how this
general phenomenon comes about.

The example we consider is a two-dimensional harmonic oscillator. We
choose the harmonic oscillator only for simplicity; the property that will be
discussed below is quite general one and can be seen in other systems. The
Hamiltonian of the system is invariant under U(2) = SU(2)×U(1) transfor-
mations. This symmetry has profound consequences on the spectrum of the
system. The energy levels of this system are trivially found and are given
by

EN,m = (N + 1); m = N,N − 2,N − 4, · · · ,−(N − 2),−N , (18)

where N is the principal quantum number and m is the (two dimensional)
angular momentum. As a consequence of the symmetry, the levels are
(N + 1)-fold degenerate.

Now suppose we add to the Hamiltonian a SU(2) symmetry breaking
interaction (but which is still U(1) invariant) of the form

VSB = Aθ(r −R), (19)

where A and R are parameters and θ is the step function. Clearly, VSB is
not invariant under the SU(2) transformation. Thus the SU(2) symmetry is
explicitly broken by this additional interaction, that acts only within a circle
of radius R. As a result one would expect that the eigenenergies will not
reflect the degeneracy structure of seen in Eq. (18) if the coefficients R,A
are sufficiently large. Indeed, we have solved numerically for the eigenstates
for the case of A = 4 and R = 1 in dimensionless units and one does not see
a multiplet structure in the low-lying spectrum as can be seen in Fig. 7.
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Fig. 7. The low-lying (left panel) and highly-lying (right panel) spectra of two-

dimensional harmonic oscillator with the SU(2)-breaking term.



2998 L.Ya. Glozman

What is interesting for the present context is the high-lying spectrum.
In Fig. 7 we have also plotted the energies between 70 and 74 for a few
of the lower m’s. A multiplet structure is quite evident — to very good
approximation the states of different m’s form degenerate multiplets and,
although we have not shown this in the figure these multiplets extend in m
up to m = N .

How does this happen? The symmetry breaking interaction plays a dom-
inant role in the spectroscopy for small energies. Indeed, at small excitation
energies the system is mostly located at distances where the symmetry break-
ing interaction acts and where it is dominant. Hence the low-lying spectrum
to a very large extent is motivated by the symmetry breaking interaction.
However, at high excitation energies the system mostly lives at large dis-
tances, where physics is dictated by the unperturbed harmonic oscillator.
Hence at higher energies the spectroscopy reveals the SU(2) symmetry of
the two-dimensional harmonic oscillator.

7. The quark–hadron duality and chiral symmetry restoration

A question arises to which extent the chiral symmetry restoration of
the second kind can be theoretically predicted in QCD. There is a heuristic
argument that supports this idea [4, 5]. The argument is based on the well
controlled behaviour of the two-point function (16) at the large space-like
momenta Q2 = −q2, where the operator product expansion (OPE) is valid
and where all nonperturbative effects can be absorbed into condensates of
different dimensions [25]. The key point is that all nonperturbative effects of
spontaneous breaking of chiral symmetry at large Q2 are absorbed into quark
condensate 〈q̄q〉 and other quark condensates of higher dimension. However,
the contribution of these condensates into correlation function is regulated by
the Wilson coefficients. The latter ones are proportional to (1/Q2)n, where
the index n is determined by the quantum numbers of the current J and
by the dimension of the given quark condensate. The higher dimension, the
larger n. It is important that contributions of all possible chiral noninvariant
terms of OPE are suppressed by inverse powers of Q2, the higher dimension
of the condensate, the less important is the given condensate at large Q2.
Hence, at large enough Q2 the two-point correlator becomes approximately
chirally symmetric. At these high Q2 a matching with the perturbative QCD
(where no SBCS) can be done. In other words, though the chiral symmetry
is broken in the vacuum and all chiral noninvariant condensates are not zero,
their influence on the correlator at asymptotically high Q2 vanishes. This
is in contrast to the situation of low values of Q2, where the role of chiral
symmetry breaking in the vacuum is crucial. Hence, at Q2 → ∞ one has

ΠJ1
(Q2) −ΠJ2

(Q2) ∼ 1

Qn
, n > 0 , (20)
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where J1 and J2 are interpolators which are connected by the chiral trans-
formation according to (17).

Re q  = s

Im q

2

2
physical  pointsOPE is valid

Fig. 8. The two-point correlator in the complex q2 plain.

Now we can use causality of the local field theory and hence analyticity
of the two-point function. Then we can invoke into analysis a dispersion
relation,

ΠJ(Q2) =

∫

ds
ρJ(s)

Q2 + s− iǫ
, (21)

where the spectral density ρJ(s) is defined as

ρJ(s) ≡ 1

π
Im (Πj(s)) . (22)

The integration in this equation is performed along the cut in Fig. 8. Since
the large Q2 asymptotics of the correlator is given by the leading term of
the perturbation theory, then the asymptotics of ρ(s) at s → ∞ must also
be given by the same term of the perturbation theory if the spectral density
approaches a constant value (if it oscillates, then it must oscillate around
the perturbation theory value). Hence both spectral densities ρJ1

(s) and
ρJ2

(s) at s → ∞ must approach the same value and the spectral function
becomes chirally symmetric. This theoretical expectation, that the high s
asymptotics of the spectral function is well described by the leading term of
the perturbation theory has been tested e.g. in the process e+e− → hadrons,
where the interpolator is given by the usual electromagnetic vector current.
This process is described in standard texts on QCD, for the recent data
see [26]. Similarly, the vector and the axial vector spectral densities must
coincide in the chiral symmetry restored regime. They have been measured
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in the τ decay by the ALEPH and OPAL collaborations at CERN [27,28]. It
is well seen from the results that while the difference between both spectral
densities is large at the masses of ρ(770) and a1(1260), it becomes strongly
reduced towards m =

√
s ∼ 1.7 GeV.

While the argument above about chiral symmetry restoration in the spec-
tral density is rather general and can be believed to be experimentally es-
tablished, strictly speaking it does not necessarily imply that the high lying
hadron resonances must form chiral multiplets. The reason is that the ap-
proximate equility of two spectral densities would necessarily imply hadron
chiral multiplets only if the spectrum was discrete. In reality, however, the
high-lying hadrons are rather wide overlapping resonances. In addition, it
is only completely continuous non-resonant spectrum that is described by
the chiral invariant leading term of perturbation theory. Nevertheless, it is
indeed reasonable to assume that the spectrum is still quasidiscrete in the
transition region

√
s ≥ 1.7 GeV where one approaches the chiral invariant

regime. If so in this region the observed hadrons should fall into approximate
chiral multiplets.

The question arises then what is the functional behaviour that deter-
mines approaching the chiral-invariant regime at large s? Naively one would
expect that the operator product expansion of the two-point correlator,
which is valid in the deep Euclidean domain, could help us. This is not
so, however, for two reasons. First of all, we know phenomenologically only
the lowest dimension quark condensate. Even though this condensate domi-
nates as a chiral symmetry breaking measure at the very large space-like Q2,
at smaller Q2 the higher dimensional condensates, which are suppressed by
inverse powers of Q2, are also important. These condensates are not known,
unfortunately. But even if we knew all quark condensates up to a rather
high dimension, it would not help us. This is because the OPE is only an
asymptotic expansion [29]. While such kind of expansion is very useful in
the space-like region, it does not define any analytical solution which could
be continued to the time-like region at finite s. While convergence of the
OPE can be improved by means of the Borel transform and it makes it use-
ful for SVZ sum rules for the low-lying hadrons, this cannot be done for the
higher states. So in order to estimate chiral symmetry restoration effects
one indeed needs a microscopic theory that would incorporate at the same
time chiral symmetry breaking and confinement.

8. Chiral multiplets of excited mesons

Here we limit ourselves to the two-flavor version of QCD. There are two
reasons for doing this. First of all, the u and d quark masses are very small as
compared to ΛQCD. Thus the chiral SU(2)L×SU(2)R and more generally the
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U(2)L×U(2)R symmetries of the QCD Lagrangian are nearly perfect. This is
not the case if the s quark is included, and a priori it is not clear whether one
should regard this quark as light or “heavy”. The second reason is a practical
one — there are good new data on highly excited u, d mesons observed in p̄p
annihilation [23, 24], but such data are still missing for the strange mesons.
Certainly it would be very interesting and important to extend the analysis
to the U(3)L×U(3)R case. One hopes that the present results will stimulate
the experimental and theoretical activity in this direction.

Mesons reported in Ref. [23, 24] are obtained in p̄p annihilations, hence
according to OZI rule we have to expect them to be q̄q states with u and d
valence quark content. Hence we will consider

U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)V × U(1)A, (23)

the full chiral group of the QCD Lagrangian. In the following chiral sym-
metry will refer to specifically the SU(2)L × SU(2)R symmetry.

The irreducible representations of this group can be specified by the
isospins of the left-handed and right-handed quarks, (IL, IR). The total
isospin of the state can be obtained from the left- and right-handed isospins
according to the standard angular momentum addition rules

I = |IL − IR|, ..., IL + IR. (24)

All hadronic states are characterised by a definite parity. However, not
all irreducible representations of the chiral group are invariant under parity.
Indeed, parity transforms the left-handed quarks into the right-handed ones
and vice versa. Hence while representations with IL = IR are invariant
under parity (i.e. under parity operation every state in the representation
transforms into the state of opposite parity within the same representation),
this is not true for the case IL 6= IR. In the latter case parity transforms
every state in the representation (IL, IR) into the state in the representation
(IR, IL). We can construct definite parity states only combining basis vectors
from both these irreducible representations. Hence it is only the direct sum
of these two representations

(IL, IR) ⊕ (IR, IL), IL 6= IR, (25)

that is invariant under parity. This reducible representation of the chiral
group is an irreducible representation of the larger group, the parity-chiral
group

SU(2)L × SU(2)R × Ci, (26)

where the group Ci consists of two elements: identity and inversion in
3-dimensional space2. This symmetry group is the symmetry of the QCD La-

2 In the literature language is sometimes used in a sloppy way and the representation
(25) is referred to erroneously as an irreducible representation of the chiral group.
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grangian (neglecting quark masses), however only its subgroup SU(2)I ×Ci

survives in the broken symmetry mode. The dimension of the representation
(25) is

dim(Ia,Ib)⊕(Ib,Ia) = 2(2Ia + 1)(2Ib + 1). (27)

When we consider mesons of isospin I = 0, 1, only three types of irre-
ducible representations of the parity-chiral group exist.

(i) (0,0) Mesons in this representation must have isospin I = 0. At the
same time IR = IL = 0. This can be achieved when either there are no
valence quarks in the meson3, or both valence quark and antiquark are right
or left. If we denote R = (uR, dR) and L = (uL, dL), then the basis states of
both parities can be written as

|(0, 0);±;J〉 =
1√
2
(R̄R± L̄L)J . (28)

Note that such a system can have spin J ≥ 1. Indeed, valence quark and
antiquark in the state (28) have definite helicities, because generically helic-
ity = +chirality for quarks and helicity = -chirality for antiquarks. Hence
the total spin projection of the quark–antiquark system onto the momen-
tum direction of the quark is ±1. The parity transformation property of the
quark–antiquark state is then regulated by the total spin of the system [37]

P̂ |(0, 0);±;J〉 = ±(−1)J |(0, 0);±;J〉. (29)

(ii) (1/2, 1/2) In this case the quark must be right and the antiquark
must be left, and vice versa. These representations combine states with
I = 0 and I = 1, which must be of opposite parity. The basis states within
the two distinct representations (denoted as “a” and “b”, respectively) of this
type are

|(1/2, 1/2)a; +; I = 0; J〉 =
1√
2
(R̄L+ L̄R)J , (30)

|(1/2, 1/2)a; −; I = 1; J〉 =
1√
2
(R̄~τL− L̄~τR)J , (31)

and

|(1/2, 1/2)b; −; I = 0; J〉 =
1√
2
(R̄L− L̄R)J , (32)

|(1/2, 1/2)b; +; I = 1; J〉 =
1√
2
(R̄~τL+ L̄~τR)J . (33)

3 Hence glueballs must be classified according to this representation [30]; with no quark
content this representation contains the state of only one parity.
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In these expressions ~τ are isospin Pauli matrices. The parity of every state
in the representation is determined as

P̂ |(1/2, 1/2);±; I;J〉 = ±(−1)J |(1/2, 1/2);±; I;J〉. (34)

The mesons in the representations of this type can have any spin. Note
that the two distinct (1/2, 1/2)a and (1/2, 1/2)b irreducible representations
of SU(2)L × SU(2)R form one irreducible representation of U(2)L × U(2)R.

(iii) (0,1) ⊕(1, 0) The total isospin is 1 and the quark and antiquark
must both be right or left. This representation is possible only for J ≥ 1.
The basis states are

|(0, 1) + (1, 0);±;J〉 =
1√
2
(R̄~τR± L̄~τL)J (35)

with parities

P̂ |(0, 1) + (1, 0);±;J〉 = ±(−1)J |(0, 1) + (1, 0);±;J〉. (36)

In the chirally restored regime the physical states must fill out completely
some or all of these representations. We have to stress that the usual quan-
tum numbers I, JPC are not enough to specify the chiral representation for
J ≥ 1. It happens that some of the physical particles with the given I, JPC

belong to one chiral representation (multiplet), while the other particles with
the same I, JPC belong to the other multiplet. Classification of the particles
according to I, JPC is simply not complete in the chirally restored regime.
This property will have very important implications as far as the amount of
the states with the given I, JPC is concerned.

In order to make this point clear, we will discuss some of the examples.
Consider first the mesons of spin J = 0, which are π, f0, a0 and η mesons
with the u, d quark content only. The interpolating fields are given as

Jπ(x) = q̄(x)~τ ıγ5q(x), (37)

Jf0
(x) = q̄(x)q(x), (38)

Jη(x) = q̄(x)ıγ5q(x), (39)

Ja0
(x) = q̄(x)~τq(x). (40)

These four currents belong to the irreducible representation of the U(2)L ×
U(2)R = SU(2)L × SU(2)R × U(1)V × U(1)A group. It is instructive to see
how these currents transform under different subgroups of the group above.

The SU(2)L×SU(2)R transformations consist of vectorial and axial trans-
formations in the isospin space (10). The axial transformations mix the
currents of opposite parity:

Jπ(x) ↔ Jf0
(x) (41)
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as well as
Ja0

(x) ↔ Jη(x). (42)

The currents (41) form the basis of the (1/2, 1/2)a representation of the
parity-chiral group, while the interpolators (42) transform as (1/2, 1/2)b.

The U(1)A transformation (4) mixes the currents of the same isospin but
opposite parity:

Jπ(x) ↔ Ja0
(x) (43)

as well as
Jf0

(x) ↔ Jη(x). (44)

All four currents together belong to the representation (1
2 ,

1
2)a⊕(1

2 ,
1
2)b which

is an irreducible representation of the U(2)L × U(2)R group.
If the vacuum were invariant with respect to U(2)L × U(2)R transfor-

mations, then all four mesons, π, f0, a0 and η would be degenerate (as well
as all their excited states). Once the U(1)A symmetry is broken explicitly
through the axial anomaly, but the chiral SU(2)L×SU(2)R symmetry is still
intact in the vacuum, then the spectrum would consist of degenerate (π, f0)
and (a0, η) pairs. If in addition the chiral SU(2)L × SU(2)R symmetry is
spontaneously broken in the vacuum, the degeneracy is also lifted in the
pairs above and the pion becomes a (pseudo)Goldstone boson. Indeed, the
masses of the lowest mesons are [38]4

mπ ≃ 140MeV, mf0
≃ 400 − 1200MeV, ma0

≃ 985MeV, mη ≃ 782MeV.

This immediately shows that both SU(2)L ×SU(2)R and U(1)V ×U(1)A are
broken in the QCD vacuum to SU(2)I and U(1)V, respectively.

If one looks at the upper part of the spectrum, then one notices that the
four successive highly excited π mesons and the corresponding n̄n f0 mesons
form approximate chiral pairs [6]. This is well seen from the Fig. 5. This
pattern is a clear manifestation of the chiral symmetry restoration. However,
given the importance of this statement these highly excited π and f0 mesons
must be reconfirmed in other kind of experiments.

A similar behaviour is observed from a comparison of the a0 and η masses
[6]. However, there are two missing a0 mesons which must be discovered in
order to complete all chiral multiplets. (Technically the identification of the
spinless states from the partial wave analysis is a rather difficult task.) There
is a little doubt that these missing a0 mesons do exist. If one puts the four
high-lying π, n̄n f0, a0 and n̄n η mesons on the radial Regge trajectories,
see Fig. 9, one clearly notices that the two missing a0 mesons lie on the

4 The η meson mass given here was obtained by unmixing the SU(3) flavor octet and

singlet states so it represents the pure n̄n = (ūu+d̄d)/
√

2 state, see for details Ref. [6].
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Fig. 9. Radial Regge trajectories for the four successive high-lying J = 0 mesons.

linear trajectory with the same slope as all other mesons [23, 24]. If one
reconstructs these missing a0 mesons according to this slope, then a pattern
of the a0 − η chiral partners appears, similar to the one for the π and f0

mesons.

For the J ≥ 1 mesons the classification is a bit more complicated. Con-
sider ρ(1, 1−−) mesons as example. Particles of this kind can be created
from the vacuum by the vector current, ψ̄γµ~τψ. Its chiral partner is the
axial vector current, ψ̄γµγ5~τψ, which creates from the vacuum the axial
vector mesons, a1(1, 1++) . Both these currents belong to the representa-
tion (0,1)+(1, 0) and have the right–right ± left–left quark content. Clearly,
in the chirally restored regime the mesons created by these currents must be
degenerate level by level and fill out the (0,1)+(1, 0) representations. Hence,
naively the amount of ρ and a1 mesons high in the spectrum should be equal.
This is not correct, however. ρ-mesons can be also created from the vacuum
by other type(s) of current(s), ψ̄σ0i~τψ (or by ψ̄∂µ~τψ). These interpolators
belong to the (1/2, 1/2) representation and have the left–right ± right–left
quark content. In the regime where chiral symmetry is strongly broken (as
in the low-lying states) the physical states are mixtures of different represen-
tations. Hence these low-lying states are well coupled to both (0,1)+(1, 0)
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and (1/2, 1/2) interpolators. However, when chiral symmetry is (approxi-
mately) restored, then each physical state must be strongly dominated by
the given representation and hence will couple only to the interpolator which
belongs to the same representation. This means that ρ-mesons created by
two distinct currents in the chirally restored regime represent physically
different particles. The chiral partner of the ψ̄σ0i~τψ (or ψ̄∂µ~τψ) current is
εijkψ̄σjkψ ( ψ̄γ5∂µψ, respectively)5. The latter interpolators create from the
vacuum h1(0, 1

+−) states. Hence in the chirally restored regime, some of the
ρ-mesons must be degenerate with the a1 mesons ((0,1)+(1, 0) multiplets),
but the others — with the h1 mesons ((1/2, 1/2) multiplets)6. Consequently,
high in the spectra the combined amount of a1 and h1 mesons must coincide
with the amount of ρ-mesons. This is a highly nontrivial prediction of chiral
symmetry.

Actually it is a very typical situation. Consider f2(0, 2
++) mesons as

another example. They can be interpolated by the tensor field ψ̄γµ∂νψ
(properly symmetrised, of course), which belongs to the (0,0) representa-
tion. Their chiral partners are ω2(0, 2

−−) mesons, which are created by the
ψ̄γ5γµ∂νψ interpolator. On the other hand f2(0, 2

++) mesons can also be
created from the vacuum by the ψ̄∂µ∂νψ type of interpolator, which belongs
to the (1/2, 1/2) representation. Its chiral partner is ψ̄γ5∂µ∂ν~τψ, which cre-
ates π2(1, 2−+) mesons. Hence in the chirally restored regime we have to
expect ω2(0, 2

−−) mesons to be degenerate systematically with some of the
f2(0, 2

++) mesons ((0,0) representations) while π2(1, 2−+) mesons must be
degenerate with other f2(0, 2

++) mesons (forming (1/2, 1/2) multiplets).
Hence the total number of ω2(0, 2

−−) and π2(1, 2−+) mesons in the chirally
restored regime must coincide with the amount of f2(0, 2

++) mesons.
These examples can be generalized to mesons of any spin J ≥ 1. Those

interpolators which contain only derivatives ψ̄∂µ∂ν ...ψ ( ψ̄~τ∂µ∂ν ...ψ) have
quantum numbers I = 0, P = (−1)J , C = (−1)J (I = 1, P = (−1)J , C =
(−1)J ) and transform as (1/2, 1/2). Their chiral partners are ψ̄~τγ5∂µ∂ν ...ψ
( ψ̄γ5∂µ∂ν ...ψ, respectively) with I = 1, P = (−1)J+1, C = (−1)J (I =
0, P = (−1)J+1, C = (−1)J , respectively). However, interpolators with the
same I, JPC can be also obtained with one γη matrix instead one of the
derivatives, ∂η: ψ̄∂µ∂ν ...γη ...ψ ( ψ̄~τ∂µ∂ν ...γη ...ψ). These latter interpola-
tors belong to (0,0) ((0,1)+(1, 0)) representation. Their chiral partners are
ψ̄γ5∂µ∂ν ...γη...ψ ( ψ̄~τγ5∂µ∂ν ...γη ...ψ) which have I = 0, P = (−1)J+1, C =
(−1)J+1 (I = 1, P = (−1)J+1, C = (−1)J+1). Hence in the chirally restored
regime the physical states created by these different types of interpolators
will belong to different representations and will be distinct particles while

5 Chiral transformation properties of some interpolators can be found in Ref. [31].
6 Those ρ(1, 1−−) and ω(0, 1−−) mesons which belong to (1/2, 1/2) cannot be seen in

e+e− → hadrons.
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having the same I, JPC. One needs to indicate chiral representation in addi-
tion to usual quantum numbers I, JPC in order to uniquely specify physical
states of the J ≥ 1 mesons in the chirally restored regime.

The available data for the J = 1, 2, 3 mesons are systematized in Ref. [7].
Below we show the chiral patterns for the J = 2 mesons, where the data set
seems to be complete.

(0,0)
ω2(0, 2

−−) f2(0, 2
++)

1975 ± 20 1934 ± 20
2195 ± 30 2240 ± 15

(1/2, 1/2)
π2(1, 2−+) f2(0, 2

++)

2005 ± 15 2001 ± 10
2245 ± 60 2293 ± 13

(1/2, 1/2)
a2(1, 2++) η2(0, 2

−+)

2030 ± 20 2030 ± ?
2255 ± 20 2267 ± 14

(0,1)+(1, 0)
a2(1, 2++) ρ2(1, 2−−)

1950+30
−70 1940 ± 40

2175 ± 40 2225 ± 35

We see systematic patterns of chiral symmetry restoration. In particular,
the amount of f2(0, 2

++) mesons coincides with the combined amount of
ω2(0, 2

−−) and π2(1, 2−+) states. Similarly, number of a2(1, 2++) states
is the same as number of η2(0, 2

−+) and ρ2(1, 2−−) together. All chiral
multiplets are complete. While masses of some of the states can and will
be corrected in the future experiments, if new states might be discovered in
this energy region in other types of experiments, they should be either s̄s
states or glueballs.

The data sets for the J = 1 and J = 3 mesons are less complete and there
are a few missing states to be discovered [7]. Nevertheless, these spectra also
offer an impressive patterns of chiral symmetry.

It is important to see whether there are also signatures of the U(1)A
restoration. This can happen if two conditions are fulfilled [4]: (i) unim-
portance of the axial anomaly in excited states, (ii) chiral SU(2)L × SU(2)R
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restoration (i.e. unimportance of the quark condensates which break simul-
taneously both types of symmetries in the vacuum state). Some evidence
for the U(1)A restoration has been reported in Ref. [6] on the basis of J = 0
data. Yet missing a0 states have to be discovered to complete the U(1)A
multiplets in the J = 0 spectra. In this section we will demonstrate that the
data on e.g. J = 2 mesons present convincing evidence on U(1)A restoration.

First, we have to consider which mesonic states can be expected to be
U(1)A partners. The U(1)A transformation connects interpolators of the
same isospin but opposite parity. But not all such interpolators can be
connected by the U(1)A transformation. For instance, the vector currents
ψ̄γµψ and ψ̄~τγµψ are invariant under U(1)A. Similarly, the axial vector
interpolators ψ̄γ5γµψ and ψ̄~τγ5γµψ are also invariant under U(1)A. Hence
those interpolators (states) that are members of the (0, 0) and (0, 1)+(1, 0)
representations of SU(2)L × SU(2)R are invariant with respect to U(1)A.
However, interpolators (states) from the distinct (1/2, 1/2) representations
which have the same isospin but opposite parity transform into each other
under U(1)A. For example, ψ̄ψ ↔ ψ̄γ5ψ, ψ̄~τψ ↔ ψ̄~τγ5ψ, and those with
derivatives: ψ̄∂µψ ↔ ψ̄γ5∂µψ, ψ̄~τ∂µψ ↔ ψ̄~τγ5∂µψ, etc. If the correspond-
ing states are systematically degenerate, then it is a signal that U(1)A is
restored. In what follows we show that it is indeed the case.

f2(0, 2
++) η2(0, 2

−+)

2001 ± 10 2030 ± ?
2293 ± 13 2267 ± 14

π2(1, 2−+) a2(1, 2++)

2005 ± 15 2030 ± 20
2245 ± 60 2255 ± 20

We see clear approximate doublets of U(1)A restoration. Hence two
distinct (1/2, 1/2) multiplets of SU(2)L × SU(2)R can be combined into one
multiplet of U(2)L ×U(2)R. So we conclude that the whole chiral symmetry
of the QCD Lagrangian U(2)L × U(2)R gets approximately restored high in
the hadron spectrum.

It is useful to quantify the effect of chiral symmetry breaking (restora-
tion). An obvious parameter that characterises effects of chiral symmetry
breaking is a relative mass splitting within the chiral multiplet. Let us define
the chiral asymmetry as

χ =
|M1 −M2|
(M1 +M2)

, (45)
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where M1 and M2 are masses of particles within the same multiplet. This
parameter gives a quantitative measure of chiral symmetry breaking at the
leading (linear) order and has the interpretation of the part of the hadron
mass due to chiral symmetry breaking.

For the low-lying states the chiral asymmetry is typically 0.2–0.6 which
can be seen e.g. from a comparison of the ρ(770) and a1(1260) or the ρ(770)
and h1(1170) masses. If the chiral asymmetry is large as above, then it
makes no sense to assign a given hadron to the chiral multiplet since its
wave function is a strong mixture of different representations and we have
to expect also large nonlinear symmetry breaking effects. However, at meson
masses about 2 GeV the chiral asymmetry is typically within 0.01 and in this
case the hadrons can be believed to be members of multiplets with a tiny
admixture of other representations. Unfortunately there are no systematic
data on mesons below 1.9 GeV and hence it is difficult to estimate the chiral
asymmetry as a function of mass (

√
s). Such a function would be crucially

important for a further progress of the theory. So a systematic experimental
study of hadron spectra is difficult to overestimate. However, thanks to
the 0++ glueball search for the last 20 years, there are such data for π
and f0 states, as can be seen from Fig. 5 (for details we refer to [6, 30]).
According to these data we can reconstruct χ(

√
s ∼ 1.3 GeV) ∼ 0.03 ÷ 0.1,

χ(
√
s ∼ 1.8 GeV) ∼ 0.008, χ(

√
s ∼ 2.3 GeV) ∼ 0.005. We have to also stress

that there is no reason to expect the chiral asymmetry to be a universal
function for all hadron channels. Hadrons with different quantum numbers
feel chiral symmetry breaking effects differently, as can be deduced from the
operator product expansions of two-point functions for different currents. A
task of the theory is to derive these chiral asymmetries microscopically.

9. Chiral multiplets of excited baryons

Now we will consider chiral multiplets of excited baryons [4, 5]. The
nucleon or delta states have a half integral isospin. Then such a multiplet
cannot be an irreducible representation of the chiral group (IL, IR) with
IL = IR, because in this case the total isospin can only be integral. Hence the
minimal possible representation that is invariant under parity transformation
is the one of (25). Empirically, there are no known baryon resonances within
the two light flavors sector which have an isospin greater than 3/2. Thus we
have a constraint from the data that if chiral symmetry is effectively restored
for very highly excited baryons, the only possible representations for the
observed baryons have IL + IR ≤ 3/2, i.e. the only possible representations
are (1/2, 0) ⊕ (0, 1/2), (1/2, 1) ⊕ (1, 1/2) and (3/2, 0) ⊕ (0, 3/2). Since
chiral symmetry and parity do not constrain the possible spins of the states
these multiplets can correspond to states of any fixed spin.
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The same classification can actually be obtained assuming that chi-
ral properties of excited baryons are determined by three massless valence
quarks which have a definite chirality. Indeed the one quark field transforms
as

q ∼
(

1

2
, 0

)

⊕
(

0,
1

2

)

. (46)

Then all possible representations for the three-quark baryons in the chirally
restored phase can be obtained as a direct product of three "fundamental”
representations (46). Using the standard isospin coupling rules separately
for the left and right quark components, one easily obtains a decomposition
of this direct product

[(

1

2
, 0

)

⊕
(

0,
1

2

)]3

=

[(

3

2
, 0

)

⊕
(

0,
3

2

)]

+3

[(

1,
1

2

)

⊕
(

1

2
, 1

)]

+3

[(

0,
1

2

)

⊕
(

1

2
, 0

)]

+2

[(

1

2
, 0

)

⊕
(

0,
1

2

)]

.

(47)
The last two representations in the expansion above are identical group-
theoretically, so they can be combined with the common multiplicity factor 5.
Thus, according to the simple-minded model above, baryons in the chirally
restored regime will belong to one of the following representations:

(

1

2
, 0

)

⊕
(

0,
1

2

)

;

(

3

2
, 0

)

⊕
(

0,
3

2

)

;

(

1

2
, 1

)

⊕
(

1,
1

2

)

. (48)

The (1/2, 0) ⊕ (0, 1/2) multiplets contain only isospin 1/2 states and
hence correspond to parity doublets of nucleon states (of any fixed spin)7.
Similarly, (3/2, 0) ⊕ (0, 3/2) multiplets contain only isospin 3/2 states
and hence correspond to parity doublets of ∆ states (of any fixed spin)8.
However, (1/2, 1)⊕ (1, 1/2) multiplets contain both isospin 1/2 and isospin
3/2 states and hence correspond to multiplets containing both nucleon and
∆ states of both parities and any fixed spin9.

Summarizing, the phenomenological consequence of the effective restora-
tion of chiral symmetry high in N and ∆ spectra is that the baryon states
will fill out the irreducible representations of the parity-chiral group (26).

7 If one distinguishes nucleon states with different electric charge, i.e. different isospin
projection, then this “doublet” is actually a quartet.

8 Again, keeping in mind different charge states of delta resonance it is actually an
octet.

9 This representation is a 12-plet once we distinguish between different charge states.
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If (1/2, 0) ⊕ (0, 1/2) and (3/2, 0) ⊕ (0, 3/2) multiplets were realized in
nature, then the spectra of highly excited nucleons and deltas would consist
of parity doublets. However, the energy of the parity doublet with given
spin in the nucleon spectrum a priori would not be degenerate with the the
doublet with the same spin in the delta spectrum; these doublets would be-
long to different representations of Eq. (26), i.e. to distinct multiplets and
their energies are not related. On the other hand, if (1/2, 1) ⊕ (1, 1/2)
were realized, then the highly lying states in N and ∆ spectrum would have
a N parity doublet and a ∆ parity doublet with the same spin and which
are degenerate in mass. In either of cases the highly lying spectrum must
systematically consist of parity doublets.

If one looks carefully at the nucleon spectrum, see Fig. 4, and the delta
spectrum one notices that the systematic parity doubling in the nucleon
spectrum appears at masses of 1.7 GeV and above, while the parity doublets
in the delta spectrum insist at masses of 1.9 GeV10. This fact implies that at
least those nucleon doublets that are seen at ∼ 1.7GeV belong to (1/2, 0)⊕
(0, 1/2) representation. Below we show doublets of different spin in the
energy range of 1.9 GeV and higher:

J =
1

2
: N+(2100) (∗), N−(2090) (∗), ∆+(1910) , ∆−(1900)(∗∗);

J =
3

2
: N+(1900)(∗∗), N−(2080)(∗∗), ∆+(1920) , ∆−(1940) (∗);

J =
5

2
: N+(2000)(∗∗), N−(2200)(∗∗), ∆+(1905) , ∆−(1930) ;

J =
7

2
: N+(1990)(∗∗), N−(2190) , ∆+(1950) , ∆−(2200) (∗);

J =
9

2
: N+(2220) , N−(2250) , ∆+(2300)(∗∗), ∆−(2400)(∗∗);

J =
11

2
: ? , N−(2600) , ∆+(2420) , ? ;

J =
13

2
: N+(2700)(∗∗), ? , ? , ∆−(2750)(∗∗);

J =
15

2
: ? , ? , ∆+(2950)(∗∗), ? .

10 This means that the parity doubling in both cases is seen at approximately the same
excitation energy with respect to the corresponding ground state.
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If approximate mass degeneracy between N and ∆ doublets at M ≥ 1.9 GeV
is accidental, then the baryons in this mass region are organized according to
(1/2, 0)⊕(0, 1/2) forN and (3/2, 0)⊕(0, 3/2) for∆ parity–chiral doublets.
If not, then the high lying spectrum forms (1/2, 1)⊕ (1, 1/2) multiplets. It
can also be possible that in the narrow energy interval more than one parity
doublet in the nucleon and delta spectra is found for a given spin. This
would then mean that different doublets belong to different parity–chiral
multiplets. Systematic experimental exploration of the high-lying states is
required in order to assign unambiguously baryons to the multiplets.

10. Can simple potential models explain parity doubling?

Before discussing a model for highly excited hadrons that is compatible
with the chiral symmetry restoration and parity doubling it is useful to an-
swer a question whether the potential models like the traditional constituent
quark model can explain it. Consider first mesons. Within the potential
model the mesons are considered to be systems of two constituent quarks
which interact via linear confinemet potential plus some perturbation from
the one gluon exchange [32] or instanton induced interaction [33]. Within
the potential description the parity of the state is unambiguously prescribed
by the relative orbital angular momentum L of the constituent quarks. For
example, all the states on the radial pion Regge tragectory, see Fig. 9, are
1S0 Q̄Q states, while the members of the f0 trajectory are the 3P0 states.
Hence the centrifugal repulsion for the states of opposite parity is different.
Then it is clear that such a model cannot explain a systematic approximate
degeneracy of the states of opposite parity. A fine tuning of the perturbation
can in principle provide an accidental degeneracy of some of the states, but
then there will be no one-to-one pairing and degeneracy for the other states.
As a consequence the potential models of mesons cannot accomodate a lot
of experimentally observed highly excited mesons. For example, while the
parameters within the model of Ref. [32] are fitted to describe the two lowest
pion states and it still can accomodate the third radial state of the pion, it
does not predict at all the existence of π(2070) and π(2360); the fourth and
the fifth radial states of the pion do not appear in this picture up to 2.4 GeV.
A similar situation occurs also in other channels. The failure of the potential
description is inherently related to the fact that it cannot incorporate chiral
symmetry restoration as a matter of principle. The latter phenomenon is
intrinsically a relativistic phenomenon which is a consequence of the fact
that the ultrarelativistic valence quarks in the highly excited hadrons must
necessarily be chiral (i.e. they have definite helicity and chirality). It is a
generic property of the ultrarelativistic fermions which cannot be simulated
within the 2S+1LJ type potential description.
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If one uses instead a relativistic description within the Dirac or Bethe–
Salpeter equations frameworks, then the parity doubling and chiral symme-
try restoration is incompatible with the Lorentz scalar potential which is
often used to simulate confinement. The reason is that the Lorentz scalar
potential manifestly breaks chiral symmetry and is equivalent to introduc-
tion of some effective mass which increases with the excitation and size of
hadrons. With the Lorentz vector confining potential and assuming that
there is no constituent mass of quarks one can obtain parity doubling [34].

A few comments about the parity doubling within the potential models
that attempt to describe the highly lying baryons are in order. The mod-
els that rely on confinement potential cannot explain an appearance of the
systematic parity doublets. This is apparent for the harmonic confinement.
The parity of the state is determined by the number N of the harmonic
excitation quanta in the 3q state. The ground states (N = 0) are of positive
parity, all baryons from the N = 1 band are of negative parity, baryons from
the N = 2 band have a positive parity irrespective of their angular momen-
tum, etc. However, the number of states in the given band rapidly increases
with N . This means that such a model cannot provide an equal amount of
positive and negative parity states, which is necessary for parity doubling,
irrespective of other residual interactions between quarks in such a model.
Similar problem persists with the linear confinement in the 3q system.

While all vacancies from the N = 0 and N = 1 bands are filled in nature,
such a model, extrapolated to the N = 3 and higher bands predicts a very
big amount of states, which are not observed (the so-called missing resonance
problem). The chiral restoration transition takes place at excitation energies
typical for the highest states in the N = 2 band and in the N = 3 bands. If
correct, it would mean that description of baryons in this transition region
in terms of constituent quarks becomes inappropriate.

The model that relies on the pure color Coulomb interaction between
quarks also cannot provide the systematical parity doubling. While it gives
an equal amount of the positive and negative parity single quark states in
the n = 2, 4, ... bands (e.g. 2s–2p, or 4s–4p, 4d–4f), the number of the
positive parity states is always bigger in the n = 1, 3, 5, ... bands.

11. Chiral symmetry restoration
and the string (flux tube) picture

A question arises what is a microscopical mechanism of chiral symmetry
restoration in excited hadrons and what is a relevant physical picture? We
have already mentioned before that a possible scenario is related to the fact
that at large space-like momenta the dynamical (constituent) mass of quarks
must vanish. If in the highly excited hadrons the momenta of valence quarks
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are indeed large, then the effects of spontaneous breaking of chiral symmetry
should be irrelevant in such hadrons [3, 35].

Here we will discuss a possible fundamental origin for this phenomenon.
We will show below that both chiral and U(1)A restorations can be antici-
pated as a direct consequence of the semiclasical regime in the highly excited
hadrons.

At large n (radial quantum number) or at large angular momentum L
we know that in quantum systems the semiclassical approximation (WKB)
must work. Physically this approximation applies in these cases because the
de Broglie wavelength of particles in the system is small in comparison with
the scale that characterizes the given problem. In such a system as a hadron
the scale is given by the hadron size while the wavelength of valence quarks
is given by their momenta. Once we go high in the spectrum the size of
hadrons increases as well as the typical momentum of valence quarks. This
is why a highly excited hadron can be described semiclassically in terms of
the underlying quark degrees of freedom.

A physical content of the semiclassical approximation is most transpar-
ently given by the path integral. The contribution of the given path to the
path integral is regulated by the action S(q) along the path q(x, t)

∼ eiS(q)/~. (49)

The semiclassical approximation applies when S(q) ≫ ~. In this case the
whole amplitude (path integral) is dominated by the classical path qcl (sta-
tionary point) and those paths that are infinitesimally close to the classical
path. All other paths that differ from the classical one by an appreciable
amount do not contribute. These latter paths would represent the quantum
fluctuation effects. In other words, in the semiclassical case the quantum
fluctuations effects are strongly suppressed and vanish asymptotically.

The U(1)A symmetry of the QCD Lagrangian is broken only due to the
quantum fluctuations of the fermions. The SU(2)R × SU(2)L spontaneous
(dynamical) breaking is also pure quantum effect and is based upon quan-
tum fluctuations. To see the latter we remind the reader that most generally
the chiral symmetry breaking (i.e. the dynamical quark mass generation) is
formulated via the Schwinger–Dyson (gap) equation. It is not yet clear at all
which specific gluonic interactions are the most important ones as a kernel
of the Schwinger–Dyson equation (e.g. instantons 11, or gluonic exchanges,
or perhaps other gluonic interactions, or a combination of different interac-
tions). But in any case the quantum fluctuations effects of the quark fields

11 The instanton itself is a semiclassical gluon field configuration. But chiral and U(1)A
symmetry breakings by instantons is a quark field quantum fluctuations process. This
is because these breakings are due to chiral quark pair creation from the vacuum by
the instanton.
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are very strong in the low-lying hadrons and induce both chiral and U(1)A
breakings. As a consequence we do not observe any chiral or U(1)A mul-
tiplets low in the spectrum. However, if the quantum fluctuations effects
are relatively suppressed, then the dynamical mass of quarks must vanish as
well as the effects of the U(1)A anomaly.

We have just mentioned that in a bound state quantum system with
large enough n or L the effects of quantum fluctuations must be suppressed
and vanish asymptotically12. Hence at large hadron masses (i.e. with either
large n or large L) we should anticipate symmetries of the classical QCD
Lagrangian. Then it follows that in such systems both the chiral and U(1)A
symmetries must be restored. This is precisely what we see phenomeno-
logically. In the nucleon spectrum the doubling appears either at large n
excitations of baryons with the given small spin or in resonances of large
spin. Similar features persist in the delta spectrum. In the meson spectrum
the doubling is obvious for large n excitations of small spin mesons and there
are signs of doubling of large spin mesons (the data are, however, sparse).
It would be certainly interesting and important to observe systematically
multiplets of parity–chiral and parity–U(1)A groups (or, sometimes, when
the chiral and U(1)A transformations connect different hadrons, the multi-
plets of the U(2)L × U(2)R group). The high-lying hadron spectra must be
systematically explored.

The strength of the argument given above is that it is very general.
Its weakness is that we cannot say anything concrete about microscopical
mechanisms of how all this happens. For that one needs a detailed micro-
scopical understanding of dynamics in QCD, which is both challenging and
very difficult task. But even though we do not know how microscopically
all this happens, we can anticipate that in highly excited hadrons we must
observe symmetries of the classical QCD Lagrangian. The only basis for this
statement is that in such hadrons a semiclassical description is correct.

As a consequence, in highly excited hadrons the valence quark motion has
to be described semiclassically and at the same time their chirality (helicity)
must be fixed. Also the gluonic field should be described semiclassically.
All this gives an increasing support for a string picture [8] of highly excited
hadrons. Indeed, if one assumes that the quarks at the ends of the string
have definite chirality, see Fig. 10, then all hadrons will appear necessarily
in chiral multiplets [9]. The latter hypothesis is very natural and is well

12 That the quantum fluctuations effects vanish in the quantum bound state systems at
large n or L is well known e.g. from the Lamb shift. The Lamb shift is a result of
the radiative corrections (which represent effects of quantum fluctuations of electron
and electromagnetic fields) and vanishes as 1/n3, and also very fast with increasing
L. As a consequence high in the hydrogen spectrum the symmetry of the classical
Coulomb potential gets restored.
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compatible with the Nambu string picture. The ends of the string in the
Nambu picture move with the velocity of light. Then, (it is an extention of
the Nambu model) the quarks at the ends of the string must have definite
chirality. In this way one is able to explain at the same time both Regge
trajectories and parity doubling.

ss

p

p

Fig. 10. Rotating string with the right and the left quarks at the ends.

One arrives at the following situation: (i) the hadrons with the different
chiral configurations of the quarks at the ends of the string which belong
to the same parity–chiral multiplet and that belong to the same intrinsic
quantum state of the string must be degenerate; (ii) the total parity of the
hadron is determined by the product of parity of the string in the given
quantum state and the parity of the specific parity–chiral configuration of
the quarks at the ends of the string. There is no analogy to this situation
in the nonrelativistic physics where parity is only determined by the orbital
motion of particles. Thus one sees that for every intrinsic quantum state of
the string there necessarily appears parity doubling of the states with the
same total angular momentum.

The spin–orbit operator ~σ·~L does not commute with the helicity operator
~σ · ~∇. Hence the spin–orbit interaction of quarks with the fixed chirality or
helicity is absent. In particular, this is also true for the spin–orbit force due
to the Thomas precession

UT = −~σ · ~ωT ∼ ~σ · [~v,~a] ∼ ~v · [~v,~a] = 0, (50)

where UT is the energy of the interaction and ~ωT, ~v and ~a are the angular
frequency of Thomas precession, velocity of the quark and its acceleration,
respectively.

The absense of the spin–orbit force in the chirally restored regime is
a very welcome feature because it is a well-known empirical fact that the
spin–orbit force is either vanishing or very small in the spectroscopy in the
u, d sector [39]. This fact is difficult, if impossible, to explain within the
potential constituent quark models.

In addition, for the rotating string

~σ(i) · ~R(i) = 0, (51)
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~σ(i) · ~R(j) = 0, (52)

where the indices i, j label different quarks and ~R is the radius-vector of the
given quark in the center-of-mass frame. The relations above immediately
imply that the possible tensor interactions of quarks related to the string
dynamics should be absent, once the chiral symmetry is restored.

12. Conclusions

We have demonstrated in these lectures that the chiral symmetry of
QCD is crucially important to understand physics of hadrons in the u, d
(and possibly in the u, d, s) sector. The low-lying hadrons are mostly driven
by the spontaneous breaking of chiral symmetry. This breaking determines
the physics and effective degrees of freedom in the low-lying hadrons. For
example, it is SBCS which sheds a light on the meaning of the constituent
quarks. The latter ones are quasiparticles and appear due to coupling of the
valence quarks to the quark condensates of the vacuum. The pion as Nambu–
Goldstone boson represents a relativistic bound state of quasiparticles Q and
Q̄ and is a highly collective state in terms of original bare quarks. A strength
of the residual interaction between the quasiparticles in the pion is dictated
by chiral symmetry and is such that it exactly compensates the mass of
the constituent quarks so the pion becomes massless in the chiral limit. In
the low-lying baryons the physics at low momenta is mostly dictated by
the coupling of constituent quarks and Goldstone bosons. Then a crucially
important residual interaction between the constituent quarks in the low-
lying baryons is mediated by the pion field, which is of the flavor- and
spin-exchange nature.

However, this physics is relevant only to the low-lying hadrons. In the
high-lying hadrons the chiral symmetry is restored, which is referred to as
effective chiral symmetry restoration or chiral symmetry restoration of the
second kind. A direct manifestation of the latter phenomenon is a sys-
tematical appearance of the approximate chiral multiplets of the high-lying
hadrons. The essence of the present phenomenon is that the quark conden-
sates which break chiral symmetry in the vacuum state (and hence in the
low-lying excitations over vacuum) become simply irrelevant (unimportant)
for the physics of the highly excited states. The physics here is such as if
there were no chiral symmetry breaking in the vacuum. The valence quarks
simply decouple from the quark condensates and consequently the notion
of the constituent quarks with dynamical mass induced by chiral symmetry
breaking becomes irrelevant in highly excited hadrons. Instead, the string
picture with quarks of definite chirality at the end points of the string should
be invoked. In recent lattice calculations DeGrand has demonstrated that
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indeed in the highly excited mesons valence quarks decouple from the low-
lying eigenmodes of the Dirac operator (which determine the quark conden-
sate via Banks–Casher relation) and so decouple from the quark condensate
of the QCD vacuum [36].

Hence physics of the high-lying hadrons is mostly physics of confinement
acting between the light quarks. Their very small current mass strongly
distinguishes this physics from the physics of the heavy quarkonium, where
chiral symmetry is irrelevant and the string (flux tube) can be approximated
as a static potential acting between the slowly moving heavy quarks. In the
light hadrons in contrast the valence quarks are ultrarelativistic and their
fermion nature requires them to have a definite chirality. Hence the high-
lying hadrons in the u, d sector open a door to the regime of dynamical
strings with chiral quarks at the ends. Clearly a systematic experimental
exploration of the high-lying hadrons is required which is an interesting
and important task and which should be of highest priority at the existing
accelerators and at the forthcoming ones like PANDA at GSI and JPARC.

I am thankful to the organizers of the Zakopane school for their kind
hospitality. The work was supported by the FWF project P16823-N08 of
the Austrian Science Fund. The author is indebted to C.B. Lang for a careful
reading of the manuscript.
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