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We extend results of the recent paper by Kobayashi and Shimbori [Phys.
Rev. A65, 042108 (2002)] to a large class of noncentral potentials. Namely,
we have shown that zero-energy states of the central potentials considered

by these Authors [Va(ρ) = −a2gaρ
2(a−1) with ρ =

√

x2 + y2 and a 6= 0]
and noncentral potentials discussed here, have both common set of solutions
given by wave functions of the parabolic potential barrier (PPB). Moreover,
it is observed that first few members of the infinite set of functions cancel
the quantum correction to the classical Hamilton–Jacobi equation. The
exact classical limit of quantum mechanics is thus precisely reached for
them with no approximation involved.

PACS numbers: 03.65.–w, 03.65.Sq

1. Introduction

Studying of the Schrödinger equation with the parabolic potential bar-
rier (PPB), that is, with the inverted harmonic oscillator potential, has a
very long history [1]. The one-dimensional (1D) barrier of this shape has
been considered as a convenient model of an unstable system in quantum
mechanics [2–6]. Some other important applications of the model include
masers [7], reactive scattering [8], paradoxical aspects of the tunneling [9],
anomalous symmetry breaking in quantum mechanics [10], semiconductor
physics [11] and chemical problems [12, 13].

Solutions of the Schrödinger equation for the PPB are well-known both
for the 1D [1, 2, 5, 11] and 2D [14, 15] variants of the barrier. The wave
functions for the latter case have two very interesting features. Namely, it is
a quite surprising and remarkable observation made recently by Kobayashi
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and Shimbori [15], that all the zero-energy (E = 0) solutions for the class of
the 2D central potentials

Va(ρ) = −a2gaρ
2(a−1) (1)

with ρ =
√

x2 + y2, (a 6= 0) ∈ R, ga = const. > 0, can be represented by
the same functions as for the 2D PPB. To prove that, one needs to use a
suitable conformal mapping. The other interesting property of the states is
that the infinite degeneracy in the PPB case also appears for all potentials
Va(ρ).

The states corresponding to the value of E = 0 were recently used for
creation of vortex patterns [15] and vortex lattices [16] in quantum mechan-
ics. It was also shown [17–21] that some of the states lead to the exact
classical limit of quantum mechanics, i.e. to the case when the quantum
correction to the classical Hamilton–Jacobi equation is exactly zero.

In this paper, we shall show that the recent results of Kobayashi and
Shimbori [15] can all be almost trivially extended to a large class of noncen-

tral potentials. In consequence, their wave functions have again the same two
important features as those mentioned above for the 2D central parabolic
potential barrier.

The plan of our paper is as follows. In Sec. 2 we shall show how to
reduce the Schrödinger equation to the problem of the inverted 2D oscillator.
Thus, the known solutions of the model can be used at once to a large class
of potentials, including noncentral ones. In Sec. 3, vanishing of the Bohm
potential, that is, the quantum correction to the classical equation of the
motion, will be proved for some of the solutions. The paper concludes with
Sec. 4.

2. Conformal mapping

Let us consider the stationary Schrödinger equation in 2D space of vari-
ables (x, y)

[

−
~

2

2m
∆x,y + V (x, y)

]

ψ(x, y) = Eψ(x, y) . (2)

Now, we can use a conformal transformation, which is any analytic trans-
formation between two complex variables, say w = f(z), with dw/dz dif-
ferent from zero. If the function f(z) = u(x, y) + iv(x, y) is analytic at the
point z = x + iy, then with the help of the Cauchy–Riemann equations
∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x, we can write for the Laplacian
operator ∆x,y

∆x,y =
∣

∣f ′(z)
∣

∣

2
∆u,v , (3)
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where f ′(z) = df/dz and ∆u,v = ∂2/∂u2 +∂2/∂v2. This well-known relation
can be used for an extension of the wave functions discussed in Ref. [15] to
the case of noncentral potentials.

To this end, let us specify the potentials as

V (u, v) = −
c2

2m

∣

∣f ′(z)
∣

∣

2 (

u2 + v2
)

. (4)

Then, for E = 0, we have
[

∆u,v +
c2

~2

(

u2 + v2
)

]

ψ(u, v) = 0 . (5)

This is the well-known equation of the 2D isotropic parabolic potential
barrier in the (u, v) plane. The exact solutions of the eigenvalue prob-
lem for arbitrary E [14] correspond to the imaginary eigenvalues given by
±i(nu + nv + 1)~c/m and ±i(nu − nv)~c/m. Zero-energy states are in the
latter case obtained for zero and positive integers satisfying nu = nv.

In both cases, the solutions of Eq. (5) can be given in an explicit form.
Since the way of finding them and their properties has already been discussed
in detail [14, 15], we shall restrict ourselves to the list of solutions for zero-
energy states only, and propose a concise comment on them. This choice is
motivated by the content of the next section of our paper.

Let us begin with the simplest zero-energy solutions of Eq. (5) which are
represented by two-dimensional plane waves

ψ0(u, v) = N exp

{

±
ic

2~

[(

u2 − v2
)

cosα+ 2uv sinα
]

}

(6)

with N being, in general, a complex constant, and where α is an arbitrary
angle. Because of the freedom in choosing the value of α there are infinitely
many functions of the form of Eq. (6) corresponding to the energy E = 0.
The signs +/− distinguish between outward/inward moving particles.

Another set of solutions can be generated by an analytic continuation
method from the solutions of the ordinary 2D harmonic oscillator. Thus, we
have

ψn(u, v) = MH±
n

(

u

√

c

~

)

H∓
n

(

v

√

c

~

)

exp

[

±
ic

2~

(

u2 − v2
)

]

, (7)

where the polynomials Hn(ξ) are derivable from the relation [5] H±
n (ξ) =

(∓i)n exp (∓iξ2)(dn/dξn) exp(±iξ2) with [H±
n (ξ)]∗ = H∓

n (ξ), and n =
1, 2, . . ., whereas M is an arbitrary complex constant. The functions (7)
also correspond to the energy E = 0 and we meet here one more type of
infinite degeneracy arising from the freedom in using various values of n.
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For completeness, we add a solution of Eq. (5) which is not derivable by
the method outlined in Refs. [14] and [15]. It reads

ψs(u, v) =
(

u2 − v2
)

exp

[

±
ic

~
uv

]

(8)

and the method of obtaining the function will be given in the next section.

Once we have described explicitly the solutions of Eq. (5) we can give
few examples of potentials to which they apply. If the mapping f(z) = za/2

is used, then, with c2/8m = ga, we can derive at once from Eq. (4) all the
central potentials in Eq. (1). For a = 2, the inverted 2D oscillator potential
is mapped to itself. Other choices for the function f(z) lead, in principle, to
any number of noncentral potentials. If, for example f(z) = ln z, then from
Eq. (4), we have V (x, y) = (−c2/2m)[(ln ρ)2 + (arctan(y/x))2]/ρ2 [21].

Whenever the potential V (x, y) can be transformed to the form of Eq. (4),
we are able to write exact solutions of the corresponding Schrödinger equa-
tion. Obviously, finding such transformations may be a difficult task in
particular cases. What is, however, the most important fact from the point
of view of the next section, is that there exist a huge number not only cen-
tral but also noncentral potentials with the well-known zero-energy states.
It is additionally important and surprising that among them there exist in
each case states cancelling the quantum correction to the classical Hamilton–
Jacobi equation.

According to Ref. [15] the zero-energy states are interpreted as station-
ary flows around the parabolic potential barrier. They represent incoming
and outgoing flows, corresponding, respectively, to the formation and decay
processes of an infinite number of resonances with equal probability. The
states do not belong to the ordinary Hilbert space and are generally not
normalizable. Except for the solutions ψ0(u, v), which can be normalized
in terms of Dirac δ functions, those given in Eqs. (7) and (8) have to be
treated as the eigenfunctions of the conjugate Schwartz space S(R2)× of the
Gel’fand triplets S(R2) ⊂ L2(R2) ⊂ S(R2)×, also called the rigged Hilbert
space [4,22,23]. The symbol L2(R2) stands for the Lebesgue space and both
S and L are determined in two dimensions.

Even with the above properties, the states from the rigged Hilbert space
are important for physics. One may construct, for example, the probability
currents, which are observable in scattering processes with possible applica-
tions in cold-atom collisions [24] and in hydrodynamics [15, 16]. The states
play also very important role in finding the exact classical limit of quantum
mechanics [17–21].
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3. Exact classical limit

In the literature, the classical limit of quantum mechanics is approached
in a number of ways (see paper [20] and references therein). However, its
exact form is understood as vanishing of the Bohm or quantum potential [25]

Q =
−~

2

2m

∆u,vR

R
, (9)

where R represents a real valued amplitude of the wave function under con-
sideration.

Introducing a real phase S, we can write the wave function in the polar
form ψ = R exp [(i/~)S]. Then, with the help of Eq. (5), we can derive
two equations satisfied by the functions R and S, which are the classical
Hamilton–Jacobi equation, supplemented with the quantum correction Q,
and a continuity equation for the stationary case. The classical limit of
quantum mechanics is reached for the potentials in Eq. (4), only for the
wave functions with amplitudes obeying the relation

∆u,vR = 0 , (10)

and besides

(∇u,vS)2 = c2
(

u2 + v2
)

, (11)

∇u,v ·
(

R2∇u,vS
)

= 0 . (12)

Thus, for all potentials reducible to the form of Eq. (4), we can easily check
which of their states cancel the quantum correction to Hamilton–Jacobi
equation. In this way, the motions in classical and quantum mechanics are
identical [17–21,25].

Simple calculations show that ψ0(u, v) given in Eq. (6) obeys Eqs. (10),
(11) and (12) for arbitrary real values of α. Thus, this particular state can
be considered for a large number of central and noncentral potentials as a
classical wave function and the classical limit of quantum mechanics is thus
reached exactly without no approximation involved. Among the states in
Eq. (7) there is only one state canceling the Bohm’s correction. This is the
case just for n = 1, i.e.

ψ1(u, v) = M1
c

~
uv exp

[

±
ic

2~

(

u2 − v2
)

]

. (13)

Obviously, Eq. (10) is fulfilled since R ∼ uv and Eqs. (11) and (12) too, since
S = ±(c/2)(u2 − v2). No further states with this property can be traced
back from Eq. (7).
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We have to point out that there can be noncentral potentials with at
least one classical zero-energy state, i.e., obeying Eqs. (10), (11) and (12), for
which the Schrödinger equation (2) is not reducible to the 2D PPB problem
represented by Eq. (5). An example is given by the potential V (x, y) =
−[ρ2 + ρ−6 − 2ρ−2 sin(4ϕ)], where ρ2 = x2 + y2 and ϕ = arctan(y/x). This
case and other similar ones were discussed in [21].

As the final point of this section we shall comment on the solution (8).
It can be obtained observing that Eq. (12) has de facto the form of 2∇u,vR ·

∇u,vS + R∆u,vS = 0. Then, whenever ∆u,vS = 0, it follows that the roles
played by R and S may be interchanged. In our paper, this is the case for
uv and u2 − v2. The solution, found in this way, is given in Eq. (8) and one
can easily check that it obeys Eqs. (10), (11) and (12) as well.

4. Conclusions

In our study of the class of noncentral potentials we have shown that
their eigenvalue equation can be reduced to the inverted oscillator problem
and then exact solutions were given explicitly. We have thus extended the
recent paper by Kobayashi and Shimbori [15] to a large class of noncen-
tral potentials. The close connection of their solutions with the ordinary
parabolic potential barrier (PPB), and the fact that some of them realize an
exact classical limit of quantum mechanics, are quite surprising.

All the states we have considered here are zero-energy states in Gel’fand
triplets. Properties of the states from such rigged Hilbert space are not so
well understood as those from the ordinary Hilbert space. Among other rea-
sons it is due to the restricted number of potentials for which exact solutions
in terms of Gel’fand triplets are known. Nevertheless, the states are used in
a growing number of physical applications. Numerous examples, especially
in an analysis of vortices, can be found in [16] and [26]. The infinite degen-
eracy of the states is the origin of new entropy [27, 28] different from the
Boltzmann entropy.
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