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A method of fundamental solutions has been used to study adiabatic
transition amplitudes in two energy level systems for a class of Hamiltoni-
ans allowing some simplifications of Stokes graphs corresponding to such
transitions. It has been shown that for simplest such cases the amplitudes
take the Nikitin–Umanskii form but for more complicated ones they are
formed by a sum of terms strictly related to a structure of Stokes graph
corresponding to such cases. These results are in a full agreement with the
ones of Joye, Mileti and Pfister [Phys. Rev. A44, 4280 (1991)] found by
other method.
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1. Introduction

In our previous paper [1] we have applied a formalism of fundamen-
tal solutions to obtain formulae for adiabatic transition amplitudes in two
level energy systems. The corresponding formalism has been developed un-
der quite general assumptions about a nature of Hamiltonians perturbing
a system adiabatically providing in this way still one more example that
the fundamental solution method applies universally to most cases of stan-
dard problems of the one dimensional quantum mechanics (bound states,
scattering, barrier penetration,) with a large variety of potentials.

Unfortunately, in its applications to particular examples considered in
the Section 5 and the furthers of the paper mentioned we have made an
error in detailed calculations of the corresponding transition amplitudes. As
a consequence of this we have also drawn in this paper erroneous conclusions
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which followed from the obtained erroneous formulae. In the present paper
we would like to correct the corresponding calculations as well as to draw
correct conclusions.

However in order to avoid a permanent referring to the material presented
and discussed in the first four sections of the paper [1] and to make our
present paper selfsufficient and selfconsistent we shall repeat below to large
extent the contents of these sections. Therefore we shall start with reminding
shortly main reasons for studying transitions in two energy level systems.

First of all such systems provide us with the simplest models to in-
vestigate transition amplitudes between different energy levels by different
approaches [2]. On the other side these systems play an important role in
experimental investigations of basic principles of quantum mechanics [3].
Recently a lot of efforts has been devoted by Joye et al. to obtain more
rigorous results on the adiabatic limit of transition amplitudes for these and
similar systems with distinguished two energy levels well separated from the
others.

Systems with two energy levels only are formally equivalent to a one-half
spin system put into time dependent magnetic field. However good approx-
imate results and the more so the exact ones are difficult to obtain for such
systems even for simple time evolutions of the effective ‘magnetic’ field.
Therefore each opportunity of improving this situation is worth trying. A
treatment of the problem by the method of fundamental solutions (so fruit-
ful in its application to stationary problems of 1-dim Schrödinger equation
[9–11]) is of first importance, the more so that to our knowledge, the method
was not used so far to this goal. A possibility of application of the method
is related to the fact that transition amplitudes which enter a linear sys-
tem of first order differential equations describing their time evolution can
be represented by Fröman–Fröman amplitudes [9] appropriate for study-
ing the adiabatic limit of interest. Equivalently, a linear system mentioned
can be first transformed into a system of decoupled second order equations
having a form of the stationary Schrödinger equation, one for each am-
plitude, which next allows us to apply all advantages of the fundamental
solution method [10, 11]. The only obstacle related with this approach is a
complexity of effective ‘potentials’ which appear in the final system of the
Schrödinger-type equations.

The paper is organized as follows. In the next section the problem of
transitions in two energy level systems is stated and corresponding assump-
tions about the effective ‘magnetic field’ are formulated. A linear system of
two differential equations for the transition amplitudes is rewritten in a form
of two decoupled equations of the Schrödinger type. In Sec. 3 properties of
the fundamental solution method are recalled. In Sec. 4 some subtleties of
the application of the fundamental solution method to the problems consid-
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ered in the paper are discussed. In Sec. 5 a class of Hamiltonians with so
called NED property is distinguished for further considerations. In Sec. 6 an
exact form of a transition amplitude for the NED systems is obtained and
its adiabatic limit is found. In Sec. 7 two examples of the NED systems are
considered and the Nikitin–Umanskii formula is reconstructed. Finally in
Sec. 8 we discuss our results stressing their coincidence with the correspond-
ing ones of Joye et al. [5] despite the fact that the method of construction
of solutions used by the latter authors as well as their respective analytical
continuations by the plane of the complex time are completely different than
ours.

2. Adiabatic transitions in two energy level systems

First let us remind that, in general, any two energy level system is for-
mally equivalent to a one-half spin system put into an external magnetic
field B(t). Its Hamiltonian H(t) is given then by H(t) = 1

2µB(t) ·σ , where
σ = (σx, σy, σz) are Pauli’s matrices so that two energy levels E±(t) of H(t)

are given by E±(t) = ±µ
2B(t) where B(t) =

√

B
2(t).

Typically, considering adiabatic transitions between the two energy levels
E±(t) the following properties of the field B(t) are assumed:

1
◦ The field B(t) is real being defined for the real t, −∞ < t < +∞;

2
◦ The field B(t) can be continued analytically off the real values of t

as a meromorphic function which is defined on some t-Riemann surface RB.
A sheet of RB from which B(t) is originally continued is called physical;

3
◦ There is an infinite strip Σ = {t : |ℑt|〈δ, δ〉0} on the physical sheet in

which the field B(t) is holomorphic without roots in the strip and achieves
there finite limits for ℜt = ±∞ , i.e. B(ℜt = ±∞) = B± 6= 0 in the strip;

4
◦ The ‘absolute’ value B(t) =

√

B
2(t) of the field B(t) is a ramified

function of t on RB with square root branch points coinciding with crossing
points of the two energy levels E±(t);

It is also assumed that the field B(t) depends additionally on a parameter
T (> 0) i.e. B(t) ≡ B(t, T ) which introduces a “natural” scale of time to the
system. Therefore a time evolution of the system can be expressed most
naturally in units of T . For T small in comparison with the actual period
of the process considered the latter is “fast” or “sudden”. In the opposite
case, however, when T is large in this comparison the process is “slow” or
“adiabatic”.

In the adiabatic evolution of the system the following is assumed about
the field B(t, T ):
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5
◦ A dependence of B(t, T ) on T is such that a rescaled field B(sT, T )

has the following asymptotic behavior for T → +∞

B(sT, T ) ∼ B0(s) +
1

T
B1(s) +

1

T 2
B2(s) + · · · (1)

and accordingly its s-Riemann surface RB(T ) approaches ‘smoothly’ the
topological structure of the Riemann surface corresponding to the first term
B0(s) of the expansion (1).

6
◦As a function of s the field B0(s) satisfies the properties 1

◦−4
◦ above

with substitutions t → s and B(s) → B0(s).
7
◦ For purposes of this paper we shall assume also an algebraic depen-

dence of B(sT, T ) on s so that its asymptotic behaviour in the strip Σ as
s → ±∞ is the following:

B(sT, T ) ∼ B± +
B

±
1

sα1
+

B
±
2

sα2
+ . . . +

B
±
k

sαk
+ . . . ,

1

2
< α1 < α2 < . . . < αk < . . . , (2)

where α1, . . . , αk, are assumed to be rational.
The next assumption which validity will become clear in Sec. 6 needs to

formulate a notion of Stokes lines for the function B0(s). These are lines

which starts at roots of B0(s) and are governed by conditions ℜ
(

i
∫ s
sk

B0(σ)dσ
)

= 0 where sk, k = 1, . . ., are roots of B0(s). We shall assume the following
about roots of B0(s), its Stokes lines and about components of the limiting
field B0(s).

8
◦

• Roots of B2(sT, T ) and B2
0(s) are simple.

• A boundary of the central strip Σ = {t : |ℑt|〈δ, δ〉0} in which B(sT, T )
is holomorphic and with no roots inside it consists of two infinite Stokes
lines which become complex conjugated with each other in the adia-
batic limit.

• Each component of B(sT, T ) and B0(s) is holomorphic and nonvan-
ishing at roots of B2(sT, T ) and B2

0(s) respectively.

The following family of the fields B(t, T ) can easily satisfy the assump-
tions 1

◦–8◦ above

Bi(t, T ) =
(P1i(t, T ))1/m

(P2i(t, T ))1/n
, i = 1, 2, 3 , (3)
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where P1i(t, T ) and P2i(t, T ), i = 1, 2, 3 are polynomials in t of degrees k and
l respectively satisfying the condition m/k = n/l, with integers m,n ≥ 1 and
with the product P21P22P23 vanishing nowhere on the real axis of the t-plane
and with the real polynomial coefficients aijr(T ), i = 1, 2, j = 1, 2, 3, r =
1, . . . , k, l at tr having the following forms

aijr(T ) =
1

T r

u
∑

s=0

αijrs

T s
. (4)

Consider now the time-dependent Schrödinger equation corresponding
to H(t). It takes the form

i

T

dΨ(s, T )

ds
=

1

2
µB(sT, T ) · σΨ(s, T ) . (5)

An adiabatic evolution of the wave function Ψ(s, T ) corresponds now
to taking a limit T → +∞ in (5). Being more precise we are going to
find in this limit the transition amplitude between the two energy levels of
the system for s → +∞ under the assumptions that Ψ(−∞, T ) coincides
with one of the two possible eigenstates Ψ±(−∞, T ) of H(−∞) (= H(+∞))
(corresponding to E±(−∞) (= E±(+∞)) and that there is no level crossing
for real t i.e. lim inf

−∞<t<+∞
B(t) ≥ ǫ > 0. Well known approximate solutions of

this problem are that of Landau [12] and Zener [13] in a form of the so called
Landau–Zener formula and that of Dykhne [14] who have shown that such
an amplitude should be exponentially small in the limit T → +∞. We are
going to show in the next sections how to get an exact (i.e. not approximate)
result for this amplitude as well as its adiabatic limit with the help of the
fundamental solutions.

There is a standard way of proceeding when the adiabatic limit is inves-
tigated. It is defined by using eigenvectors Ψ±(s, T ) of H(sT, T ) satisfying

(Ψ±, Ψ̇±) = 0. As such eigenvectors Ψ±(s, T ) can be chosen as the following
ones

Ψ+(s, T ) = e−i
∫ s
0 φ̇ sin2 Θ

2
dσ





cos Θ

2

sin Θ

2 eiφ



 ,

Ψ−(s, T ) = e−i
∫ s
0 φ̇ cos2 Θ

2
dσ





sin Θ

2

− cos Θ

2 eiφ



 , (6)

where Θ and φ are respective polar and azimuthal angles of the vector
B(t, T ) and dots over different quantities mean derivatives with respect to
s-variable.
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The wave function Ψ(s, T ) can now be represented as

Ψ(s, T ) = a+(s, T )e−iT
∫ s
0 E+(ξ,T )dξ

Ψ+(s, T )

+a−(s, T )e−iT
∫ s
0 E−(ξ,T )dξ

Ψ−(s, T ) . (7)

Rewriting the equation (5) in terms of the coefficients a±(s, T ) we arrive
at the following linear system of two equations

ȧ+(s, T ) = −c∗(s, T )ei
∫ s

0
ω(ξ,T )dξa−(s, T ) ,

ȧ−(s, T ) = c(s, T )e−i
∫ s

0
ω(ξ,T )dξa+(s, T ) , (8)

where

c(s, T ) =
Θ̇

2
+

iφ̇

2
sinΘ = −1

2

[

B ×
(

B × Ḃ

)]

z

B2
√

B2
x + B2

y

+
i

2

(

B × Ḃ

)

z

B
√

B2
x + B2

y

,

ω(s, T ) = T (E+ − E−) − φ̇ cos Θ = µTB − Bz

B

(

B × Ḃ

)

z

B2
x + B2

y

. (9)

According to our assumptions we are looking for a solution to the system
(8) satisfying the following initial conditions a+(−∞, T ) = 1 and
a−(−∞, T ) = 0 and under this condition we are interested in the limits
lims→+∞ a−(s, T ) and limT→+∞ a−(+∞, T ).

The system (8) of equations can be easily solved directly by iterations
[17]. However the obtained form of solutions is not appropriate for taking
the adiabatic limit T → +∞. A well known form of solutions appropriate
for such a goal is provided by their Fröman–Fröman representation [9] which
can be further standardized as corresponding solutions to second order equa-
tions satisfied by each of the amplitudes a±(s, T ). Coefficients of the latter
equations can depend of course on the coefficients c and ω only but in a quite
complicated way (see (21) below). Therefore a success of the method we are
going to apply depends strongly on a dependence of the coefficients c and
ω on the B-field components. The above one given by (9) is however quite
complicated. Fortunately it can be simplified by a suitable unitary trans-
formation leaving the corresponding equations (8) invariant. The following
unitary operator does the job

U = e
1
2
iµT

s
∫

0

Bz(sT,T )dsσz

=











e
1
2
iµT

s
∫

0

Bz(sT,T )ds
0

0 e
− 1

2
iµT

s
∫

0

Bz(sT,T )ds











. (10)
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For the new amplitudes

[

a1(s, T )
a2(s, T )

]

we get

a1(s, T ) = e−i
∫ s

0
(φ̇+µTB) sin2 Θ

2
dσ cos

Θ

2
a+(s, T )

+e−i
∫ s
0 (φ̇−µTB) cos2 Θ

2
dσ sin

Θ

2
a−(s, T ) ,

a2(s, T ) = ei
∫ s
0 (φ̇−µTB) cos2 Θ

2
dσ+iφ(0) sin

Θ

2
a+(s, T )

−ei
∫ s
0 (φ̇+µTB) sin2 Θ

2
dσ+iφ(0) cos

Θ

2
a−(s, T ) . (11)

The transformation (10) does not change the form of Eq. (8) changing
only the corresponding functions c and ω. Namely we have

ȧ1(s, T ) = −Tc∗1(s, T )eiT
∫ s
0 ω1(ξ,T )dξa2(s, T ) ,

ȧ2(s, T ) = Tc1(s, T )e−i
∫ s

0
ω1(ξ,T )dξa1(s, T ) , (12)

where

c1 = − i

2
µB sinΘeiφ , ω1 = µB cos Θ . (13)

It is worth to note that the form (11) of the considered transforma-
tion provides us immediately with the asymptotic forms of the amplitudes
a1(s, T ) and a2(s, T ) for s → −∞ since the amplitudes a±(s, T ) can take ar-
bitrary values a±(−∞, T ) in this limit satisfying only the condition
|a+(−∞, T )|2 + |a−(−∞, T )|2 = 1. Namely we have simply in this limit

a1(s, T ) ∼ e−i
∫ s
0 (φ̇+µTB) sin2 Θ

2
dσ cos

Θ

2
a+(−∞, T )

+e−i
∫ s
0 (φ̇−µTB) cos2 Θ

2
dσ sin

Θ

2
a−(−∞, T ) ,

a2(s, T ) ∼ ei
∫ s
0 (φ̇−µTB) cos2 Θ

2
dσ+iφ(0) sin

Θ

2
a+(−∞, T )

−ei
∫ s

0
(φ̇+µTB) sin2 Θ

2
dσ+iφ(0) cos

Θ

2
a−(−∞, T ) . (14)

However, since we are going to consider the case a+(−∞, T ) = 1 and
a−(−∞, T ) = 0 then for this case we get for s → −∞

a1(s, T ) ∼ e−i
∫ s

0
(φ̇+µTB) sin2 Θ

2
dσ cos

Θ

2
,

a2(s, T ) ∼ ei
∫ s
0 (φ̇−µTB) cos2 Θ

2
dσ+iφ(0) sin

Θ

2
. (15)
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We can express further the amplitude a−(s, T ), in which we are inter-
ested, by the a1,2 ones inverting the transformation (11) to get

a−(s, T ) = ei
∫ s
0 (φ̇−µTB) cos2 Θ

2
dσ sin

Θ

2
a1(s, T )

+e−i
∫ s
0 (φ̇+µTB) sin2 Θ

2
dσ−iφ(0) cos

Θ

2
a2(s, T ) . (16)

Moreover we can always assume that a limiting value of the field B(sT, T )
for s → +∞ coincides with its z-component to be B+ = B(+∞, T ) =
(0, 0, B+), so that Θ(+∞, T ) = 0. Therefore in the limit considered we get
from (16)

a−(+∞, T ) = lim
s→+∞

e−i
∫ s
0 (φ̇+µTB) sin2 Θ

2
dσ−iφ(0)a2(s, T ) . (17)

Consequently it is the amplitude a2(s, T ) for which the above limit we
have to consider.

The system (12) can be rewritten further as the following linear system
of second order equations

ä1 −
(

ċ∗1
c∗1

+ iTω1

)

ȧ1 + |c1|2a1 = 0 ,

ä2 −
(

ċ1

c1
− iTω1

)

ȧ2 + |c1|2a2 = 0 , (18)

where the amplitudes a1,2 decouple from each other being however still re-
lated by (8).

By the following transformations

a1(s, T ) = e
1
2

∫ s

0

(

ċ∗1
c∗
1
+iTω1

)

dξ
b1(s, T ) ,

a2(s, T ) = e
1
2

∫ s

0

(

ċ1
c1

−iTω1

)

dξ
b2(s, T ) (19)

we bring the equations (18) to Schrödinger types

b̈1,2(s, T ) + T 2q1,2(s, T )b1,2(s, T ) = 0 , (20)

where

q2(s, T ) = − 1

4T 2

(

ċ1

c1
− iTω1

)2

+ |c1|2 +
1

2T 2

(

ċ1

c1
− iTω1

)·
(21)

while (for real s and T ) we have

q1(s, T ) = q∗2(s, T ) . (22)
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A dependence of the function q2(s, T ) on T is given by

q2(s, T ) =
1

4
µ2B2 − iµBz

2T

(

Ḃz

Bz
− ċ1

c1

)

+
1

2T 2

[

(

ċ1

c1

)·
− 1

2

(

ċ1

c1

)2
]

, (23)

where a dependence of B,Bz, c1 on T in (23) is also anticipated. By (22) we
get a corresponding dependence of q1(s, T ) on T .

The equations (20) are now basic for our further analysis since their form
is just of the stationary 1-D Schrödinger equation.

Taking into account (1) and (9) it is easy to check that the last formula
provides us with the following type of asymptotic behavior of q1.2(s, T ) for
large T :

q1,2(s, T ) = q
(0)
1,2(s) +

1

T
q
(1)
1,2(s) +

1

T 2
q
(2)
1,2(s) + . . . . (24)

Therefore the above form of dependence of q1,2(s, T ) on T permits us to
apply to the considered case the method of fundamental solutions. For this
reason we shall start the next section with a review of basic principles of the
method suitably adapted to the considered case.

3. Fundamental solutions and their properties

A construction of fundamental solutions related to a given q1,2(s, T ) has
been described in many of our earlier papers (see for example [10, 11, 18]).
This includes a notion of a Stokes graph and according to Fröman and
Fröman [9] and Fedoriuk [10], can be performed in the following way [11].

First let us note that both q1,2(s, T ) as functions of s are defined com-
pletely by an s-dependence of field B(Ts, T ). Since the latter by our as-
sumptions is meromorphic on some Riemann surface RB(T ) then, by (23),

q1,2(s, T ) are algebraic functions of B, Ḃ and B̈. Therefore, they are also
meromorphic functions of s defined again on some other Riemann surfaces
R1,2 determined by these algebraic dependencies. In spite of a possible
complexity of their topological structures limiting forms of the latter when
T → +∞ can be quite simple being determined basically by the first terms

q
(0)
1,2(s) of the expansions (24). In consequence, by (23), it should be deter-

mined by µB
(0)(s) i.e. by the first term of the expansion (1).

We shall introduce and discuss the fundamental solutions to the equa-
tions (20) focusing on the function q2(s, T ). An extension of the discussion
to the q1(s, T ) case will be obvious.
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Let Z denote a set of all the points of R2 at which q2(s, T ) has its single
or double poles. Let δ(x) be a meromorphic function on R2, the unique
singularities of which are double poles at the points collected by Z with
coefficients at all the poles equal to 1/4 each. (In a case when R2 is simply
a complex plain the latter function can be constructed in general with the
help of the Mittag–Leffler theorem [15]. But for a case of branched R2 the
general procedure is unknown to us). Consider now a function

q̃2(s, T ) = q2(s, T ) +
1

T 2
δ(s) . (25)

The δ-term in (25) (called the Langer term [11, 16]) plays an impor-
tant role in a construction of the fundamental solutions explained below.
This term contributes to (25) if and only when the corresponding ‘poten-
tial’ function q2(s, T ) contains simple or second order poles. (Otherwise the
corresponding δ-term is put to zero.)

To define a Stokes graph corresponding to the function q̃2(s, T ) we have
to define first Stokes lines emerging from roots (turning points) of q̃2(s, T ).
They satisfy one of the following equations:

ℑ
s
∫

si

√

q̃2(ξ, T )dξ = 0 (26)

with si being a root of q̃2(s, T ). We shall assume further a generic situation
when all roots si are simple.

Stokes lines which are not closed end at these points of R2 (i.e. have
the latter points as their boundaries) for which the action integral in (26)
becomes infinite. Of course, such points are singular for q̃2(s, T ) and they
can be its finite poles or its poles lying at an infinity.

Each such a singularity zk of q̃2(s, T ) defines a domain called a sector.
This is the connected domain of R2 bounded by Stokes lines and zk itself.
The latter is also a boundary for the Stokes lines being an isolated boundary
point of the sector (as it is in the case of the second order pole).

In each sector the LHS in (26) is only positive or only negative.
Considering now the equation (20) for b2(s, T ) and following Fröman

and Fröman [9] and Fedoriuk [10] we can define in each sector Sk having a
singular point zk at its boundary the following solution:

b2,k(s, T ) = q̃
− 1

4
2 (s, T )·eσiTW (s,T )χ2,k(s, T ) k = 1, 2, . . . , (27)
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where

χ2,k(s, T ) = 1 +
∑

n≥1

(

− σ

2iT

)n
s
∫

zk

dξ1

ξ1
∫

zk

dξ2 . . .

ξn−1
∫

zk

dξn

×Ω(ξ1)Ω(ξ2) . . . Ω(ξn)
(

1 − e−2σiT (W (s)−W (ξ1))
)

×
(

1 − e−2σiT (W (ξ1)−W (ξ2))
)

· · ·
(

1 − e−2σiT (W (ξn−1)−W (ξn))
)

(28)

with

Ω(s, T ) =
δ(s)

q̃
1
2
2 (s, T )

− 1

4

q̃ ′′
2 (s, T )

q̃
3
2
2 (s, T )

+
5

16

q̃ ′2
2 (s, T )

q̃
5
2
2 (s, T )

(29)

and

W (s, T ) =

s
∫

si

√

q̃(ξ, T )dξ , (30)

where si is a root of q̃(s, T ) lying at the boundary of Sk.
A sign of σ (=±1) and an integration path are chosen in (27) and (28)

in such a way to have:

σℑ (W (ξj) − W (ξj+1)) ≤ 0 (31)

for any ordered pair of integration variables (with ξ0 = s). A path with
this property is called canonical. Obviously, the condition (31) means that
b2,k(s, T ) vanishes in its sector when s → zk along the canonical path.

Now to ensure all the integrals in (28) to converge at the limit zk when
the latter is a first or a second order pole of q̃2(s, T ) or when the solutions
(27) are to be continued to such poles the Langer δ-term has to appear in (25)
and (29) what compensates possible divergencies. It follows from (29) that

each such pole zk demands a contribution to δ(s) of the form (2(s − zk))
−2,

what has been already assumed in the corresponding construction of δ(s).
It is now necessary to mention the main property of the fundamental

solution method which is that analytic continuations of fundamental solu-
tions along canonical paths ensures an immediate pass to adiabatic limit on
every stage of calculations performed with their use. This property can be
always utilized if all zeros of q̃-functions are simple and distributions of their
zeros and poles are discrete i.e. there are no accomodation points for these
singularities. We shall assume in the remainder that the two level energy
systems we are going to consider will satisfy the last conditions.
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4. The adiabatic limit in the fundamental solution approach

Let us consider a Stokes graph G2 corresponding to a given q̃2(s, T )

which is drawn on the Riemann surface
√

R2 corresponding to
√

q̃2(s, T ).
First let us notice that, in general, positions of singular points of q̃2(s, T )

such as its branch points and poles on the Riemann surface R2 depend on T .
This also means a dependence on T of jumps of q̃2(s, T ) on its cuts as well
as a T -dependence of coefficients of its poles.

Further, we can expect that, according to the property 5
◦ of the mag-

netic field B (see Sec. 2), a singular structure of q̃2(s, T ), i.e. positions of
its roots and poles, as well as cut jumps and pole coefficients, should change
smoothly if the adiabatic limit is taken achieving their final positions and
values respectively. This limiting structure is defined by a singularity struc-

ture of q̃
(0)
2 (s, T ) (see expansion (24)). Therefore, both a topology of

√
R2

and the associated Stokes graph G2 changes accordingly coinciding even-

tually with the Riemann surface

√

R
(0)
2 and with the Stokes graph G

(0)
2

corresponding to

√

q̃
(0)
2 (s, T ) . There are the following ways by which the

limiting structure can be achieved:
a. some of branch points and poles of q̃2(s, T ) escape to infinities of R2;
b. some of branch points and poles of q̃+(s, T ) approach the respective

singularities of q̃
(0)
2 (s, T );

c. some of branch points and poles of q̃2(s, T ) disappear because their
respective jumps and coefficients vanish in the limit T → +∞.

To be more specific we expect that a set S2 of all singular points of
q̃2(s, T ) (i.e. containing all its branch points and poles) will consist of three
well separated subsets S

inf
2 , S

van
2 and S

fin
2 when T becomes large enough.

The set S
inf
2 contains points which run to infinities of R2 when T → +∞.

The points contained in S
van
2 disappear in the latter limit while those of

the set S
fin
2 will coincide in this limit with the set S

(0)
2 of singular points of

q̃
(0)
2 (s, T ) .

Now let us remove the points contained in S
inf
2 ∪S

van
2 from the Riemann

surface R2 , i.e. let us consider these points as regular for q̃2(s, T ). Then R2

will transform into R
fin
2 — a Riemann surface which singular points coincide

with those of the set S
fin
2 .

Parallelly with the previous operation let us remove from
√

R2 also the
Stokes lines generated by the points of S

inf
2 ∪ S

van
2 so that the remaining

Stokes lines can be uniquely continued to form the Stokes graph G
fin
2 gener-

ated by the set S
fin
2 . It is then clear that the graph G

fin
2 will coincide with

G
(0)
2 in the limit T → +∞.
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We shall call both the above two operations — the adiabatic limit re-
duction or simply the reduction operation.

According to what we have mentioned earlier a set of sectors associated
with the graph G2 and a corresponding set of fundamental solutions defined
in them are transformed by the reduction operation to reduced forms i.e.

under this operation some sectors of G2 transform into corresponding sectors
of G

fin
2 whereas the others disappear. Obviously, the latter sectors are those

which disappear when the limit T → +∞ is taken.
A good illustration for the above discussion can be an example con-

sidered in Sec. 7, namely the Nikitin model of the atom–atom scattering,
for which the corresponding rescaled B-field is the following B(sT, T ) =
(

(

b2 + s2
)−3/2

, 0, 1
)

∆ǫ
µ . We can write for this case the corresponding Schrö-

dinger equation (20) using the amplitudes a±(s, T ) for which the respective
q±(s, T ) are following

q±(s, T ) =

[

∆ǫ

2

(

1+
1

(b2 + s2)3

)1
2

± i

2T

(

6s(b2 + s2)2

1 + (b2 + s2)3
− s

b2 + s2
− 1

s

)

]2

−3

2

i∆ǫ

T

s

(1 + (b2 + s2)3)
1
2 (b2 + s2)

5
2

− 1

2T 2

[

2s2 + b2(b2 + s2)

s2(b2 + s2)

− 3

2

4(b2 + s2)4(s2 − b2) − 4(b2 + s2)(b2 + 5s2) + 3s2(b2 + s2)

(1 + (b2 + s2)3)2

]

. (32)

Equations (32) show that in the limit T → +∞ the Stokes graph for the
considered problem is determined by the function

q(0)(s, T ) =
(∆ǫ)2

4

(

1 +
1

(b2 + s2)3

)

. (33)

The graph is shown in Fig. 1.
While each of q±(s, T ) has 40 roots, five branch points at s = ±ib and

at s = sk = ±
(

e
(2k+1)πi

3 − b2
)

1
2

, k = 1, 2, 3, as well as two poles at s = 0,

there are only six roots at s = sk, k = 1, 2, 3 and only two poles at s = ±ib
for q(0)(s, T ).

The functions q±(s, T ) are determined on two sheeted Riemann surfaces
R± respectively with the branch points at s = ±ib and at s = sk, k = 1, 2, 3
and with 40 roots distributed into halves on each sheet of the surfaces.
Therefore the Riemann surfaces

√
R± corresponding to

√

q±(s, T ) are four-
sheeted with these 40 roots being square root branch points on them. When
T → +∞ only six of these branch points survive coinciding with the six roots
of q(0)(s, T ) at s = ±sk, k=1,2,3 whereas R± transform into the complex
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Fig. 1. The Stokes graph corresponding to q
(0)
−

(s).

s-plane since the branch points of q±(s, T ) at s = ±ib disappear, being
transformed into the second order poles of q(0)(s, T ). It is easy to check
however that for a finite but large T these six roots of q(0)(s, T ) are each
split initially into two. The split is the result of the square root branch
points at s = ±ib to which the recovering of the finite T transforms the
poles of q(0)(s, T ) at the same points. The two copies of each of these six
roots lie of course on different sheets of R±. Next, each of these 12 roots is
still split into three by the same reason of finiteness of T . In this way, on
each of the two sheets of R± there are 36 roots grouped by three around
their limit s = ±sk, k = 1, 2, 3 achieved for T → +∞.

The remaining four roots of q±(s, T ) are displaced in two pairs, one pair
on each sheet of R±, close to the points s = 0 at which the second order
poles of q±(s, T ) are localized. When T → +∞ the roots in each pair
collapse into s = 0 multiplying the corresponding second order poles and
thus causing mutual cancellations of the latter and themselves in this limit.

Now let us focus our attention on the Stokes graph G− generated by
q−(s, T ) on the first sheet of R− as well as on the remaining ones. It looks
as in Fig. 2.

(The Stokes graph G+ corresponding to q+(s, T ) can be obtained from G−
by complex conjugation of the latter.) On the figure the wavy lines denote
the cuts corresponding to the branch points of the fundamental solutions
defined on R−. The sheet in Fig. 2 cut along the wavy lines defines a domain
where all the fundamental solutions b−,1(s, T ), . . . , b−,2̄(s, T ) defined in the
corresponding sectors S1, . . . , S2̄ (shown in the figure) are holomorphic.
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γ →

Fig. 2. The Stokes graph corresponding to q
−

(s, T ).

According to our earlier description of the behavior of the Riemann sur-
face

√
R+ when T → +∞ the set S

inf
− corresponding to the considered case

is empty, S
van
− contains four points at s = 0 on each of the four sheets of

√

R− (these four points correspond to the second order poles of q−(s, T ))

and the four branch points close to s = 0, while S
fin
− contains all the remain-

ing singular points of
√

q−(s, T ).

5. Systems which are not essentially different from their
adiabatic limits (NED systems)

The last example considered above shows us also that by changing the
amplitude representation to the a1,2 ones we get much simpler s-dependence
for the corresponding functions q1,2 defining Eqs. (20) and for their adiabatic

limit q
(0)
1,2. Namely for the interesting us amplitude a2 we have

q2(s, T ) =
1

4
(∆ǫ)2

(

1 +
1

(b2 + s2)3

)

− 3ı∆ǫ

2T

s

b2 + s2
− 3

4T 2

2b2 + s2

(b2 + s2)2
,

q
(0)
2 (s) =

1

4
(∆ǫ)2

(

1 +
1

(b2 + s2)3

)

. (34)

It is seen from (34) that both the functions q2(s, T ) and q
(0)
2 (s) have the

same Riemann surfaces, namely the simple complex plain on which they have
poles in exactly the same points. They differ only by positions of their zeros
the latter being in a mutual one-to-one correspondence so that each zero of
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q
(0)
2 (s) is an adiabatic limit of the corresponding zero of q2(s, T ). Therefore

the Stokes graphs corresponding to both these functions are topologically
equivalent having the forms of Fig. 1

As a consequence of this an application of the fundamental solution

method to the cases of Eqs. (20) with respective q2(s, T ) and q
(0)
2 (s) func-

tions gives the same adiabatic limit for both these cases. We shall describe
such a situation as corresponding to a system which do not differ essentially
from its adiabatic limit and we shall call such a system the not-essentially-
different one (the NED-system).

It follows from the above discussion that the NED property is not an
immanent one for a system but can be achieved by choosing a suitable
amplitude representation for a system.

6. Transition amplitudes for NED systems

As it follows from the discussion of the previous section systems with the
NED properties allow us for as easy canonical continuations of fundamental
solutions of interests as they are for their corresponding adiabatically re-
duced forms. Therefore for such systems we can consider them applying an
exact procedure or using the adiabatical limit for the latter to get correct
results for adiabatical limit transition amplitudes.

Fig. 3. The Stokes graph corresponding to q2(s, T ) of a NED system.
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We shall apply the procedure of canonical continuation of fundamental
solutions to the amplitude a2(s, T ). First we have to express this amplitude
by the fundamental solutions and to satisfy the second of the conditions (15).
Canonically continued to −∞ with simple results of such continuations are
the solutions b2,1(s, T )and b2,1̄(s, T ) corresponding to the sectors S1 and S1̄

respectively shown in Fig. 3 representing a Stokes graph corresponding to a
general NED system. We have

a2(s, T ) = e
∫ s

0
1
2

(

ċ1
c1

−iω1

)

(σ,T )dσ
(Ab2,1̄(s, T ) + Db2,1(s, T )) , (35)

where

b2,1̄(s, T ) = q
−1/4
2 (s, T )e

−iT
∫ s
s1̄

√
q2(ξ,T )dξ

χ2,1̄(s, T ) ,

b2,1(s, T ) = q
−1/4
2 (s, T )e

iT
∫ s
s1

√
q2(ξ,T )dξ

χ2,1(s, T ) , (36)

and where we have assumed the positive real value of
√

q2(s, T ) on the
physical sheet. The lower integration limits in (36) are respective zeros of
q2(s, T ) shown in Fig. 3.

Taking into account that

ċ1

c1
=

Ḃ

B
+ Θ̇ cotΘ + iφ̇ ,

Ḃz

B
=

Ḃ

B
cos Θ − Θ̇ sinΘ , (37)

we get in the limits s → ±∞ along the real axis

iT
√

q2(s, T ) ∼ 1

2
iµTB +

1

2

Bz

B

(

Ḃz

Bz
− ċ1

c1

)

=
1

2
iµTB − Θ̇

2

1

sinΘ
− 1

2
iφ̇ cosΘ , (38)

so that

1

2

(

ċ1

c1
− iω1

)

+ iT
√

q2 ∼ (iφ̇ + iµTB) sin2 Θ

2
+

1

2

Ḃ

B
− Θ̇

2
tan

Θ

2
,

1

2

(

ċ1

c1
− iω1

)

− iT
√

q2 ∼ (iφ̇ − iµTB) cos2
Θ

2
+

1

2

Ḃ

B
+

Θ̇

2
cot

Θ

2
(39)

in both the limits.
It is now easy to show that Eqs. (35)–(39) provide us with the following

asymptotic form of the amplitude a2(s, T ) for s → −∞
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a2(s, T ) ∼ A

(

µB−
2

)−1/2

× 1

sin Θ0
2

e
∫

−∞

0

[

1
2

(

ċ1
c1

−iω1

)

−iT
√

q2−i(φ̇−µTB) cos2 Θ

2
− Θ̇

2
cot Θ

2

]

dσ−iT
∫ 0
s1̄

√
q2dσ−iφ0

×e
∫ s

0
i(φ̇−µTB) cos2 Θ

2
dσ+iφ0 sin

Θ

2
+ D

(

µB−
2

)− 1
2 1

cos Θ0
2

×e
∫

−∞

0

[

1
2

(

ċ1
c1

−iω1

)

+iT
√

q2−i(φ̇+µTB) sin2 Θ

2
− Θ̇

2
tan Θ

2

]

dσ+iT
∫ 0

s1

√
q2dσ−iφ0

×e
∫ s

0
i(φ̇+µTB) cos2 Θ

2
dσ+iφ0 cos

Θ

2
, (40)

where Θ0 = Θ(0), φ0 = φ(0) and the infinite integrals in the above formulae
are finite.

Comparing now the formula (40) with (14) and (15) we see that we have
to put D = 0 in the formula (35) while for the coefficient A we get

A =

(

µB−
2

)
1
2

sin
Θ0

2

×e
∫ 0
−∞

[

1
2

(

ċ1
c1

−iω1

)

−iT
√

q2−i(φ̇−µTB) cos2 Θ

2
− Θ̇

2
cot Θ

2

]

dσ+iT
∫ 0
s1̄

√
q2dσ+iφ0

.(41)

Consequently it is the solution b2,1̄(s, T ) which will be continued canon-

ically to the sectors n+1 and n + 1 from which it is subsequently continued
to +∞ of the real s-axis. According to the figure this canonical continuation
can be done by representing b2,1̄(s, T ) first as a linear combination of the
next two fundamental solutions b2,2(s, T ) and b2,2̄(s, T ) defined in the re-
spective sectors 2 and 2̄. Next the latter two solutions have to be expressed
in the same way by a pair of fundamental solutions of the sectors 3 and 3̄
and so on up to the moment when the fundamental solutions of the sec-
tors n + 1 and n + 1 enter this procedure. Representing the corresponding
fundamental solutions in the form

b2,k(s, T ) = q
− 1

4
2 (s, T )e

iT
∫ s
sk−1

√
q2(ξ,T )dξ

χ2,k(s, T ) ,

b2,k̄(s, T ) = q
− 1

4
2 (s, T )e

−iT
∫ s

sk−1

√
q2(ξ,T )dξ

χ2,k̄(s, T ), k = 2, 3, . . . , n + 1

(42)

this chain of operations can be handled by the following multiplications of
matrices
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M = M1M2 . . . Mn ,

M1 =
1

χ2,2→2̄

[

0 0
−iα1̄,1χ2,1̄→2̄ χ2,1̄→2

]

,

Mk =
1

χ2,k+1→k+1

[

eβkχ2,k→k+1 iαk̄,ke
βkχ2,k→k+1

−iαk̄,ke
βk̄χ2,k̄→k+1 eβk̄χ2,k̄→k+1

]

,

αk̄,k = e
iT
∫ sk

s
k̄

√
q2(s,T )ds

,

βk+1 = iT

sk+1
∫

sk

√

q2(s, T )ds ,

βk+1 = −iT

s
k+1
∫

sk̄

√

q2(s, T )ds , k = 1, . . . , n (43)

so that

b2,1̄(s, T ) = M21b2,n+1(s, T ) + M22b2,n+1(s, T ) . (44)

Let us note that the phase integrals defining the coefficients βk and
βk̄, k = 2, . . . n, are purely imaginary. Moreover the coefficients αk̄,k, k =
1, . . . , n, become pure real and equal to each other while the coefficients
βk become equal to −βk̄, k = 2, . . . , n in the adiabatic limit T → +∞.
To be more precise in these latter statements let s′

k̄
, k = 1, . . . , n, denote

points where the antiStokes line emanating from sk̄, k = 1, . . . , n, crosses
the Stokes line passing by the points s1, s2, . . . , sn. Then by the assumption
8
◦ of Sec. 2 we have

sk
∫

sk̄

√

q2(s, T )ds =

s′
k̄
∫

sk̄

√

q2(s, T )ds +

sk
∫

s′
k̄

√

q2(s, T )ds

=

s′
k
∫

sk̄

√

q2(s, T )ds + O

(

1

T

)

,

s′
k
∫

sk̄

√

q2(s, T )ds =

s′1
∫

s1̄

√

q2(s, T )ds ,
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s
k+1
∫

sk̄

√

q2(s, T )ds =

s′
k+1
∫

s′
k̄

√

q2(s, T )ds

=









sk
∫

s′
k̄

+

sk+1
∫

sk

+

s′
k+1
∫

sk+1









√

q2(s, T )ds

=

sk+1
∫

sk

√

q2(s, T )ds + O

(

1

T

)

, k = 1, . . . , n (45)

i.e. each point s′
k̄
, k = 2, . . . , n tends to its corresponding limit sk, k =

2, . . . , n when T → +∞ with the rates shown in (45).
Rewriting Eqs. (35) as

a2(s, T ) = Ae
1
2

∫ s
0

(

ċ1
c1

−iTω1

)

dξ
b2,1̄(s, T ) (46)

and taking into account (17) we get

a−(+∞, T ) = M21

(

B−
B+

)1
2

sin
Θ0

2

× exp







0
∫

−∞

[

1

2

(

ċ1

c1
− iω1

)

− iT
√

q2 − i(φ̇ − µTB) cos2
Θ

2
− Θ̇

2
cot

Θ

2

]

ds

+

+∞
∫

0

[

1

2

(

ċ1

c1
− iTω1

)

+ iT
√

q2 − i(φ̇ + µTB) sin2 Θ

2

]

ds

+ iT

∫ 0

s1̄

√
q2dσ + iT

∫ 0

sn

√
q2ds

}

(47)

since the second term in (44) vanishes in the limit s → +∞ along the real
axis (because Θ(+∞, T ) = 0 by assumption).

The formula (47) is just the one which corrects the erroneous formula
(29) of the paper [1] (as well as the other formulae corresponding to other
cases considered in the cited paper).

It should be stressed that the formula (47) is exact. In this form it
looks however very complicate because of the complicated structure of the
matrix element M21. The latter is polynomial with respect to the coefficients
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αk̄,k, k = 1, . . . , n, and rational with respect to the χ-coefficients. Exposing
its linear terms in α’s we get for it

M21 = −i

n
∏

k=2

χ−1
k̄→k

n
∑

k=1

e
iT
∫ sk
s
k̄

√
q2(s,T )ds−iT

∫ s
k̄

s1̄

√
q2(s,T )ds+iT

∫ sn
sk

√
q2(s,T )ds

×χk̄→k+1

k−1
∏

l=1

χl̄→l+1

n
∏

l=k+1

χl→l+1 + · · · . (48)

Nevertheless in the adiabatic limit T → +∞ the formulae (47) and (48)
simplify greatly since then all χ’s coefficients of M21 become equal to 1
and in the multiplication of the limiting matrices Mk’s, k = 1, . . . , n, all
terms containing powers of the factors αk̄,k, k = 1, . . . , n higher than the
first ones have to be neglected. Further everywhere where B(s, T ) 6= 0 the

adiabatic limits T → +∞ of 1
2

(

ċ
c − iTω

)

± iT
√

q2(s, T ) are exactly the
same in their forms as those for s → ±∞ given by (39). The condition
B(s, T ) 6= 0 is satisfied obviously for the integrals in the formula (47) taken
along the real axis. However the phase integrals defining the element M12

are taken between zeros of
√

q2(s, T ) which in the adiabatic limit coincide
with the ones of B0(s). Nevertheless this trouble can be easily avoided by
representing the corresponding integrations linking pairs of zeros (sk̄, sk),
(s1̄, sk̄) and (sk, sn), k = 1, . . . , n, by the ones along closed contours Csk̄sk

,
Cs1̄sk̄

and Csksn , surrounding respective pairs of zeros. The same idea applies
to the two integrations between the pair of points (s1̄, 0) and (sn, 0) except
that the corresponding contours Cs1̄0 and Csn0 are not closed but starts and
ends at s = 0 points lying on two different sheets of RB. Therefore making
first use of Eqs. (45) we can apply the asymptotics (39) to all the phase
integrals in formulae (47) and (48) so that the former takes the following
form when the integration along the real axis is performed

aad
− (+∞, T ) = −i tan

Θ0

2
e

1
4

(

∫

Cs1̄s1
+
∫

Cs1̄0
+
∫

Csn0

)

(

iµTB− Θ̇

sinΘ
−iφ̇ cosΘ

)

ds

×
n
∑

k=1

e
− 1

4

(

∫

Cs1sk
−
∫

Csksn

)

(

iµTB− Θ̇

sin Θ
−iφ̇ cos Θ

)

ds
, (49)

where it is assumed that all the quantities are now determined by the asymp-
totic field B0.

In the present form of the formula (49) only the integrations of the middle

term − Θ̇

sinΘ
in the exponents can be performed explicitly (since

∫

Θ̇

sinΘ
ds =

ln tan Θ

2 ). First let us note that because Θ̇

sinΘ
= 1

2

(

Ḃ0−Ḃ0,z

B0−B0,z
− Ḃ0+Ḃ0,z

B0+B0,z

)

,
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so that ln tan Θ

2 = 1
2 ln

B0−B0,z

B0+B0,z
, we can always choose all the integration

contours in (49) in such a way to avoid possible roots of B0,z ± B0 = 0 so
that the unique singularities which remain inside these contours are branch

points of B0(s). Therefore to the corresponding integrals of − Θ̇

sinΘ
along the

closed contours Cs1sk
, Csksn , k = 1, . . . , n, and Cs1̄s1 can contribute only

roots of the function F (s) ≡ B0(s)−B0,z(s)
B0(s)+B0,z(s) . Net results of these contributions

depends however on details of mapping of the s-Riemann surface on the
F -one. If after such a mapping a closed contour Cγ rounds the zero point
of the F -plane nγ times (we take nγ to be positive for anticlock orientation
of the contour and negative for the opposite case) then a contribution of

this zero point to the corresponding contour integral of − Θ̇

sinΘ
is −iπnγ .

The remaining two open integrals along the contours Cs1̄0 and Csn0 can
contribute only by their limits giving

−1

4







∫

Cs1̄0

+

∫

Csn0







Θ̇

sinΘ
= − ln tan

Θ0

2
+ il

π

2
(50)

with some integer l since B0,z(s) is regular at the points s1̄, sn and values

of B0(s) on both the sheets differ by sign so that F2(0) = F−1
1 (0) where

F1,2(0) are values (both real) of F (s) at s = 0 on the ‘first’ and ‘second’
sheets respectively.

Therefore we obtain the following final result

aad
− (+∞, T ) = −il+1e−

1
4
iπns1̄s1 e

1
4

(

∫

Cs1̄s1
+
∫

Cs1̄0
+
∫

Csn0

)

(iµTB−iφ̇ cos Θ)ds

×
n
∑

k=1

e
1
4
iπ(ns1sk

−nsksn )e
− 1

4

(

∫

Cs1sk
−
∫

Csksn

)

(iµTB−iφ̇ cosΘ)ds
. (51)

Since φ̇ cos Θ =
B0,z

B0

B0,xḂ0,y−B0,yḂ0,x

B2
0−B2

0,z

we can shrink all the integrations

in (51) to paths linking respective points to get

aad
− (+∞, T ) = −il+1e−

1
4
iπns1̄s1 e

1
2

(

∫ s1
s1̄

+
∫ 0
s1̄

+
∫ 0
sn

)

(iµTB−iφ̇ cosΘ)ds

×
n
∑

k=1

e
1
4
iπ(ns1sk

−nsksn )e
− 1

2

(

∫ sk
s1

−
∫ sn

sk

)

(iµTB−iφ̇ cosΘ)ds
. (52)

We should remember that all the integrations in (52) run along paths
avoiding roots of the equations B0,z ± B0 = 0.
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For the corresponding transition probability we obtain

P ad
− (T ) = e

−ℑ
∫ s1
s1̄

(µTB−φ̇ cos Θ)ds

×
∣

∣

∣

∣

∣

n
∑

k=1

e
1
4
iπ(ns1sk

−nsksn )e
− 1

2

(

∫ sk
s1

−
∫ sn

sk

)

(iµTB−iφ̇ cosΘ)ds

∣

∣

∣

∣

∣

2

. (53)

Formulae similar to (52) and (53) have been found by Joye, Mileti and
Pfister [5]. In fact if we apply the assumptions made in the last paper by
its authors these formulae become identical, up to an overall phase in (52),
with the corresponding ones found by the authors mentioned.

The last formulae take on particularly simple forms for the case of two
turning points lying on the upper Stokes line drawn on Fig. 3. when the
equations B0,z ± B0 = 0 have no solutions inside the strip bounded by
the two Stokes lines on Fig. 3 and on the lines themselves. We can then
deform all integration paths in the formula (52) to ones along the Stokes
and antyStokes lines so that the corresponding integrals will have explicitly
pure real or pure imaginary values. We get for this case

aad
− (+∞, T ) = −il+1e−

1
4
iπns1̄s1 e

1
2

(

∫ s1
s1̄

+
∫ 0
s1̄

+
∫ 0
s2

)

(iµTB−iφ̇ cosΘ)ds

×
(

e
1
4
iπns1s2 e

− 1
2

∫ s2
s1

(iµTB−iφ̇ cosΘ)ds
+ e−

1
4
iπns1s2 e

1
2

∫ s2
s1

(iµTB−iφ̇ cosΘ)ds
)

= −2il+1e
− 1

4
iπns1̄s1+ 1

2
iℜ
(

+
∫ 0
s1̄

+
∫ 0

s2

)

(µTB−φ̇ cos Θ)ds
e
− 1

2
ℑ
∫ s1

s1̄
(µTB−φ̇ cosΘ)ds

× cos

(

1

2
ℜ
∫ s2

s1

(

µTB − φ̇ cos Θ

)

ds − 1

4
πns1s2

)

(54)

so that for the corresponding transition probability we get

P ad
− (+∞, T ) = e

−ℑ
∫ s1
s1̄

(µTB−φ̇ cosΘ)ds

× cos2
(

1

2
ℜ
∫ s2

s1

(

µTB − φ̇ cos Θ

)

ds − 1

4
πns1s2

)

. (55)

7. Examples of NED systems

An example of a class of fields B with the NED property has been
considered recently by Berman et al. [17]. The fields are defined by putting
Bz(sT, T ) = B∞, Bx(sT, T ) = f(s) cos(ω0sT ), By(sT, T ) = f(s) sin(ω0sT )
with f(s) having the properties 1

◦–3◦ of the field B and vanishing at both
infinities of the real axis. This problem is however unitary equivalent to
the one with the field B = [f(s), 0, B∞ − ω0

µ ] so that for this case we have

B =

√

(

Ω

µ

)2
+ f2(s) where Ω = µB∞ − ω0 and φ̇ ≡ 0.
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Assuming for f(s) properties desired by the assumption 1
◦–8◦ of Sec. 2

we get using the formula (52)

aad
− (+∞, T ) = −il+1e−

1
4
iπns1̄s1 e

1
2
iµT

(

∫ s1
s1̄

+
∫ 0
s1̄

+
∫ 0

sn

)

√

(

Ω

µ

)2
+f2(s)ds

×
n
∑

k=1

e
1
4
iπ(ns1sk

−nsksn )e
− 1

2
iµT

(

∫ sk
s1

−
∫ sn
sk

)

√

(

Ω

µ

)2
+f2(s)ds

, (56)

where s1̄ and sk, k = 1, . . . , n, are roots of the equations f(s) = ±iΩ

µ .

If there are only two turning points s1 and s2 then according to formula
(54) we get

aad
− (+∞, T ) = −2il+1e

− 1
4
iπns1̄s1+ 1

2
iµTℜ

(

+
∫ 0
s1̄

+
∫ 0
s2

)

√

(

Ω

µ

)2
+f2(s)ds

×e
− 1

2
µTℑ

∫ s1
s1̄

√

(

Ω

µ

)2
+f2(s)ds

cos





1

2
µTℜ

s2
∫

s1

√

(

Ω

µ

)2

+ f2(s)ds − 1

4
πns1s2



.

(57)

It is now not difficult to establish that the contour Cs1s2 rounds the zero
point on the F -plane twice (see Fig. 4 and Fig. 5). Therefore we obtain
finally for this case

aad
− (+∞, T ) = −2il+1e

− 1
4
iπns1̄s1+ 1

2
iµTℜ

(

+
∫ 0
s1̄

+
∫ 0

s2

)

√

(

Ω

µ

)2
+f2(s)ds

×e
− 1

2
µTℑ

∫ s1
s1̄

√

(

Ω

µ

)2
+f2(s)ds

sin





1

2
µTℜ

s2
∫

s1

√

(

Ω

µ

)2

+ f2(s)ds



 (58)

and for the corresponding transition amplitude

P ad
− = 4e

−µTℑ
∫ s1

s1̄

√

(

Ω

µ

)2
+f2(s)ds

sin2





1

2
µTℜ

s2
∫

s1

√

(

Ω

µ

)2

+ f2(s)ds



. (59)

The last two formulae have been obtained earlier by Nikitin and Uman-
skii [18] as well as by Crothers [20] and by Davies and Pechukas [21] using
the steepest-descent methods.

As a second example we shall consider again the Nikitin Hamiltonian
for the atom–atom scattering. The model of Nikitin [19] describes the scat-
tering A ∗ +B → A + B + ∆ǫ of the exited atom A∗ moving with a small
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µ
Ω

µ
Ω

µ
Ω

µ
Ω

Fig. 4. The integration contour Cs1s2
mapped into the f -plane.

Fig. 5. The integration contour Cs1s2
mapped into the F -plane.

velocity v with the impact parameter b′ and scattered by the atom B. The
interaction between the atoms is of the dipol–dipol type. The latter exam-
ple was analyzed in the context of the adiabatic limit v → 0 also by Joye
et al. [5].

The Hamiltonian for this system reads ( [18], paragraph 9.3.2 and [19]):

H(R) =





∆ǫ
2

C
R3

C
R3 −∆ǫ

2



 , (60)

where ∆ǫ and C are constants and R =
√

b′2 + v2t2 is the distance between

the atoms. Introducing d = (2C/∆ǫ)
1
3 as a natural distant unit for this

case and T = d/v as the corresponding adiabatic parameter and rescaling:
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t → sT and b′ → bd we get from (60):

H(s) =
∆ǫ

2









1 1

(b2+s2)
3
2

1

(b2+s2)
3
2

−1









. (61)

In the ‘magnetic field’ language we have of course B(sT, T ) =
(

(

b2 + s2
)− 3

2 , 0, 1
)

∆ǫ
µ so that all the assumptions 1

◦ − 8
◦ above are sat-

isfied with B
±(T ) = B

±(±∞, T ) = (0, 0, 1)∆ǫ
µ .

Obviously the last form of the B-field shows that it belongs to the class
of Berman et al. with two turning points on the “main” Stokes line (see
Fig. 1) so that the formulae (58) and (59) are applicable readily.

8. Discussion and conclusions

In our present calculations of the adiabatic limit for the transition ampli-
tudes in the two energy level systems we have corrected erroneous formulae
of our previous paper [1]. We have considered systems with the NED proper-
ties, i.e. for which their corresponding Stokes graphs do not differ essentially
from their adiabatic limit forms. We have shown that for the two energy
level systems the method of fundamental solutions provides us in an elegant
way both with the exact and with approximate results the latter obtained
in the adiabatic limit T → +∞.

A formula (52) which gives the corresponding transition amplitudes in
the adiabatic limit shows that these amplitudes result as an interference of
contributions coming from all complex conjugated pairs of turning points
lying on the same complex conjugated Stokes lines of the respective limiting
Stokes graph. Up to an overall phase it coincides with the one of Joye, Mileti
and Pfister [5].

Let us however discuss by a moment basic differences between our ap-
proach and the authors just mentioned. In fact these approaches differ es-
sentially by using different solutions and different methods of their analytical
continuations along corresponding Stokes graphs. In our case we consider
both assumed global properties of corresponding Stokes graphs and a defi-
nite set of exact solutions accompanied them — the funadamental solutions.
Analytical continuations of the latter are performed along canonical paths
leaving turning points of the Stokes graphs far away. Such a continuation
ensures to get both an exact and immediately an approximate formulae for
the transition amplitudes. No detailed estimations of the adiabatic limit at
each step of such analytical continuation are necessary. This limit can be
obtained almost automatically for final exact results.
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Contrary to our method the one of the authors of [5] uses (approximate)
solutions continued along the “basic” Stokes line and because of that passing
by turning points lying on this line. Of course these are these latter points
which demand detailed estimations of solutions of corresponding comparison
equations used by the authors mentioned for analytic continuation, since
turning points become singular for these solutions in the adiabatic limit.

A particularly simple formula for the transition amplitudes follows from a
general one (54) when the latter is applied to the NED systems considered by
Berman et al. [17] with two turning points on the “main” Stokes line. Namely,
it obtains then the form (58) found earlier by Nikitin and Umanskii [18] as
well as by Crothers [20] and by Davies and Pechukas [21] using the steepest-
descent methods.
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