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The radiation from oscillating kink in (1+1) dimensional relativistic
φ4 model is considered. Both analytical and numerical approaches are
presented and the comparison between these methods is discussed. Accel-
eration of the kink in external radiation is calculated and numerical results
are also presented.
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1. Introduction

Kink is a simple example of topological defect. Topological defects
i.e. monopoles, vortices, domain walls play very important role in mod-
ern physics starting from flux tubes in QCD [1], vortices in liquid helium
and superconductors, domain walls in magnetics, various defects in liquid
crystals to strings in cosmology [2] (although recently it has been found
cosmological strings are not as important as they had appeared to be [3]).
Although these objects were studied for many years there are still many
unanswered questions, mostly concerning their dynamics. There are some
open problems about their interactions with other topological defects and
external fields [4]. Even dynamics of their internal degrees of freedom is not
fully understood and needs a lot of examinations [5, 6]. In most cases we
built our knowledge from experiments and numerical calculations. In theory,
topological defects are described by nonlinear partial differential equations.
Most of them one can solve exactly only in special cases, for the rest of them
one can apply only approximations. In this paper we focus on perturbation
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method around a well known analytical static solution namely the kink. The
results will be compared with numerical calculations. Very similar problems
were discussed in [7, 8] and [9].

Manton in [7] considered problem of kink and antikink creation and
annihilation process and its relationship with the vibrational mode. He
presented theory concerning the behavior of that mode and its decay. In
this paper we develop methods presented in [7] and apply to different initial
conditions, more suitable for computer simulations. We verify Manton’s and
our predictions via numerical calculations. In [8] there are another methods
for calculating the radiation presented in a context of domain wall. The
radiation from squeezed kink is investigated in [9].

Usually when one wants to find out whether the system is stable, one
adds small perturbation and study its evolution. If the perturbation does
not grow in time it means the solution is stable. Otherwise it is unstable.
The problems of stability and relaxation process is well examined for dis-
sipative systems (for example systems described by diffusion equations or
wave equations with damping). The model considered in the present paper
is energy conserving and therefore we can use stability only in a local sense.
The relaxation process must be based upon radiation of the redundant en-
ergy into infinity. The static kink solution has the lowest possible energy in
its topological sector (Bogomolny bound). This is a reason for us to treat
kink as an attractor. The system with localized perturbation will tend to
our kink solution in finite regions of the one-dimensional space.

In the Sections 4 and 5 of our paper we apply methods presented in the
Sections 2 and 3 to kink interacting with external radiation. Because the
kink is transparent to radiation in linear order of approximation our usual
intuition fails. For small amplitudes, the kink instead of being pushed away
by radiation pressure is accelerating toward the source of radiation.

In literature there are considered mostly kinks interacting with a constant
external force [4] or a force oscillating in time [10] or [11].

2. The model

Let us consider one dimension real scalar field theory described by the
equation:

φ̈ − φ′′ + 2φ(φ2 − 1) = 0 . (1)

We use natural unit system (c = 1). There exist well known static solutions:

φs(x) = ± tanh(x − x0) (2)

which will be referred to as kink (with + sign) and antikink (with −). With-
out loosing generality one can choose x0 = 0 due to translational invariance.
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Let us add a small perturbation to the kink solution:

φ(t, x) = φs(x) + ξ(t, x) . (3)

Eq. (1) can be rewritten in the form:

ξ̈ + Lξ + N(ξ) = 0 , (4)

where linear operator L has the form:

L = − ∂2

∂x2
+
[

4 − 6
(

1 − φ2
s

)]

(5)

and N denotes the part nonlinear in ξ:

N(ξ) = 6φsξ
2 + 2ξ3 . (6)

In the first approximation we assume that ξ is small enough to neglect the
term (6). We seek solutions of the linearized Eq. (4) in the form ξ(t, x) =
eiωtη(x). We obtain the eigenvalue problem (very similar to the Schrödinger
equation):

Lη = ω2η . (7)

The above equation has two solutions vanishing in infinity. One of them for
ω = 0

ηt(x) =
1

cosh2 x
(8)

is called translational zero-mode because it is responsible for small transla-
tions of the kink: φs(x + δx) = φs(x) + δxηt(x) + O(δx2). This mode plays
a very important role when one considers the evolution of a system with an
external force [4] or evolution of a system itself in more dimensions (domain
wall) [5] or interaction between two or more kinks. The other normalizable
solution is a vibrational mode with ωd =

√
3:

ηd(x) =
sinh x

cosh2 x
. (9)

It is very important that in linear approximation this mode oscillates without
loosing energy. It is a quasistationary solution because only couplings in
higher orders are responsible for decaying of this solution due to radiation.
The energy is carried away by scattering modes in continuous spectrum:

ηk(x) = eikx
(

3 tanh2 x − 3ik tanh x − 1 − k2
)

, (10)

where k is a wave vector:
k2 = ω2 − 4 . (11)
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Of course this is only an approximation. In fact the radiation has a form of
a finite wavelet and therefore its energy is finite.

We want to find the evolution of the system when initially only the
discrete oscillating mode is excited (i.e. in time t = 0 the field has a

form φ(0, x) = φs(x) + aηd(x) and φ̇(0, x) = 0, where a is assumed to
be small). Let us construct a solution of the equation (4) substituting
ξ(t, x) = Ad(t)ηd(x) + η(t, x) and assuming that Ad and η are small we
obtain the equation for η in O(A2

d) order:

η̈ + Lη + 6φsA
2
dη

2
d = 0 . (12)

This is an inhomogeneous linear equation for η with the source term T (t)g(x)
where g(x) = η2

d(x)φs(x) and T (t) = 6A2
d(t). Notice that it is proportional

to the square of vibrational mode. We can make a time Fourier transform
of equation (12) and obtain:

−ω2η̃(ω, x) + Lη̃(ω, x) + T̃ (ω)g(x) = 0 . (13)

It is an inhomogeneous linear equation for the spatial part but since we
know the solutions (10) of the homogeneous equation we can easily construct
appropriate Green’s function in a standard manner:

Gk(x, y) =

{

− 1
W

ηk(x)η−k(y) x < y

− 1
W

η−k(x)ηk(y) x > y
, (14)

where W = −2ik(k2 + 1)(k2 + 4) is Wronskian of Eq. (13). Therefore the
solution has a form:

η̃(ω, x) = − T̃ (ω)

W



η−k(x)

x
∫

−∞

dy ηk(y)g(y) + ηk(x)

∞
∫

x

dy η−k(y)g(y)



 .

(15)
We can use an asymptotic form of η±k(x) ≈ (2 − k2 ± 3ik)e±ikx for large x
and obtain (the source is well localized around 0):

η̃(ω, x) = − T̃ (ω)

2ik(2 − k2 − 3ik)
e(−ikx)

∞
∫

−∞

dy ηk(y)g(y) . (16)

After calculating this integral analytically we get:

η̃(ω, x) = − πk(k2 + 4)(k2 − 2)T̃ (ω)

16 sinh
(

πk
2

)

(2 − k2 − 3ik)
exp(−ikx) . (17)
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Following Manton [7] we consider an oscillating mode Ad(t) = a cos(ωdt).
Square of the amplitude is given by A2

d = 1
2a2 (cos(2ωdt) + 1). Since constant

solution carries no energy we take into account only the time dependent part:
T (t) = 3a2e2ωdt. Fourier transform has a form: T̃ (ω) = −6πa2δ(ω − ω0),
where ω0 = 2ωd. Substituting the source term into (17) and calculating
inverted Fourier transform we obtain:

η(t, x) =
πk0(k

2
0 + 4)(k2

0 − 2)

32 sinh
(

πk0

2

)

(2 − k2
0 − 3ik0)

a2 exp [i(ω0t − k0x)] . (18)

Since we are only interested in real part of the above equation the radiation
has a form:

η(t, x) = Qa2 cos (ω0t − k0x + δ) , (19)

where

k2
0 = ω2

0 − 4 ,

Q =
πk0(k

2
0 − 2)

32 sinh
(

πk0

2

)

√

k2
0 + 4

k2
0 + 1

= 0.0453 (20)

and δ is a phase which we are not interested in. The same radiation goes
also to −∞. We have made numerical simulations for various a0, where
a0 is initial amplitude of the oscillating mode (in the following section we
show that the amplitude decreases due to the radiation). In large distance
from the kink we measure the outgoing field. The difference from the kink
solution is sketched in figures 1 and 2 for a0 = 0.05 and 0.4, respectively
(for the clarity we have plotted only the local extrema of the field instead of
whole oscillations). The amplitude predicted by Eq. (19) seems to fit very
well in the first figure. On the second figure one can also see the damping
which will be explained in the next section.

As we can see from Eq. (19) the outgoing radiation has only one single
frequency which is twice the frequency of oscillating mode. This is true
only in approximation, because the coupling in cubic term in (6) will result
in frequency 3ωd. If one wants to test this procedure numerically one has
to be very careful. The first idea is to pose initial conditions in the form
φ(0, x) = φs(x) + aηd(x) and φ̇(0, x) = 0. That means there is no radiation
in t = 0, so there can be no source for t < 0. Source must have a form
T (t) = 3a2Θ(t)eiω0t, where Θ(x) is a Heaviside function. Fourier transform:

T̃ (ω) = 3a2

(

−πδ(ω − ω0) + P
i

ω − ω0

)

. (21)
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Fig. 1. Extrema of the outgoing radiation for a0 = 0.05.

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

100 200 300 400 500 600 700 800 900 1000

φ 
(t

,x
=

2
0
0
)−

 φ
s 

(x
=

2
0
0
)

t

ao = 0.4

Fig. 2. Extrema of the decaying radiation for a0 = 0.4 with fitted functions (34).

The field we calculate is equal to

η(t, x) =
a2

2π
P.V.

∞
∫

−∞

dω
πk(k2 + 4)(k2 − 2) exp(i(ωt − kx))

32 sinh
(

πk
2

)

(2 − k2 − 3ik)

×
(

−πδ(ω − ω0) +
i

ω − ω0

)

. (22)
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Let us consider the second part of the integral in (22) containing factor i
ω−ω0

:

I(t, x) = i

∞
∫

−∞

dω F (ω)
eiωt

ω − ω0
. (23)

If k is a real number we have oscillations of the integrand along x axis (be-
cause of the exp(−ikx) term), but when k is imaginary we have exponential
decay, therefore for large x we need to take into account only ω for which k
is real, that is ω > Ω, where Ω = 2. We can rewrite the above integral in a
form:

I(t, x) = ieiω0t

∞
∫

Ω

dω F (ω)
ei(ω−ω0)t

ω − ω0
. (24)

After introducing ν = (ω − ω0)t we obtain:

I(t, x) = ieiω0t

∞
∫

(Ω−ω0)t

dν F
(ν

t
+ ω0

) eiν

ν
. (25)

For large times we can expand F in ν
t
:

I(t, x) = ieiω0t

∞
∫

(Ω−ω0)t

dν F (ω0)
eiν

ν
+ F ′(ω0)

eiν

t
+ · · · . (26)

Because Ω − ω0 < 0 and t tends to infinity the first term is equal to:

lim
t→∞

∞
∫

(Ω−ω0)t

dν F (ω0)
eiν

ν
= F (ω0)

∞
∫

−∞

dν
eiν

ν
= iπF (ω0) . (27)

The second term we can integrate immediately after adding a term −ǫν to
the exponent and obtain:

I(t, x) = −eiω0t

[

πF (ω0) +
ei(Ω−ω0)t

t
F ′(ω0)

]

. (28)

But F (ω) = e−ikxf(ω), therefore

F ′(ω0) =

(

−ixf(ω0)
dk

dω

∣

∣

∣

∣

ω=ω0

+ f ′(ω0)

)

e−ik0x .
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For large x we can neglect the second term:

I(t, x) = −eiω0t

[

π − ix
ω0

k0

ei(Ω−ω0)t

t

]

F (ω0) . (29)

Finally the radiating part in our approximation has a form

η(t, x) = Qa2

[

1 − i
ω0

k0

ei(Ω−ω0)t

2πt/x

]

exp[i(ω0t − k0x + δ)] . (30)

Apart from oscillation with frequency ω0 we have some decaying modulations
with frequency ω0−Ω ≈ 1.46. Speed of the decay is determined by the point
of observation x. The larger x the slower decay. Figure 3 shows the Fourier’s
transform of the numerically computed field in x = 30. As one can see there
are three easily visible peaks. The largest one is at ω = ω0 = 2ωd. The next
one is at another harmonic frequency 3ωd. There is also one peak for ω =
1.15ωd = 2 = Ω which is responsible for decaying modulations of the field.
On the next figure we have plotted envelope of oscillations evaluated from
Eq. (22). In figure 5 one can see the behavior of the envelope for large times
which seems to be well approximated by Eq. (30). The measured frequency
is really ω0 − Ω ≈ 1.42. We also presented the growth of the field for small
times in figures 6 and 7. On the next pictures we have sketched numerically
evaluated field (from Eq. (22), figure 9) and, for comparison, numerically
calculated solution of the full partial equation (1) (figure 10). Because of
the numerical errors there are only the largest modulations visible.
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Fig. 3. Fourier transform of the radiation (a0 = 0.8).



Interaction Between Kink and Radiation in φ4 Model 531

0

0.5

1

1.5

2

2.5

3

3.5

100 150 200 250 300 350 400 450 500

E
n

v
el

o
p

t

Fig. 4. Envelope of the radiation.

2.8

2.85

2.9

2.95

3

3.05

3.1

150 200 250 300 350 400 450 500

E
n

v
el

o
p

t

Fig. 5. Envelope for large times.

0

0.5

1

1.5

2

2.5

3

3.5

100 120 140 160 180 200

E
n

v
el

o
p

t

Fig. 6. Envelope for small times.



532 T. Romańczukiewicz

0

0.5

1

1.5

2

2.5

3

3.5

100 105 110 115 120 125 130

E
n

v
el

o
p

t
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numerical data and fitted function.

3. Backreaction

In the above approximation we have found the field radiated to the in-
finity. We assumed that amplitude of the oscillating mode does not change
in time. This is not true if the system is isolated. Radiation carries away
energy and that leads to a decrease of the amplitude since the system is
energy conserving. Let us calculate the rate at which the energy is be-
ing lost during radiation. For scalar field the energy escaping from a seg-
ment (x1, x2) is equal to dE

dt
= φ̇φ′|x1

− φ̇φ′|x2
. After taking φ(t, x) =

φs(x)+aηd(x) cos(ωdt)+Qa2 cos(ω0t−k0x+ δ) and averaging over a period
we obtain the energy change inside large segment:

dE

dt
= −Q2k0ω0a

4 = −0.020a4 (31)

and since energy of the vibrational mode is E = a2 we find a differential
equation for the amplitude of that mode:

da2

dt
= −Q2k0ω0a

4 . (32)

We can easily find a solution with an initial condition a(t = 0) = a0:

a(t) =
a0

√

1 + Q2k0ω0a2
0t

. (33)

From the above we obtain time dependence of radiation amplitude:

A(t) =
1

C(x, a0) + Qk0ω0t
, (34)
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where

C(x, a0) =
1

Qa2
0

− Qk0ω0t0(x) (35)

is constant in time. t0(x) is the time it takes for the field to travel from
origin to point x where it is observed.

This very precise prediction we can compare with purely numerical re-
sults. Maxima and minima of the field with initial a0 = 0.4 measured for
x = 200 are shown in figure 2. There are also two hyperbolic function fitted
to these data. The same procedure was applied for other amplitudes. The
factor that stands besides t in Eq. (34) in the theory is equal to 0.444.
Numerical results show that its average value is 0.449 which is not signifi-
cantly different. The value does not change much (within 2%) for different
a0 (0.05–0.7).

In figure 10 we have sketched fitted C versus a0. As one can see the
fitted function in the form (35) is a very good approximation of the results.
We find Q = 0.04607. In the theory above we have 0.0453 but it is still
within numerical error. The last parameter in numerics is equal to t0 = 336.
The group velocity of the field is equal to v = ∂ω

∂k

∣

∣

k=k0

= k0

ω0
≈ 0.816 and

hence the distance x = 200 than theoretical value of t0,th = 245. In fact
we actually can observe that the radiation comes to x = 200 in this time
(figure 1 and 2). If one plots the fitted function and the theoretical one
on one graph one can find they are almost indistinguishable, especially for
small a0 where our theory is the most accurate.

4. Anharmonic corrections

As we saw in previous section, the field radiated from oscillating kink
is of order O(A2

d) (Eq. (19), Ad = a cos(ω0t)). The oscillating mode re-
action to scattering modes will be of order O(A3

d) (in Eq. (33) a(t) ≈
a0 − 1

2a3
0Q

2k0ω0t). But there is still nontrivial behavior of amplitude in

the order O(A2
d). Let us consider only the discrete mode. Substituting

ξ(t, x) = Ad(t)ηd(x) in Eq. (4) in order O(A2
d) we obtain the following

equation:
(

Äd + 3Ad

)

ηd + 6A2
dφsη

2
d = 0 . (36)

We are interested only in evolution of Ad(t). We can rewrite the source term
in a form φsη

2
d = αηd + η⊥. To get rid of the orthogonal term η⊥ we project

this equation onto ηd. In order to do that we integrate both sides of the
above equation with ηd and we obtain an ordinary differential second order
equation (neglecting the perpendicular part):

Äd + 3Ad +
9π

16
A2

d = 0 . (37)
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We solve this using standard series method: Ad = A(1)+A(2)+A(3)+· · ·.
We take initial conditions: Ȧ(0) = 0, A(0) = a. In order O(A(1)) we obtain

Ä(1) + 3A(1) = 0 (38)

and the solution is A(1) = a cos
√

3t. In second order we have:

Ä(2) + 3A(2) +
9π

16
a2 cos2

√
3t = 0 . (39)

The whole solution has a form:

Ad(t) = −3π

32
a2 +

(

1 +
aπ

16

)

a cos(
√

3t) +
π

32
a2 cos(2

√
3t) . (40)

This function’s maxima are equal to Amax = a and minima Amin =
−a− 3π

16 a2. Figure 11 shows the oscillating mode evolution calculated numer-

ically for a0 = 0.2. The field was measured in x = xmax = arcosh
√

2 ≈ 0.88,
where the function ηd has maximum equal 1

2 . The dashed lines represent
1
2Amax and 1

2Amin calculated for that amplitude. As one can see our predic-
tion works very well.
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Fig. 11. Anharmonical oscillation of the discrete mode. Dashed lines are calculated
theoretically.

Because the radiation depends on the square of the oscillating mode one can
expect that minima are on more or less the same level while the maxima are
changing (one is higher and the next one is lower and the following one is
higher again). This effect is actually seen in figure 2.
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5. Kink in external radiation

Let us now consider quite opposite process when kink is exposed to
external radiation coming from +∞: aeiωqtηq(x). Let us consider small
amplitude limit. In the linear approximation there is no reflection in the
potential of the soliton and therefore one cannot expect the system will
behave as other similar systems in other branches of physics (there is no
analogy to a particle exposed to an electromagnetic wave). In the first order

the solution has a form (15), where T̃ (ω) = −3πa2δ(ω − 2ωq) and g(x) =
η2

q (x)φs(x). The correction oscillates with frequency 2ωq. For x −→ ±∞ we
can approximate the solution to form:

η̃(ω, x → ∞) = − T̃ (ω)

W



η−k(x)

∞
∫

−∞

dy ηk(y)η2
q (y)φs(y)

− η−k(x)

∞
∫

x

dy ηk(y)η2
q (y)φs(y)

+ ηk(x)

∞
∫

x

dy η−k(y)η2
q (y)φs(y)



 (41)

and

η̃(ω, x → −∞) = − T̃ (ω)

W



ηk(x)

∞
∫

−∞

dy η−k(y)η2
q (y)φs(y)

− ηk(x)

x
∫

−∞

dy η−k(y)η2
q (y)φs(y)

+ η−k(x)

x
∫

−∞

dy ηk(y)η2
q (y)φs(y)



 , (42)

where k = k(q) =
√

(2ωq)2 − 4. In order to calculate the integrands with
one finite but large limit we can use once again the asymptotic form of ηk(y).
Integrands with both infinite limits can be calculated analytically via residua
and finally we can write a simply expression for asymptotic behavior of the
first correction:

η+∞(t, x) = b+(ωq) cos(ωkt − kx + δ1) + c(ωq) cos(ωkt + 2qt + δ2) (43)
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and

η−∞(t, x) = b−(ωq) cos(ωkt + kx − δ1) − c(ωq) cos(ωkt + 2qt − δ2) , (44)

where

b±(ωq) =

3πa2
−60480+82224ω2

q −31620ω4
q +3707ω6

q ± qk(15120−11115ω2
q +1851ω4

q )

10 sinh
(

k±2q
2 π

)

(4ω2
q − 3)ω2

qk
,

(45)

c(ωq) =
3

2k
(q2 + 1)ω2

q (46)

and δ1,2 are phases. The reflected part b+ for small frequencies is more or
less the same order as b−, but for large frequencies decays exponentially
b+(ωq) ∼ 22227

80 πωqa
2e−2πωq . The transition part b− ∼ 1

8ω2
qa

2. c is an
amplitude of a wave coming from ∞ and going to −∞. This wave has exactly
the same form at both sides and hence passes no energy nor momentum to
the kink as one can see in details in the following calculations.

For small x we do not know an analytical solution. The solution (which
for small x can differ from η±k) oscillates around the kink solution with a
frequency of the source wave 2ωq. Because of the energy gathered in these
oscillations kink, as seen from a distance, gains some extra mass. In following
calculations we will be referring to that effect mass as M∗. The bare mass of
the soliton equals M = 4

3 . As mentioned in Section 3 the change of energy

inside a segment (x1, x2) equals dE
dt

= φ̇φ′|x2

x1
. In our case we have from the

right-hand side of the kink φ(x) = φs(x) + A cos(ωqt + qx) + b+ cos(ωkt −
kx) + c cos(ωkt + 2qt). The energy flowing into the segment averaged over a
period is

dEr

dt
=

1

2
qωqA

2 − 1

2
kωkb

2
+ + qωkc

2 .

From the left-hand side the field is φ(x) = φs(x) + B cos(ωqt + qx) +
b− cos (2ωqt + kx) − c cos(2ωkt + 2qt). Then the energy equals:

dEl

dt
= −1

2
qωqB

2 − 1

2
kωkb

2
− − qωkc

2 .

The energy conservation takes the form:

1

2
qωqA

2 − 1

2
qωqB

2 − 1

2
kωk

(

b2
− + b2

+

)

= M∗dγ

dt
, (47)
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where M∗γ = M∗

√
1−v2

is an energy of the soliton. Apart from M∗ which is

probably different from M we have two unknown kinetic variables B and γ̇.
The second one is responsible for the acceleration of the kink due to inter-
action with the radiation. We need one more equation. We can use the
momentum conservation law:

dPr

dt
=

1

2
q2A2 +

1

2
k2b2

+ + 2q2c2

and from the left-hand side of the kink:

dPl

dt
= −1

2
q2B2 − 1

2
k2b2

− − 2q2c2

and hence the second equation

1

2
q2A2 − 1

2
q2B2 − 1

2
k2
(

b2
− − b2

+

)

= −M∗ d

dt
(vγ) = −F ∗ . (48)

These equations are correct only for v = 0 (when we use the comoving
coordinate system) because the moving kink experiences the Doppler’s effect
and there should be corrections in ωq,k, k and q. But substituting v = 0 to
above equations we obtain the solutions very easily:







B2 = A2 − 2k
q

(

b2
− + b2

+

)

F ∗ =
1

2
k
(

(k − 2q)b2
− − (k + 2q)b2

+

)

. (49)

We used the relation ωk = 2ωq. The factor before b−

k − 2q = 2
(√

ω2
q − 1 −

√

ω2
q − 4

)

is always positive and because b+(ωq) is much smaller than b− therefore
the soliton accelerates in the direction from which radiation comes. The
radiation pressure is negative! The force described by above equation is
shown in figure 12. Only when b− is equal to 0 the soliton is pushed away
by the radiation.

The conclusion is that the soliton in most cases will stem the current.
If the soliton reaches the speed when the frequency of the source wave due

to the Doppler’s effect ω′ = γ
(

ωq + v
√

ω2
q − 4

)

is the frequency for which

acceleration vanishes the soliton moves with more or less constant velocity.
Figure 13 shows the paths of zeros of the field (kinks) for frequencies around
the zero of the pulling force. If the source wave has a frequency very close to
zero of the force the kink’s acceleration is small and the soliton moves with
the current.

If the source wave amplitude is large the above approximation fails.
There exists certain critical amplitude, depending on a frequency, for which
the soliton is pushed away by the incoming wave (figure 14).
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Fig. 12. Pulling force of the radiation vs frequency.
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6. Conclusions

In this paper we have investigated the behavior of excited oscillating
mode and its decay using both analytical and numerical methods. We have
proved conformity between these two methods. We have studied the inter-
action of the kink with external radiation field. We have found that in most
cases the kink will be pulled by the radiation. We have explained the pecu-
liar behavior of this system. Finally we presented numerical results for large
amplitudes of the source wave when the kink is pushed away by the wave.
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