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These lectures are an introduction to the phenomenon of partonic sat-
uration and nonlinear evolution equations in Quantum Chromodynamics.
After short introduction to linear evolution, the problem of unitarity bound
and parton saturation are discussed. The nonlinear Balitsky–Kovchegov
evolution equation in the high energy limit is introduced and the progress
in understanding the properties of its solution is reviewed. We discuss sat-
uration scale, geometrical scaling and lack of infrared diffusion. Finally, we
give a brief summary of current theoretical developments which go beyond
the Balitsky–Kovchegov equation.

PACS numbers: 12.38.Bx

1. Introduction

One of the most intriguing problems in Quantum Chromodynamics is the
growth of the cross sections for hadronic interactions with energy. Imagine
the two particles are scattering at very high energy, Fig. 1. While energy
grows, there is an increased probability for emission of soft particles. In
the case of QED one would have to consider diagram of the type shown on
the left hand plot in Fig. 1. While in QCD one also has these diagrams,
there are additional diagrams of the type on the right plot in Fig. 1. Since
gluons carry color charge and couple to each other, the increase of energy
will cause a fast growth of the gluon density and consequently of the cross
section. This increase will lead to the formation of the dense, colored medium
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at very high energies. This type of medium can be obtained at high energies
in deep inelastic lepton–nucleon scattering, hadron–hadron, nucleus–nucleus
or even virtual photon scattering.

Fig. 1. Scattering of two hadronic probes at high energy. Left: QED-type diagrams;

right: diagrams with gluon self-interactions.

In perturbative QCD the growth of the gluon density in the limit of high
energy is governed by the BFKL Pomeron [1]. The solution to this equation
gives a very strong, power-like growth of the gluon density and also of the
resulting cross section

f(x) ∼ x−λ ,

where x is Bjorken variable (fraction of longitudinal momentum of the tar-
get) and λ = ((4 ln 2Nc)/π)αs is the intercept of the perturbative Pomeron in
the leading logarithmic (LLx, ln 1/x≫ 1) approximation. In the pioneering
paper [2], Gribov, Levin and Ryskin proposed that the gluon recombination
might be important at high energies and it would decrease the growth of the
parton density. This is called perturbative partonic saturation. In [2], a new
nonlinear evolution equation in double leading logarithmic approximation
(DLLA, ln 1/x lnQ2 ≫ 1) for the gluon density has been proposed which
apart from gluon production takes into account also recombination effects

Q2 ∂
2xG(x,Q2)

∂ ln 1/x∂Q2
=
αsNc

π
xG(x,Q2) − 4α2

sNc

3CFR2

1

Q2

[
xG(x,Q2)

]2
. (1)

Note negative sign in front of the nonlinear term which is responsible for the
gluon recombination. The strong growth generated by the linear DLLA term
is dampedwhenever gluon density xG(x,Q2)becomes large, of the order 1/αs.

Partonic saturation is also very important in the context of the unitarity
bound. It is well known that the hadronic cross sections should obey the
Froissart bound [3] which is derived from the general assumptions on the
analyticity and unitarity of the scattering amplitude. According to this
bound the total cross section cannot grow faster than the logarithm squared
of the energy
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σtot =
π

m2
π

(ln s)2 , (2)

with mπ being the scale which characterizes the range of the strong force.
It is believed, that the parton saturation could be a mechanism which leads
to the unitarization of the cross section at high energies. Unfortunately the
problem is rather complex since parton saturation is a purely perturbative
mechanism while the Froissart bound has been derived from general prin-
ciples and refers to the QCD as a complete theory of strong interactions
together with nonperturbative effects. After the GLR equation (1) was pro-
posed, there has been an increasing activity in developing the theory which
would describe saturation at high energies. The effective theory for a high
density partonic systems at small x is Color Glass Condensate [4] with the
resulting JIMWLK evolution equations [5], see also [6]. Another approach
has been developed by Balitsky [7] where he constructed an infinite hierar-
chy of coupled equations for correlators of Wilson lines. In the mean field
approximation the first equation of this theory decouples and is equivalent to
the Kovchegov equation [8] derived independently in the dipole approach [9].
It is a nonlinear equation for the dipole scattering amplitude which is valid
in the leading log 1/x approximation. The Balitsky–Kovchegov equation
is perhaps the best known equation which includes saturation effects and
which can be relatively simply solved, at least numerically. These lectures
are meant to introduce the reader into the phenomenon of partonic satu-
ration and the concept of nonlinear evolution on the example of Balitsky–
Kovchegov (BK) equation. We start with a brief recap of the linear evolution
in QCD. We recall the Froissart bound and the necessary conditions which
lead to its derivation. Then the Balitsky–Kovchegov equation is introduced
and the properties of its solution are investigated such as infrared diffusion,
saturation scale and geometrical scaling. We also present an analysis of this
equation in more general case of 4 dimensions, which takes into account
spatial distribution of the dipoles in impact parameter space. We finish by
a short outlook and discussion of recent theoretical developments in this
field.

2. DIS kinematics and variables

In the following we will mainly concentrate on the deep inelastic scatter-
ing process of lepton off the hadron or nucleus. For completeness we recall
first basic kinematics of DIS, see Fig. 2. The total energy squared of the
electron–nucleon system is s(eN) = (p+ k)2 whereas that of photon–nucleon

sγ∗N = (p + q)2. Negative photon virtuality is denoted by q2 = (k − k′)2 =

−Q2 < 0 and the Bjorken variable x = Q2

2p·q
= Q2

Q2+s(γ∗N)
. The high energy

regime that we are working in, is defined equivalently as
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N(p)

e(k)

e(k’)

γ (q)*

Fig. 2. Deep inelastic scattering process of electron on the hadronic target.

s(γ∗N) −→ ∞ ,

x =
Q2

Q2 + s(γ∗N)
≃ Q2

s(γ∗N)
−→ 0 ,

Y = ln 1/x −→ ∞. (3)

3. Linear evolution equations in QCD

Let us consider a scattering of photon with virtuality Q2 off a hadron at
center of mass energy

√
s. The photon virtuality defines a resolution scale

λ ∼ 1/
√

Q2 with which one probes a partonic structure of the hadron, see
left hand plot in Fig. 3. At given resolution t = lnQ2/Q2

0 photon probes
a density of partons q(x, t) with fraction of a hadron momentum x = Q2/s.
By increasing Q2 one increases also the resolution, so the density of quarks
is larger: q(x, t) + δq(x, t), see the right-hand plot in Fig. 3. This process
can be described as a following linear evolution equation for density

∂q(x, t)

∂t
=
αs(t)

2π

1∫

x

dy

y
Pqq

(
x

y

)

q(y, t) . (4)
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Fig. 3. Left: photon with virtualityQ2 probes quark with a longitudinal momentum

fraction x. Right: the virtuality (resolution) is increased so the density of quarks

also grows.
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The splitting function Pqq(z = x/y) describes a probability of finding quark
inside the quark with fraction z = x/y of the parent quark momentum. This
is one of the set of the well known DGLAP evolution equations [10]. For the
DGLAP equations to be complete, apart from the quark density q(x, t) one
has to include the gluon density g(x, t) which is coupled to q. The evolution
of the gluon density is shown in diagrams in Fig. 4. The full set of singlet
DGLAP evolution equations reads as follows

∂

∂t

[ ∑
(x, t)

g(x, t)

]

=
αs(t)

2π

[

Pqq 2NfPqg

Pgq Pgg

]

x
⊗
[ ∑

(x, t)

g(x, t)

]

,

where
∑

(x, t) =
∑

i

[qi(x, t) + q̄i(x, t)] is the singlet quark density.

x
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Fig. 4. Additional set of diagrams present in the DGLAP evolution.

An approach which is alternative to DGLAP [1] is to consider fixed vir-
tuality of the probe and to increase the energy s (or alternatively rapidity Y )
see Fig. 5. This leads to the BFKL equation

∂G(Y, t)

∂Y
=
αsNc

π

∫

dt′K(t, t′)G(Y, t′) , (5)

which is an evolution equation in rapidity Y . Quantity K(t, t′) is Lipatov
kernel which describes probability of branching of the gluon with virtuality
t′ into virtuality t. The function G(Y, t) is called unintegrated gluon density
and it is related to g(x, t) from (4)

g(x, t) =

t∫

dt′G(x, t′) .

Both K and Pij have perturbative expansions in αs. These both quantities
have a finite number of common terms in the expansion. The solution to
the BFKL equation has the following form, see for example [11]

G(x) ∼ x−λP , λP = 4 ln 2
Ncαs

π
. (6)
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Fig. 5. Evolution in the BFKL framework: virtualities of probes are fixed and

energy is increased.

This solution exhibits very strong rise with 1/x (and correspondingly with
energy s = Q2/x) which is in contradiction with Froissart bound [3].

4. Froissart bound

In this section we recall the basic assumptions that go into the derivation
of the Froissart bound [3]. This bound applies for the total cross section for
scattering of two hadrons and reads as follows

σtot ≤
π

m2
π

(ln s)2 . (7)

Its derivation is based on the two assumptions: unitarity of partial ampli-
tudes and the finite length of the strong interaction. The first condition says
that scattering matrix S has to be unitary

S†S = SS† = 1 . (8)

If we consider set of particle states |m〉 they have to satisfy completeness
relation ∑

m

|m〉〈m| = 1 . (9)

Then the probability that a given final state |f〉 comes from an initial state
|i〉 is given by

Pfi = |〈f |S|i〉|2 . (10)

The sum of these probabilities over initial states have to give 1 since a prob-
ability that a given final state comes from any initial state is 1

∑

f

Pfi = 〈i|S†S|i〉 = 1 . (11)

The latter equation gives condition for the S-matrix to be unitary (8).
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A second important assumption is the one about the finite range of strong
force. This means that there must be a certain mass scale present in the
theory which will cut off the interaction

R ∼ 1

mπ

. (12)

This scale is entirely nonperturbative and cannot be computed from per-
turbative tools of QCD. By using these two assumptions together and the
Mandelstam representation, the Froissart bound can be derived [3]. One
has to stress that the Froissart bound applies for the complete QCD theory
which includes both perturbative and non-perturbative parts. It is perhaps
worthwhile mentioning that while one believes that Froissart bound should
be valid for QCD, it is not clear that one can easily see it from the data. The
structure function data for deep inelastic scattering at high photon virtual-
ities exhibit rather strong rise with decreasing x, which is consistent with
a power x−λ with λ ≃ 0.35, and no sign of the logarithmic dependence is
seen, compare Fig. 6. Pinning down the saturation effects in the experimen-
tal data is a very nontrivial task. One problem with the structure function
data is that it is a completely inclusive measurement. In particular structure
function F2 is averaged over the impact parameter of the γ∗−p collision and
it is known that saturation effects crucially depend on this variable. There-
fore, saturation should be searched in more exclusive processes, for example
like diffraction. For more information on the phenomenology of saturation
see [12, 13] and references therein.
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Fig. 6. F2 structure function data from HERA collider and fixed target experiments.
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5. Parton saturation and nonlinear evolution

Given the fact that the Froissart bound should be satisfied, a natural
question arises: how one should modify the perturbative evolution in or-
der to tame the growth of the cross section? One would like to identify
the Feynman diagrams which are responsible for the gluon recombination
and derive appropriate evolution equations which include these additional
diagrams. As already stated in the introduction, the standard evolution
equations lead to a strong rise of the parton density with energy. One can
expect that when the density of partons becomes very large they will start
to overlap. The schematic picture of the saturation phenomenon is shown
in Fig. 7. The horizontal axis is the energy whereas the vertical one is the
parton size defined by the inverse of the photon virtuality r ∼ 1/Q, in the
deep inelastic scattering process. The onset of saturation depends on energy
but also on the parton size. The larger the size of the partons, the earlier
they will fill up available area and start to re-interact. Further increase in
the energy will not increase probed parton density. Therefore, apart from
production diagrams one has to include additional diagrams which take into
account gluon recombination. This leads to the modification of the evolution
equation by term which is nonlinear in density. The first equation of this
type was the GLR equation [2] already mentioned in the introduction

Q2 ∂
2xG(x,Q2)

∂ ln 1/x∂Q2
=
αsNc

π
xG(x,Q2) − 4α2

sNc

3CFR2

1

Q2

[
xG(x,Q2)

]2
. (13)

The first term on the right hand side is the usual DGLAP term in the
double logarithmic approximation, ln 1/x lnQ2/Λ2 ≫ 1, whereas the second,
nonlinear term, is responsible for the gluon recombination. The nonlinear
term is inversely proportional to the hadron area ∼ R2 and the scale ∼ Q2

at which the gluon density is being probed. The smaller the hadron area in

1r ~
Q
−

1

2

r

r

s1 2
s s s

3

Fig. 7. Schematic view of parton saturation. Horizontal axis is energy squared s,

the vertical axis is r, the parton size.
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Fig. 8. Left: linear evolution, right: fan diagrams summed by the nonlinearGLR (13).

impact parameter the earlier the partons will fill it up and saturate. Scale
Q2 defines the parton size r ∼ 1/Q: when it is small the saturation will be
delayed to larger energies.

The GLR equation sums a particular set of diagrams, called fan dia-
grams, (illustrated on the right-hand plot in Fig. 8) within the double leading
logarithmic approximation.

The nonlinear Balitsky–Kovchegov (BK) equation which is valid in the
leading logarithmic ln 1/x approximation has been derived independently
by Kovchegov [8] within the dipole formulation of high energy scattering
and by Balitsky [7] from the operator product expansion for high energy
scattering. More precisely, Balitsky’s equations form an infinite hierarchy
of coupled equations for correlators of Wilson lines, and only in the mean
field approximation the first equation decouples and is equivalent to the
equation derived by Kovchegov. An independent approach is that of Color
Glass Condensate [4] in which the evolution is governed by the JIMWLK
functional equation [5] equivalent to Balitsky hierarchy. In this lecture we
will study the solution of the Balitsky–Kovchegov equation which is currently
the simplest tool to describe the parton saturation phenomenon.

6. Multiple scattering in dipole picture

In this section we will follow the derivation of the BFKL [9] and BK [8]
equations in the dipole picture. One starts with the heavy quark–antiquark
pair, onium, see Fig. 9, which wave function in the momentum space is
denoted by

ψ
(0)
αβ (k1, z1) ,

where k1 is the transverse momentum of the quark and z1 = (k1+)/(p+) is
the fraction of light cone momentum.

The dipole picture is formulated by going to transverse coordinate space

ψ
(0)
αβ (x0,x1, z1) =

∫
d2

k1

(2π)2
eix01·k1ψ

(0)
αβ (k1, z1) ,



3078 A.M. Staśto

Φ(0)(x0,x1, z1) =
∑

α,β

|ψ(0)
αβ (x0,x1, z1)|2 ,

where now x0,x1 denote the positions of the quark and antiquark, end points
of the dipole.

z1

1−z1

k

p−k
1

1

p

,

,
x

1

x
01

x
0

 

Fig. 9. Heavy quark–antiquark dipole onium.

Now one adds one soft gluon, Fig. 10, which means that its longitudi-
nal momentum is much smaller than that of the original quark (antiquark)
z2/z1 ≪ 1.
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x
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1

p
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x
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x
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Fig. 10. Onium with additional one soft gluon.

The relation between one-gluon wave function Φ(1) and wave function of
the onium without any soft gluons is expressed as

Φ(1)(x0,x1, z1) =
αsCF

π2

z1∫

z0

dz2
z2

∫

d2
x2

x
2
01

x
2
20x

2
12

Φ(0)(x0,x1, z1) .

In the limit of large number of colors the gluon can be represented by
a quark–antiquark pair, as in Fig. 11. The emission of one additional gluon
is equivalent to the splitting of the original dipole (0, 1) into two dipoles
(0, 2) and (2, 1) with probability of branching given by the measure

d2
x2

x
2
01

x2
20x

2
12

.
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Fig. 11. Onium wave function which consists of two dipoles.

The process of emissions of subsequent soft dipoles can be repeated in
the analogous way to obtain the wave function with arbitrary number of
gluons Φ(n), see Fig. 12. To describe this process, Mueller [9] introduced
a generating functional for dipoles

Z(b01,x01, z1, u) ,

which satisfied normalization condition

Z(b01,x01, z1, u = 1) = 1 .

Performing functional differentiation of Z, the wave functions for arbitrary
number of gluons can be obtained as follows

Φ(n)(x0,x1,x2, . . . ,xn+1) = Φ(0) δ

δu(x2)

δ

δu(x3)
. . .

× δ

δu(xn+1)
Z(x0,x1, z1, u)|u=0 .

Φ(n) gives probability of finding n daughter dipoles which originate from
parent quark–antiquark dipole (0, 1). The daughter dipoles are produced in
positions xk with k = 2, . . . , n. In the following, we also introduced another
convenient notation with

x01 ≡ x0 − x1 ,

z1

1−z1

k

p−k
1

1

p

,

,

Fig. 12. Onium wave function with arbitrary number of dipoles.
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being the transverse size of the dipole and

b01 ≡ x0 + x1

2
,

being the impact parameter (position) of this dipole.
By investigating the relation between wave functions with n and n + 1

dipoles Mueller derived [9] the differential equation for the generating func-
tional

dZ(b01,x01, y, u)

dy
=

∫
d2

x2x
2
01

x2
20x

2
12

×
[

Z(b01 +
x12

2
,x20, y, u)Z(b01 −

x20

2
,x12, y, u)−Z(b01,x01, y, u)

]

, (14)

where the evolution variable is the rapidity y = ln 1/z+ . From the above
equation for the functional, one can obtain the evolution equation for the
scattering amplitude of dipole on the target. First, one has to construct the
number density for dipoles from generating functional

n1(x01,x, b − b0, Y ) =
δ

δu(b,x)
Z(b01,x01, Y, u)|u=1 ,

or in general the density for k dipoles

nk =

k∏

i=1

δ

δu(bi,xi)
Z|u=1 . (15)

The amplitude for scattering of one dipole on a target, see left plot in Fig. 13,
can be then obtained by convoluting the dipole number density with the
propagator of that dipole in the nucleus

N1(x01, b01, Y ) =

∫

d[P1]n1 γ1 , (16)

where

• d[P]1 = d2x1

2πx2
i

d2
b1 phase space measure;

• γ ≡ γ(x, b) propagator of single dipole in the nucleus.

By differentiating equation for generating functional and using relation (16)
one can obtain the linear evolution equation for the dipole–target amplitude

dN1(b01,x01, Y )

dY
= ᾱs

∫
d2

x2 x
2
01

x2
20 x2

12

×
[

N1(b01+
x12

2
,x20, Y )+N1

(

b01−
x20

2
,x12, Y

)

−N1 (b01,x01, Y )

]

. (17)
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It has to be stressed, that only the contribution which comes from the single
scattering of one dipole on the target has been included in the derivation.
The above equation (17) is the dipole version of the BFKL equation in
the transverse coordinate space derived in [9]. One can also generalize this
equation by taking into account multiple scattering of many dipoles on the
target, see right plot in Fig. 13. To this aim one takes the number density
of k dipoles Eq. (15), and convolutes it with k propagators for these dipoles.
The following expression for the amplitude is then obtained

N(x01, b01, Y ) =
∞∑

k=1

∫

d[Pk]nk γ1 . . . γk , (18)

where now the measure is defined as

[P]k =
i=k∏

i=1

d2
xi

2πx2
i

d2
bi .

Again by differentiation of the equation for the generating functional Z one
can obtain the evolution equation for the amplitude which takes into account
multiple scatterings [8]

dN(b01,x01, Y )

dY
= ᾱs

∫
d2

x2 x
2
01

x
2
20 x

2
12

×
[

N
(

b01 +
x12

2
,x20, Y

)

+N
(

b01 −
x20

2
,x12, Y

)

−N(b01,x01, Y )

−N
(

b01 +
x12

2
,x20, Y

)

N
(

b01 −
x20

2
,x12, Y

)]

. (19)

The characteristic feature of this equation is its nonlinearity. Thus in the
dipole approach the multiple scattering of many dipoles in the onium wave
function leads to nonlinear evolution equation for the amplitude. This has
to be contrasted with the single scattering of one dipole which leads to the
linear BFKL-type evolution equation. One has to stress that this multiple

pp pp

Fig. 13. Left: single dipole scattering which leads to linear BFKL evolution

Eq. (17). Right: multiple dipole scattering which results in nonlinear Balitsky–

Kovchegov evolution Eq. (19).
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scattering is completely incoherent process: dipoles scatter independently
of each other, there are no correlations. This is quite an important sim-
plification which actually enables to arrive at one, relatively simple, closed
evolution equation. These correlations are a subject of intensive scientific
research and we will return to this problem at the end of this lecture.

7. Balitsky–Kovchegov equation at high energies

In the next sections we are going to study the solutions of the Balitsky–
Kovchegov equation

dN(b01,x01, Y )

dY
= ᾱs

∫
d2

x2 x
2
01

x2
20 x2

12

×
[

N
(

b01 +
x12

2
,x20, Y

)

+N
(

b01 −
x20

2
,x12, Y

)

−N(b01,x01, Y )

−N
(

b01 +
x12

2
,x20, Y

)

N
(

b01 −
x20

2
,x12, Y

)]

. (20)

Let us list the basic features of this equation

• It is an evolution equation in rapidity Y = ln 1/x.

• One needs to specify the initial conditions N (0)(b01,x01, Y = 0) which
depend on the target of the specific process.

• This equation is valid in the leading logarithmic approximation in
which the powers in (αs ln 1/x)n are being summed. In this approxi-
mation the strong coupling αs is fixed.

• b01 is the impact parameter whereas x01 size of the dipole, see Fig. 14.
The whole problem involves (4+1) variables: 4 degrees of freedom per
dipole and 1 evolution variable.

x0

x

x

b
1

01

01

 

Fig. 14. Schematic representation of the dipole position in impact parameter space.

(x0,x1) denote end points of the dipole.
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7.1. Toy model in (0+1) dimensions

In searching for solutions to Eq. (20) let us first observe this equation
has two fixed points

dN(b01,x01, Y )

dY
= 0 ,

which are
N = 0 and N = 1 .

It is quite instructive to investigate first the toy model in (0+1) dimensions,
that is when amplitude is only dependent on rapidity N ≡ N(Y ) and the
kernel is simply some number. In this case the equation reduces to

dN

dY
= ω(N −N2) , ω > 0 .

The above equation was first discussed by Verhulst in 1838 as a model for
self-limiting population growth in biology. The solution to this equation can
be easily found

N(Y ) =
eωY

eωY +C−1
, N (0)(Y = 0) = C ,

and is illustrated in Fig. 15. It is also called logistic curve. The crucial
property of this solution is that it saturates for very large values of Y

∀C 6=0 N(Y )
Y →∞−→ 1 ,

in contrast to the solution of the linear equation which grows exponentially
with increasing Y .
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Fig. 15. Illustration of the solution to the Verhulst equation (saturated line) and

the linear equation (exponentially increasing).
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Thus the toy model teaches us that the fixed point N = 0 is an unstable
one with respect to linear part of the evolution. On the other hand, point
N = 1 is a fixed one. After sufficiently large interval of evolution in Y the
solution will reach this point, starting from any initial condition (provided
N (0)(Y = 0) 6= 0).

8. Solution in (1+1) dimensions

Having briefly looked at toy model let us proceed to the full equation. As
already stated it depends on (4 + 1) variables which makes it very difficult
to solve even numerically. The biggest complication is that variables b01

and x01 are entangled in the arguments of the functions N , see Eq.( 20).
However, let us observe that the kernel depends only on sizes x01,x20,x12.
By assuming that the solution N has translational invariance

N(b01,x01, Y ) → N(|x01|, Y ) ,

the problem is reduced to (1+1) dimensions with no dependence on impact
parameter b01. Physically, this corresponds to scattering on infinite and
uniform nucleus. BK equation in this approximation in (1 + 1) dimensions
has been extensively studied numerically [14–17] and analytically [18–20].

In Fig. 16 we illustrated rapidity dependence of N(Y, r = |x01|) for two,
fixed values of r and compared with the solution to the linear equation.
We observe that the solution to the BK equation has qualitatively the same
features as the toy model. For a given r the solution of the nonlinear equation
tends to unity, whereas the linear solution exponentially increases.
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Fig. 16. Rapidity dependence of the solution to (1 + 1) dimensional Balitsky–

Kovchegov equation (saturated lines) for two, fixed values of the dipole size r as

compared to the solution of the linear BFKL equation (exponentially increasing).
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Also the system saturates earlier, that is for smaller values of Y when
the dipole size is larger. To understand this feature better let us now look
at the solution as a function of dipole size r for given, fixed values of Y .
The characteristic feature is that the amplitude saturates to 1 for smaller
dipoles as rapidity increases. In the following, see Fig. 17, we also studied
the dependence on different initial conditions. In Fig. 17 several initial
conditions has been shown, all of them had different normalization and also
with different type of behavior for large values of r (N(r) → 1 or N(r) → 0
as r → ∞). In all cases the solution shows a universal shape, with N = 0
being an unstable fixed point and N = 1 being the stable one.

8.1. Saturation scale

The solution shown in Fig. 17 can be divided into three regions: region
where the amplitude is small and the nonlinear corrections are negligible,
region where the amplitude N∼1 and the transition region between the two.
This boundary can be characterized by introducing saturation scale Qs(Y )

r <
1

Qs(Y )
→ N ≪ 1 ,

r >
1

Qs(Y )
→ N ∼ 1 .

From the solution to the Balitsky–Kovchegov equation one can extract
this saturation scale. It turns out that its leading rapidity dependence is
exponential

Qs(Y ) = Q0 exp(ᾱs λY )Y −β , λ ≃ 2.4 ,

with some subleading corrections, see [19, 21].
The qualitative properties of the Balitsky–Kovchegov equation are (very

roughly) similar to the properties of the dipole cross section from the Golec–
Biernat and Wusthoff saturation model [13]. There, the following form of
the dipole cross section has been postulated

σ(Y, r) ≡
∫

d2
bN(b, r, Y ) = σ0

[

1 − exp

(

−r
2Q2

s (Y )

4

)]

, (21)

with the rapidity-dependent saturation scale: Q2
s (Y ) = e0.28(Y −Y0). The

constant normalization σ0 has been adjusted to fit the experimental data:
σ = 23mb. In the regime where dipoles are smaller than the inverse of the
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Fig. 17. Dipole size dependence of the solution to the (1+1) dimensional Balitsky–

Kovchegov equation for different values of rapidity Y . From up to down: different

initial conditions; left: linear scale; right: logarithmic scale. Dashed line denotes

the initial distribution at Y = 0. Solid lines from right to left are for increasing

values of rapidity.
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characteristic saturation scale r < 1/Qs(Y ) the cross section is small and
proportional to

σ(r, Y )

σ0
≃ r2Q2

s (Y )

4
,

in accord with the color transparency. When we consider large dipoles such
that r > 1/Qs(Y ) the cross section saturates to σ0 so that

σ(r, Y )

σ0
≃ 1 ,

becomes independent of both r and Y .

8.2. Geometrical scaling and traveling waves

While investigating the solution as a function of the dipole size r one
observes that the solution reaches universal shape independently of the initial
condition. When evaluated at different values of rapidity Y the solution
looks similar, with only difference that it is being shifted towards smaller
values of dipole size. This property is known as geometrical scaling and it was
first postulated to be observed in the experimental data at HERA electron–
proton collider [22], see also [23]. Mathematically, geometrical scaling means
that the solution to the BK equation depends only on one combined variable

rQs(Y ) ,

instead of r and Y separately, i.e.

N(r, Y ) ≡ N(rQs(Y )) .

When written in terms of logarithms of variables and using the rapidity
dependence of the saturation scale Qs(Y ) ≃ Q0 exp(ᾱsλsY )

ln r + lnQs(Y ) = ln r + ᾱsλsY .

If we interpret ln r as a spatial coordinate and Y as time, then geomet-
rical scaling simply means that the solution is a wave front moving with
a constant velocity ᾱsλs, see [19]. It has been also described as a soliton
wave in [14]. The scaling property is also present in the Golec–Biernat and
Wusthoff saturation model (21).

The transition between the dilute and saturated regimes can be illus-
trated in the following diagram, see Fig. 18. The critical line dividing dense
and dilute regions is the saturation scale. The higher the rapidity the denser
the system gets and partons start to re-interact. Also the saturation occurs
earlier if the size of the partons is bigger.
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9. Diffusion properties of the BK equation

Up to now we have looked at the solutions of the BK equation directly
in the coordinate space as it has been originally formulated. By performing
Fourier transform and going into momentum space

φ(k, Y ) :=

∞∫

0

dr

r
J0(k r)N(r, Y ) ,

one can obtain quite compact form of this equation

dφ(k, Y )

dY
= ᾱs

∫
dk′

k′
K(k, k′)φ(k′, Y ) − ᾱsφ

2(k, Y ) , (22)

in (1 + 1) dimensions. In Eq. (22) the integral operator K(k, k′) is the usual
BFKL kernel in momentum space.

The solution to the linear part of the equation is very well known and in
the saddle point approximation it has the following form

kφ(k, Y ) =
1

√

πᾱsχ
′′(0)Y

exp(ᾱsχ(0)Y ) exp

(

− ln2(k2/k2
0)

2ᾱsχ
′′(0)Y

)

. (23)

First exponential is responsible for the fast increase of the gluon density
with rapidity where χ(0) = 4 ln 2 is the famous BFKL intercept. Second
exponential causes the diffusion of the momenta into ultraviolet and infrared
regions. It is well known that the BFKL equation has this property of



Nonlinear Evolution Equations in QCD 3089

strong diffusion, it can be interpreted as a random walk in the ln k space of
transverse momenta. The rapidity (energy) plays here the role of the time.
In left plot of Fig. 19 we have illustrated the numerical solution to the BFKL
as a function of transverse momentum for fixed values of rapidity Y . The
Gaussian shape expected from (23) is clearly visible and its width is increased
when rapidity grows. This is potentially a problem since one is starting from
a perturbative calculation at a fixed, large scale k0, but after some evolution
in rapidity, nonperturbative regime of ΛQCD ∼ k ≪ k0 is reached. The
situation is quite different in the case of the nonlinear Balitsky–Kovchegov
equation, which is illustrated by solid lines on right plot of Fig. 19. Clearly,
the diffusion into infrared is very suppressed in the case of the solution to
the BK equation. The peak of the distribution moves away from the initial
value k0 to larger values of k with increasing Y . It turns out that one can
define saturation scale as a position of this maximum

Qs(Y ) ≡ kmax(Y ) .

This property of suppressed diffusion can be also visualized in a different
way by looking at the following renormalized distribution

Ψ(k, Y ) =
kφ(k, Y )

kmax(Y )φ(kmax(Y ), Y )
. (24)
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Fig. 19. Left: solution to the BFKL equation in the momentum space as a function

of momentum k for various fixed values of rapidity Y = 1, . . . , 10; right: the same

but both BFKL (dashed) and BK (solid) solutions are showed.

On right plot of Fig. 20 we have shown the contour plot in (k, Y ) space
of this distribution for the case of the linear BFKL equation. Contour lines
denote constant values of the renormalized distribution Ψ(k, Y ). The dif-
fusive character of the solution to linear BFKL equation is clearly visible.
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Fig. 20. Contour plots of the renormalized distribution Ψ(k, Y ) in the case of the

linear BFKL solution and the nonlinear BK solution.

On the right plot of Fig. 20 we show the contour plot of the solution to the
nonlinear BK equation. We see that the contour lines are shifted towards the
higher values of transverse momenta1. We can also identify a line in (k, Y )
space which divides a region where there is still a diffusion (to the right)
and where there is no diffusion, and the contour lines are parallel to each
other. These straight parallel lines mean that the solution is scaling there
since one can parameterize them by ξ = ln k/k0−λY +ξ0 and the solution is
only dependent on ξ. The critical line defines the saturation scale that was
introduced in the previous paragraphs. It turns out that, the nonlinear BK
equation can be approximated as a diffusion equation with the absorptive
boundary which is (or close to) critical line defined by the saturation scale
Qs(Y ) [21]. One can get very precise evaluation of the rapidity dependence
of the saturation scale using this approximation. Recently, there has been
quite substantial development in the understanding of the solutions to the
(1 + 1) dimensional BK equation. In series of important papers [19] it was
proved, that BK equation can be approximated as a diffusion equation with
nonlinear term. It is then equivalent to the Fisher–Kolmogorov–Petrovsky–
Piscounov (FKPP) equation [24]

∂tu(t, x) = ∂2
x(t, x) + u(t, x)[1 − u(t, x)] , (25)

where the change of variables from (Y, ln k) to (t, x) has been performed with
simultaneous identification of φ → u. FKPP equation has been previously
studied in many fields of physics, for a review see for example [25], and

1 A distortion of the contours at the highest values of k is unphysical and is caused by
cutoffs in numerical calculation.
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its solutions are very well understood. In particular it is well known that
the FKPP equation has traveling wave solution for large times (which are
equivalent to large energies) which is just a property of geometrical scaling.

9.1. BK equation with running coupling

As already stated, the BK equation has been derived within the LLx
approximation in which the coupling constant is fixed. It is very well known
fact, that NLLx effects in the BFKL formalism are very important [26]. At
NLLx order the coupling runs and it is well known that the linear BFKL
equation becomes very unstable in that case. To be precise, the linear evo-
lution becomes very sensitive to the details of the running coupling regu-
larization. This effect is illustrated in Fig. 21 where we show the solution
kφBFKL(k, Y ) in the case of the running coupling as a function of the trans-
verse momentum for increasing values of Y . One sees that the position of
the maximum changes rapidly from initial condition k = k0, to very low
values of momenta, where they are determined by the regularization of the
running coupling, k ≃ kreg ≪ k0. We have introduced the running coupling
into the BK equation in the following way

dφ(k, Y )

dY
= ᾱs(k)

∫
dk′

k′
K(k, k′)φ(k′, Y ) − ᾱs(k)φ

2(k, Y ) . (26)
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Fig. 21. Solution to the BFKL equation with running coupling.

The solution to the above equation is illustrated in Fig. 22 where it has been
superimposed onto the solution of the linear BFKL equation. It is clear that
the solution is much more stable than in the linear case, the maximum of
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the distribution is not shifted to the infrared, rather it moves towards higher
values of transverse momenta as rapidity increases. The reason for this is
that the nonlinear term strongly damps the diffusion into the infrared regime.
The saturation scale Qs(Y ) provides a natural cutoff for the low momenta
and so no dependence on the regularization of the running coupling is seen
(see for example [17, 27–29].
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Fig. 22. Solution to the BK equation (as compared to BFKL) with running cou-

pling.

One might ask whether the geometrical scaling is still preserved in the
presence of the additional scale ΛQCD which is introduced by the running
coupling. It turns out that it still holds, though the saturation scale has
different rapidity dependence (see [17, 21, 29–31] and also [2]

Qs(Y ) = ΛQCD exp

(√

12c

β0
(Y − Y0) + ln2 Q0

ΛQCD

)

, (27)

with c ≃ 2. The above formula has been derived by assuming that the local
exponent of the saturation scale

λ(Y ) =
d ln(Qs(Y )/Λ)

dY
,

has the similar form as in the fixed coupling case

λ(Y ) = c αs

(
Q2

s (Y )
)
.

By using these two formulae one can derive saturation scale in the running
coupling case (27), see [17, 30].
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10. Solution in (3+1) dimensions

10.1. Spatial distribution: impact parameter dependence

The phenomenon of saturation discussed so far has been based on the
properties of the solution to the BK equation in (1 + 1) dimensions. This
approach completely ignores the spatial distribution of the probe-target sys-
tem. The solution to (1+1) dimensional BK equation is integrated over the
impact parameter. This is a result of the fact that in (1+1) dimensional BK
equation we have assumed the infinite size of the target, and ignored any
edge effects. One might expect, that the more realistic picture of saturation
looks as follows: when the probe collides with the target, there is a dense
system of partons in the limited region of the impact parameter space which
has a finite radius. As one probes larger impact parameters, the density of
partons becomes more and more dilute. When the energy grows, the ra-
dius of the dense, saturated system expands. This process is schematically
drawn in Fig. 23. One expects that the impact parameter profile of the
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Fig. 23. Schematic picture of the impact parameter dependence of the parton den-

sity at high energies. Right plot: as energy increases the area of the saturated

region, the black disc, increases.

scattering amplitude will have the behavior shown in Fig. 24. A question
thus arises, whether BK equation can provide some information about the
impact parameter profile of the amplitude, and whether it is consistent with
the qualitative picture of saturation. Let us recall the BK equation with full
dependence on all coordinates
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dN(b01,x01, Y )

dY
= ᾱs

∫
d2

x2 x
2
01

x2
20 x2

12

×
[

N
(

b01 +
x12

2
,x20, Y

)

+N
(

b01 −
x20

2
,x12, Y

)

−N(b01,x01, Y )

−N
(

b01 +
x12

2
,x20, Y

)

N
(

b01 −
x20

2
,x12, Y

)]

. (28)

As already stated before, in general the problem is very difficult, even nu-
merically since one has 4 degrees of freedom per dipole and one evolution
variable, rapidity. Even though the integral measure does not depend on the
positions of the dipoles, impact parameter dependence is generated through
the couplings of bij to xij in the arguments of the functions N , see Eq. (28).
To simplify the problem, and yet retain the information about the impact
parameter dependence, we note that measure in the equation

d2
x2 x

2
01

x2
20 x2

12

,

is invariant under global rotations in transverse space

x0,x1,x2 −→ O(φ)x0,O(φ)x1,O(φ)x2 ,

see Fig. 25.
Thus we can assume that the position of the dipole is specified by three

variables: its size r, impact parameter b and the relative orientation of the
dipole with respect to the impact parameter axis (angle θ), see Fig. 25. The
invariance with respect to global rotations is equivalent with a condition that
the target is cylindrically symmetrical object. Thus the problem reduces to
(3 + 1) dimensions: N(r, b, θ, φ;Y ) → N(r, b, θ;Y ). The BK equation with



Nonlinear Evolution Equations in QCD 3095

φ

θ

b

r   
   

Fig. 25. Parametrization of dipole position.

the impact parameter dependence has been investigated numerically [32,33]
see also [34]. Here we show some of the results taken from [32], where the
initial distribution has been chosen to have a form of the Glauber–Mueller

N (0)(r, b, θ;Y = 0) = 1 − exp(−r2S(b)) , (29)

where the impact parameter profile has been chosen to be Gaussian type

S(b) =
1

R2
0

exp

(−b2
b20

)

. (30)

10.2. Impact parameter dependence

In Fig. 26 we show resulting impact parameter dependence of the BK
solution for different values of rapidity Y . For small values of impact pa-
rameter b the amplitude is large, and strong nonlinear effects are clearly
visible. On the other hand, for large values of b one observes fast growth of
the amplitude which is governed by the linear part of the equation. One can
verify that the increase is exponential in rapidity as expected from BFKL
equation. The region in impact parameter space where the amplitude is
large, expands with rapidity. However, perhaps the most striking feature is
the fact that the initial profile in impact parameter is not preserved even
after small step in rapidity, ∆Y = 0.1. The exponential tail of the initial
distribution has been immediately replaced by the power behavior ∼ 1/b4.

It is interesting to investigate the origin of these power tails. One can
divide the region of integration into two parts: long and short range contri-
butions by introducing a separating cutoff r0 on the dipole size








short
︷ ︸︸ ︷∫

Θ(r0 − |x2 − b|) +

long
︷ ︸︸ ︷∫

Θ(|x2 − b| − r0)








d2
x2(x0 − x1)

2

(x0 − x2)2(x1 − x2)2

×
(

N
(0)
02 +N

(0)
12 −N

(0)
01 −N

(0)
02 N

(0)
12

)

.
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Fig. 26. Impact parameter dependence of the solution to the BK equation for

increasing values of rapidity.

In Fig. 27 the profile in impact parameter space has been decomposed into
short and long range contributions. One can see that the short range contri-
bution is dominating the behavior at small values of b. There the exponential
behavior is preserved since we have the factorization of initial profile S(b)
at small values of b. The long range contribution is dominating at large
values of impact parameter b where it generates the power tail. Thus the
∼ 1/b4 behavior originates from the integration of the large dipole sizes and
is a reflection of the asymptotic behavior of the integral kernel (see discussion
in [35]).
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Fig. 27. The impact parameter dependence of the amplitude decomposed into the

short and long range contributions after small evolution step in rapidity ∆Y = 0.1.
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10.3. Violation of Froissart bound

The presence of the power tail in impact parameter has profound conse-
quences for the unitarity. Power decrease of the amplitude means that the
interaction is long range. As already stated it is a direct consequence of the
power-like form of the integral kernel

d2
x2 x

2
01

x
2
20 x

2
12

≃ d2
x2

r2

b4
.

This type of fast expansion of the interaction system leads to the violation
of the Froissart bound, as has been first observed in [35] (compare also
a parallel discussion in [36]). It turns out that even though the amplitude is
equal or less than 1 due to the nonlinearity of the equation, the dipole cross
section increases fast with the decreasing x which violates Froissart bound

σ =

∫

d2
bN(r, b;Y = ln 1/x) ∼ x−λ .

This happens, because the kernel in BK equation is conformally invariant,
with no mass scale which would cut off the long range contributions.

10.4. Dipole size dependence

The dipole size dependence in the case of impact parameter dependent
BK equation is shown in Fig. 28 where the value for impact parameter has
been chosen to correspond to a central collision. For small and moderate
values of r it has qualitatively the same behavior as previously, amplitude is
vanishing as r tends to 0 and extending to lower values of r as rapidity grows.
It also saturates to 1 for moderate values of r. However, at large values of
dipole size the situation is dramatically different, here the amplitude drops
down again. The reason is that now there is a dimension in impact parameter
which characterizes the size of the target. As the dipole grows, at some point
it will completely miss the target and amplitude will become zero again. This
is quite different from the previous case (without impact parameter) where
the amplitude was always saturated since there was an infinite target. It
is also interesting to study solution at different values of b. In Fig. 29 we
present the dipole size dependence of the amplitude for larger value of b
which corresponds to a peripheral collision of the dipole with the target.
In that case we see that the amplitude peaks for values of the dipole size
which are twice as large as the impact parameter. This is expected since
it reflects the properties of the integral kernel in the BK equation. The
solution in the b-dependent case has also some other interesting properties.
For values of dipole size which are small when compared with the impact
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parameter r ≪ b, the amplitude depends only on one combined variable
r2/b4. This dependence on one variable, an-harmonic ratio , is the result of
the conformal symmetry, see for example [11].
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Fig. 28. Solution of the impact parameter dependent BK equation with fixed ori-

entation and position of the dipole for various values of rapidity Y = 0.1, 5, 8, 11.
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Fig. 29. The same as Fig. 28 but for large value of impact parameter b = 5.

10.5. Saturation scale with b dependence

One can also extract the saturation scale from the solution to BK equa-
tion in (3 + 1) dimensions. In [32] a following prescription has been used

〈N(r = 1/Qs, b, θ;Y )〉θ = κ, κ ∼ 0.5 . (31)
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From Fig. 28 we see that Eq. (31) possesses two solutions

1

Qs(b, Y )
< r < RH(b, Y ) .

The lower bound Qs(b, Y ) is the impact parameter dependent saturation
scale, which has been plotted in Fig. 30. We see that the saturation scale has
strong dependence on b, it is largest at small values of impact parameter and
then decreases for large values of impact parameter. The physical picture
is that while the impact parameter is increased, one moves from a strongly
saturated regime to a more dilute one. The tail of the saturation scale is
again power like ∼ 1/b2 which is to be expected from the properties of the
integral kernel. We see that this behavior is quite different from the one that
would be anticipated from initial conditions (compare dashed lines). The
saturation scale has the following behavior

Q2
s (b, Y ) ≃ g(b) exp(ᾱs2λsY ), λs ≃ 2 ,

where function g(b) is exponentially falling for small values of b and has
a power like behavior at large values of impact parameter.

The second solution R(b, Y ) is new compared to the b-independent case,
and it just reflects the fact the there is an additional scale present, the finite
size of the target and that we no longer have an infinitely large target.
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Fig. 30. Impact parameter profile of the saturation scale for two various rapidities

Y = 5 and Y = 11. Solid lines are the result of the calculation of full BK equation.

Dashed lines correspond to the exponential behavior of the saturation scale that

was expected from initial conditions.
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11. Conclusions and outlook. Beyond BK equation

We have described basic properties of the BK equation which is a non-
linear evolution equation suitable for description of partonic systems at high
density. We showed that the solution to this equation has a property of geo-
metrical scaling, with the characteristic saturation scale. The nice property
of this equation is the suppression of the infrared diffusion and independence
of the regularization for the running coupling. The impact parameter depen-
dence of this equation leads to the violation of the Froissart bound despite
the fact that the amplitude is bounded from above. This is a consequence
of purely perturbative approach and lack of long distance effects such as
confinement in the BK equation.

However, BK equation has been derived by using strong assumptions
about lack of correlations in the system and it is thus an equation in mean
field approximation. It is not clear to what extent the BK equation is a good
approximation to the full Balitsky–JIMWLK equations. In numerical studies
of the dipole scattering by Salam [37] it has been shown that the fluctuations
are very important and lead to a very different result as compared with the
mean field approach. A lot of theoretical effort has been recently devoted
to study the role of correlations: in [38] a more quantitative study of the
fluctuations has been proposed, in [39] a new equation for the generating
functional was postulated which takes into account correlations in the nuclei;
in [40] a BK equation with two absorptive boundaries has been studied; in
[41] a numerical study of the full JIMWLK equation has been performed for
the first time; in [42] an analytical study of the Balitsky hierarchy restricted
to the dipole operators and in [43] the role of the discreetness of the gluon
system and connection to the statistical physics have been discussed. We
expect that this line of research will be continued in the near future and
we will be able to understand the fascinating and complex theory of strong
interactions even better.

This research is supported by the U.S. Department of Energy, Contract
No. DE-AC02-98CH10886.
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