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It is postulated in general relativity that the matter energy-momentum
tensor vanishes if and only if all the matter fields vanish. In classical La-
grangian field theory the energy and momentum density are described by
the variational (symmetric) energy-momentum tensor (named the stress
tensor) and a priori it might occur that for some systems the tensor is iden-
tically to zero for all field configurations whereas evolution of the system
is subject to deterministic Lagrange equations of motion. Such a system
would not generate its own gravitational field. To check if these systems
can exist in the framework of classical field theory we find a relationship be-
tween the stress tensor and the Euler operator (i.e. the Lagrange field equa-
tions). We prove that if a system of interacting scalar fields (the number
of fields cannot exceed the spacetime dimension d) or a single vector field
(in spacetimes with d even) has the stress tensor such that its divergence
is identically zero (i.e. “on and off shell”), then the Lagrange equations
of motion hold identically too. These systems have then no propagation
equations at all and should be regarded as unphysical. Thus nontrivial
field equations require the stress tensor be nontrivial too. This relation-
ship between vanishing (of divergence) of the stress tensor and of the Euler
operator breaks down if the number of fields is greater than d. We show
on concrete examples that a system of n > d interacting scalars or two
interacting vector fields can have the stress tensor equal identically to zero
while their propagation equations are nontrivial. This means that non-self-
gravitating (and yet detectable) field systems are in principle admissible.
Their equations of motion are, however, in some sense degenerate. We also
show, that for a system of arbitrary number of interacting scalar fields or
for a single vector field (in some specific spacetimes in the latter case), if
the stress tensor is not identically zero, then it cannot vanish for all solu-
tions. There do exist solutions with nonzero energy density and the system
back-reacts on the spacetime.
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1. Introduction

It is commonly accepted in general relativity that the gravitational field
is generated by all forms of matter (i.e. all species of elementary particles
and fields) and that all features of a given form of matter that are relevant
for determining its gravitational field are encoded in its energy-momentum
tensor (cf. e.g. [1, 2]). In other terms energy and linear momentum are
the source of the gravitational field. This postulate does not tell one how
to construct the energy-momentum tensor for a given kind of matter and
whether it is unique. In principle this tensor should be determined in a
special-relativistic theory describing the material system and then minimally
coupled to gravity. However, a reliable expression for this tensor has been
found only in few cases (classical electrodynamics, relativistic hydrodynam-
ics etc.) and it has turned out that the canonical energy-momentum tensor,
though being conceptually important due to the first Noether theorem, does
not provide in most cases the correct value of energy density and therefore
is unphysical. A unique universal definition of energy and momentum den-
sity arises if the equations of motion for the matter under consideration can
be derived from a Lagrangian. This is the Hilbert variational (with respect
to the spacetime metric) energy-momentum tensor (or Belinfante tensor),
hereafter denoted as the stress tensor. It is worth emphasizing that the
physical energy-momentum tensor cannot be determined by merely manip-
ulating with the matter equations of motion and the use of the stress tensor
is indispensable [3]. Now it is commonly accepted that it is this tensor that
correctly describes energy and momentum density and their flows for any
Lagrangian matter both in curved and flat spacetimes [4].

It is postulated that the Lagrangian for any matter is such that the
resulting stress tensor Tµν vanishes on an open domain in the spacetime
if and only if the matter fields vanish on the domain [1]. This condition
expresses the principle that any matter carries energy. The energy conditions
( [1], Chap. 4) actually imposed on a matter Lagrangian exclude negative
energies and ensure the “only if” condition.

In this paper we investigate the problem whether there is some classical
matter having no energy at all, i.e. whether there exists a matter Lagrangian
giving rise to the stress tensor vanishing identically, Tµν ≡ 0, for all field con-
figurations independently of the field equations (“on and off shell”). Such a
matter should be subject to deterministic equations of motion (the Lagrange
ones) and according to Einstein field equations would propagate as a test
one in a fixed spacetime. This matter would be non-self-gravitating and its
interactions with other fields would be severely restricted by the constraint
that they should exclude any energy transfer. At first sight one might con-
clude that the lack of any energy exchange with ordinary matter systems
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implies that this matter is nondetectable and as such it may be merely ig-
nored. This is the case in quantum theory. However, here we are dealing
with classical fields and in classical physics any system may be treated as
open, i.e. as being in contact with some surrounding. The contact may be
arbitrarily weak, i.e. involve negligibly small energy transfer (or no transfer
at all), nevertheless by observing the surrounding (which acts as a “marker”)
one can make measurements on the system. In Example 1 we give a hint
of how a system of scalar fields without energy might be detected by their
coupling to the electromagnetic field. We do not pursue the problem further,
it is sufficient to say here that the lack of energy does not imply “physical
nonexistence” in the sense of nondetectability.

This is why we investigate in this work to what extent Lagrangian field
theory admits such bizarre systems and whether some of them can be ex-
cluded on theoretical grounds. To this end we show for some classical fields
that there is a close connection between energy (the stress tensor) and deter-
ministic equations of motion. For these fields we prove that the identically
vanishing stress tensor implies that the Lagrange equations also identically
vanish for all field configurations, i.e. the fields are subject to no propaga-
tion equations at all. On very generic physical grounds one can then reject
these fields as unphysical.

We first formulate the problem in full generality. Consider a system of
classical matter tensor fields ψA with a collective index A (there is no need
to deal with spinor fields since they can be expressed as tensor ones [1]). An
example of a vanishing stress tensor is provided by a Lagrangian for ψA of
the form

L(ψA, ψA;µ) =
1√−gL0(ψA, ψA,µ) , (1)

where L0 is a scalar density of the weight +1 (so that L is a genuine scalar)
and L0 is independent of the spacetime metric and its first derivatives,

∂L0

∂gµν
=

∂L0

∂gµν,α
= 0 . (2)

(Here ψA;µ ≡ ∇µψA is the covariant derivative w.r.t. gµν .) Then the stress
tensor (the signature is − + ++)

Tµν(ψA) ≡ −2√−g
δ

δgµν
(L

√−g) (3)

vanishes identically and the spacetime evolves, in absence of other forms of
matter, as an empty one, Gµν = 0. We shall consider in the next section
a few specific forms of L0 for scalar and vector fields and find in which
cases the corresponding Lagrange equations are trivial, making the fields
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unphysical. However it is clear that the conditions (1) and (2) are merely
a (restrictive) sufficient condition for having Tµν ≡ 0 and not a necessary
one. In fact, there are altogether 50 conditions (2) whereas there are only 10
identities Tµν(ψA) ≡ 0 actually imposed on a possible Lagrangian. In what
follows, we shall assume in Propositions 1 to 4 that the field Lagrangian
L(ψA, ψA;µ, gµν) may depend on the metric both explicitly and implicitly
(via the covariant derivatives) and only in Examples 1 to 5 we shall consider
various Lagrangians satisfying Eqs. (1) and (2).

To avoid any confusion we emphasize that we work in the framework
of classical field theory and thus we do not take into account the classical
topological field theories [5] such as BF theory [6]. They are metric inde-
pendent and in this sense they might seem relevant to the present work, but
their actions are typically given by surface integrals and they describe global
observables related to the topological invariants of the manifolds on which
they are defined. These theories have no local degrees of freedom, so there
are no propagating field excitations (particles).

One may expect that if the system under consideration consists of a large
number of fields, then vanishing of the full stress tensor will turn out to be a
condition too weak to make trivial the large number of (coupled) Lagrange
equations for the fields. We shall show on concrete examples that this is the
case. Thus, we should theoretically allow for some specific systems of fields
which carry no energy nor momentum, which nonetheless obey deterministic
equations of motion (causal or not). The purpose of the present work is to
show how many fields and of what type are necessary to this aim and how
peculiar their Lagrangians must be.

The main thrust of the paper are Propositions 1 and 2 in Sec. 2 and
Propositions 3 and 4 of Sec. 3. Propositions 1 and 2 state that if a classical
system consists either of a number of scalar fields or a single vector field and
the stress tensor for the system is zero on and off shell, then Lagrange equa-
tions hold identically. This system is thus regarded as unphysical. However,
if the number of scalar fields exceeds the dimensionality of the spacetime or
there are two (or more) vector fields, the theorems break down. It is also
relevant whether the dimensionality is even or odd. We show on specific
examples that for sufficiently large number of fields (or their components)
there exist Lagrangians satisfying conditions (1) and (2) and possessing the
Lagrange equations of motion. Their dynamics is however quite bizarre: for
systems of interacting fields there are no free-field solutions, for some cases
the systems of propagation equations are either degenerate (of first order)
or indeterministic (less equations than degrees of freedom). One concludes
that classical fields without energy, though not excluded by principles of La-
grange field theory, require very peculiar and easily recognizable Lagrangians
and these are unlikely to appear in modelling the physical reality.
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Propositions 3 and 4 of Sec. 3 solve, for interacting scalar fields or a
single vector field, the problem of whether the stress tensor may vanish for
all solutions while it is nonzero for some field configurations off shell. It
turns out that there are always some solutions for which the stress tensor
cannot vanish. In this sense nontrivial equations of motion imply in most
cases a back reaction of the system on the spacetime. Unfortunately, for a
vector field the proof works only in a small neighbourhood of flat spacetime
and can be generalized solely to spacetimes admitting a covariantly constant
Killing vector.

In Section 4 we make some critical comments on the canonical energy-
momentum tensor. Proofs of Propositions 1 and 2 employ the second Noether
theorem and Proposition 4 requires the Belinfante–Rosenfeld identity. A de-
tailed derivation of both the identities is provided in the Appendix.

2. Scalar and vector fields having no energy

According to Introduction one should not expect to eliminate as unphys-
ical the systems carrying no energy if they involve many interacting scalar
and vector fields or fields with high spins. Instead one should separately in-
vestigate systems involving rather a small number of scalar fields or a single
vector field. These fields are defined on a curved spacetime and are viewed
either as test fields or as a part of a larger matter source of gravity. No spe-
cific gravitational field equations are assumed. The two systems are dealt
with in the following two propositions. Let d ≥ 3 be the dimensionality of
the spacetime.
Proposition 1. Let a material system consist of n ≤ d interacting scalar
fields and let the divergence of the stress tensor vanish identically for all
values of the fields, T µν

;ν ≡ 0. Then their Lagrange equations of motion
also hold identically for all values of the fields.
Proposition 2. Let the dimension d be even and let a material system
consist of a single vector field Aµ with a Lagrangian which can be expanded
in a Taylor series in A[µ;ν] in the function space of all antisymmetric tensor
fields Fµν = −2A[µ;ν] defined on an open domain in the spacetime. (The
series is centered at Fµν = 0 and thus the Lagrangian and all its derivatives
are regular at this point.) If the divergence of the stress tensor vanishes
identically for all values of the vector field, T µν

;ν ≡ 0, then the equations of
motion hold identically. Moreover, in d = 4 the stress tensor itself is zero,
T µν(A) ≡ 0.

Idea of the proof
The proof of both Propositions is based on the Noether identity, valid for
any matter field, which arises from the coordinate invariance of the matter
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action integral. The identity is derived in the Appendix. It involves the
divergence T µν

;ν rather than the stress tensor itself and this is why the
assumption of Propositions is apparently weaker than Tµν ≡ 0. At least in
the case of a vector field and d = 4 the two assumptions are equivalent.
I. Proof of Proposition 1. Consider a system of n interacting scalar fields
φa, a = 1, . . . , n. For scalars the coefficients ZA

β
α introduced in Appendix,

Eq. (A.15), are zero and the Noether identity (A.17) reduces to

Eaφa;µ = Tµν
;ν , (4)

where Tµν depends on all the scalars and their first and second (in the case
of a nonminimal coupling) order derivatives and the same holds for the n
scalar quantities Ea. (If Tµν does involve φa;µν , then the terms containing
third order derivatives, arising on the r.h.s. of (4), do cancel each other.)
For n ≤ d and arbitrary fields φa, the vectors φa;µ are linearly independent.
On the other hand the condition Tµν

;ν ≡ 0 gives Eaφa;µ ≡ 0 suggesting that
the gradients are actually linearly dependent. The consistency is restored
only if Ea ≡ 0, i.e. the field equations hold trivially.

The theorem breaks down for n > d as is seen from the following exam-
ple1. (Our experience with some readers shows that it should be explicitly
stated that the determinant of any mixed tensor Y µ

ν is an absolute scalar,

hence |det(Yµν)|1/2 is a scalar density, i.e. transforms as
√−g. Accordingly,

the Lagrangians in the Examples 1, 4 and 5 are absolute scalars. On the
other hand the Lagrangians in the Examples 2 and 3 are chosen as pseu-
doscalars (i.e. they transform as scalars multiplied by J/|J |, where J is the
Jacobian of a coordinate transformation) merely for computational simplic-
ity and can be made scalars by taking the absolute value; this change will
not affect the conclusions which follow from them.)
Example 1
For a system of n scalar fields one defines Pµν ≡ ∑n

a=1 φa,µφa,ν . For arbi-
trary scalars and n ≥ d its determinant det(Pµν) 6= 0 and may be used to
make up a Lagrangian, specifically,

Lφ =
1√−g |det(Pµν)|1/2 . (5)

Then the conditions (1)–(2) hold and Tµν ≡ 0. Let d = 4 for simplicity.
(i) For n = 4 the Lagrangian takes on a simpler form,

Lφ =
1√−g |det(φa,µ)|

1 Examples 1 and 4 were suggested to the author by Andrzej Staruszkiewicz.
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and furthermore it is a full divergence,

Lφ =
∣

∣

∣
∇α(εαβµνφ1φ2,βφ3,µφ4,ν)

∣

∣

∣
, (6)

where εαβµν is the antisymmetric Levi–Civita pseudotensor (i.e. it trans-
forms as a tensor times J/|J |) with ε0123 = 1/

√−g. Clearly then Ea(φb) ≡ 0.
(ii) Yet in the case of n = 5 scalars the Lagrangian (5) cannot be simplified
to an analogous form and furthermore it is not a divergence. The five Euler
operators do not vanish,

Ea(φb) ≡ ∂Lφ

∂φa
− 1√−g∂µ

(√−g ∂Lφ

∂φa,µ

)

= LφQ
αβ

(

Qµνφa,ν

5
∑

b=1

φb,µφb,αβ − φa,αβ

)

, (7)

where Qαβ is the symmetric inverse of Pµν , QµαPαν ≡ δµ
ν . To show that Ea

are not identically zero one finds counterexamples. In Minkowski spacetime
one puts four of φa equal to the Cartesian coordinates and the fifth scalar
equal to some nonlinear functions of time, e.g. t2 or et. Then two of the
operators are different from zero. One concludes that the system of 5 scalar
fields with the Lagrangian (5) is a form of non-self-gravitating and carrying
no energy matter, subject to nonlinear propagation equations. The relation-
ship Eaφa,µ ≡ 0 shows that there are at most four independent equations
for the five scalars, thus the equations of motion and the initial data do not
uniquely determine the evolution of the system.

The system might be detected, at least in principle, by its influence
on the electromagnetic field Aµ. Let jµ ≡ q

∑5
a=1Q

µνφa,ν , where q is a
coupling constant, be a current associated with the scalars. The current is
coupled to the electromagnetic potential via the standard interaction term,
Lint = jµAµ, and the stress tensor corresponding to the Lagrangian Lφ+Lint

remains identically zero. Yet the electromagnetic field is affected since the
current enters the Maxwell equations.
II. Proof of Proposition 2. Here the main idea of the proof consists
in expanding the Noether identity for the vector field, in the case where
T µν

;ν ≡ 0, in a series of identities (not equations) ultimately resulting in the
Euler operator which vanishes identically.

For a single vector field the Noether identity (A.17) takes the form (A.18),

EµFαµ ≡ Tαν
;ν +AαE

µ
;µ (8)

with Fαβ ≡ Aβ;α −Aα;β being a “field strength” and the Euler operator

Eµ[L(A)] ≡ ∂L

∂Aµ
−∇α

(

∂L

∂Aµ;α

)

. (9)



594 L.M. Sokołowski

We set Tαν
;ν ≡ 0 and decompose the identity (8) into a sum of terms con-

taining covariant derivatives of Aµ of definite order. To this aim we first
introduce tensors

Bµγαβ ≡ ∂2L

∂Aµ;γ∂Aα;β
= Bαβµγ , (10)

dαβ ≡ ∂L

∂Aα;β
and lµ ≡ ∂L

∂Aµ
, (11)

these are functions of Aµ and Aµ;ν (and the metic). Then one finds

Eµ = −BµγαβAα;βγ − ∂dµα

∂Aν
Aν;α + lµ. (12)

We insert this expression for Eµ into (8) and decrease the order of derivatives
of Aµ with the aid of Ricci identity. After some manipulations the identity
EµFαµ −AαE

µ
;µ ≡ 0 takes on the following involved form,

0 ≡ AαB
µνβγAβ;γ(µν) +Aα

∂Bµγνβ

∂Aλ;σ
Aλ;(µσ)Aν;(βγ)

+Aλ;(µσ)

{

−FανB
νσλµ +Aα

[

AτRτνβγ
∂Bλσ(µγ)

∂Aν;β
+ 2

∂B(µν)λσ

∂Aβ

+
∂d(µσ)

∂Aλ
− ∂dλσ

∂Aµ

]}

+ aα(Aµ, Aµ;ν , Rµνλσ) , (13)

where aα is a complicated term containing no higher derivatives than of
first order. Being an identity for arbitrary Aµ, the terms with derivatives
of different order cannot cancel each other, instead they should vanish sep-
arately. This implies that the identity splits into a cascade of four sets of
independent identities. We first consider the term with third derivatives. It
vanishes if their coefficients are zero. Since Aα 6= 0 one gets B(µν)βγ ≡ 0,
then the definition (10) yields

Bαβµν = Bµναβ = −Bβαµν = −Bαβνµ. (14)

These in turn imply a specific relationship between Bαβµν and dαβ . It turns
out useful to decompose Aα;β and dαβ into symmetric and antisymmetric

parts, Aα;β = A(α;β) + 1
2Fβα and

d(αβ) =
∂L

∂A(α;β)
≡ Sαβ , d[αβ] = 2

∂L

∂Fβα
≡ Nαβ. (15)
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Since

Bµναβ =
∂dαβ

∂Aµ;ν
=

∂dµν

∂Aα;β

one finds

Bαβµν =
∂Sαβ

∂A(µ;ν)
+

∂Nαβ

∂A(µ;ν)
− 2

∂Sαβ

∂Fµν
− 2

∂Nαβ

∂Fµν
(16)

and a similar expression with the pairs αβ and µν interchanged. By anti-
symmetrizing in these pairs one gets

B[αβ][µν] = −2
∂Nαβ

∂Fµν
= −2

∂Nµν

∂Fαβ
. (17)

On the other hand the symmetries (14) mean that Bαβµν = B[αβ][µν] and by
equating Eq. (16) to (17) one arrives at the following restrictions imposed
on dαβ ,

∂Sαβ

∂A(µ;ν)
=
∂Sαβ

∂Fµν
=

∂Nαβ

∂A(µ;ν)
= 0 . (18)

From these one infers that the Lagrangian may depend on A(α;β) only via
linear terms,

L = f1(s)A
αAβA(α;β) + f2(s)g

αβA(α;β) + L2(Aµ, Fµν) , (19)

where f1 and f2 are arbitrary smooth functions of the vector length, s ≡
AµAµ. The first two terms in (19) can be expressed as ∇α(f(s)Aα)+h(s)Aα

;α,
with 2df/ds ≡ f1 and h ≡ f2−f . Then discarding the divergence term from
the Lagrangian one finds

dαβ = hgαβ +Nαβ and Bαβµν = −2
∂Nαβ

∂Fµν
= −2

∂Nµν

∂Fαβ
. (20)

We next study the identities involving Aν;(βγ) quadratically. From (13) one
sees that vanishing of the coefficients of these terms requires

∂Bµ(βγ)ν

∂Fσλ
+
∂Bσ(βγ)ν

∂Fµλ
≡ 0 . (21)

By employing Eqs. (20), however, one cannot simplify these identities (after
inserting (20) into (21) one recovers the identities with the pairs of indices
βγ and µσ interchanged), therefore one passes to studying the identities
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involving Aλ;(µσ) linearly. These imply vanishing of the curly bracket in
Eq. (13). Making use of (20) this reads

FανB
ν(µσ)λ +AαC

µσλ ≡ 0 (22)

with

Cµσλ ≡ 2h′(gµσAλ −A(µgσ)λ) − 1

2

(

∂Nλσ

∂Aµ
+
∂Nλµ

∂Aσ

)

= C(µσ)λ (23)

and h′ = dh/ds. All the time one investigates a generic field Aµ for which
det(Fµν) 6= 0. (It is here that the even number of spacetime dimensions
becomes relevant; for d odd, det(Fµν) = 0.) Then there exists the inverse
matrix fαβ = −fβα given by fαµFµβ = Fβµf

µα = δα
β . Multiplying (22) by

fατ one gets

Bα(µν)β = −fασAσC
µνβ. (24)

One immediately sees that this expression implies AαB
α(µν)β ≡ 0. On the

other hand one infers from (20) that Bα(µν)β ≡ Bβ(µν)α. Applying this
symmetry to the former identity one finds

Bα(µν)βAβ = −fασAσC
µνβAβ ≡ 0 . (25)

This in turn implies that CµνβAβ ≡ 0 since for a generic vector field
fασAσ 6= 0. By inspection of the expression (23) one concludes that the term
proportional to h′ in the latter identity contains no derivatives, whereas the
other term in this identity is a sum of terms each of which does contain Fµν .
In fact, terms of the form ∂Nµν/∂Aα cannot involve an additive term free
of the derivatives, since the latter would only arise from a linear term in the
Lagrangian, kµν(A)Fµν . However, for d even, an antisymmetric kµν cannot
be made up alone of Aµ, gµν and the Levi–Civita tensor. In conclusion, the
identity CµνβAβ ≡ 0 splits into two sets,

h′(gµνs−A(µAν)) ≡ 0 (26)

and

Aβ

(

∂Nβν

∂Aµ
+
∂Nβµ

∂Aν

)

≡ 0 . (27)

Eq. (26) may be satisfied only if h = h0 = const; then h0A
α
;α is discarded as

being a full divergence and finally L = L(Aµ, Fµν , gµν).
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We now return to investigating the expression (24). It is very pecu-
liar. First, the r.h.s. of the expression does not have the above mentioned
symmetry Bα(µν)β ≡ Bβ(µν)α. Second, according to the assumption of the
theorem, Bαµνβ is analytic (is a Taylor series) in Fµν about Fµν = 0 and

the same holds for Cµνβ. Yet Bα(µν)β is proportional to fασAσ and the
expression should be valid also about Fµν = 0 where the inverse fασ does
not exist. (Actually the expression breaks down whenever det(Fµν) = 0.)
The dependence on fασ cannot be eliminated since there is no contraction of
this tensor with any of Fµν appearing in Cµνβ. One then infers that identity

(24) may hold only if Bα(µν)β ≡ 0.
To avoid any confusion it should be emphasized that the above reasoning

does not apply to the Noether identity (8). In fact, with the aid of fαµ it
can be reexpressed as

Eα = fαµ(AµE
ν
;ν + Tµν

;ν)

and apparently Eα does explicitly depend on fαµ, contrary to the assump-
tion of the theorem. However, here fαµ is contracted with Tµν

;ν and the
original form of the identity ensures that the fαµ-dependence is trivially
cancelled. This fact stresses the role played by Tµν .

The identity Bα(µν)β ≡ 0 makes identities (21) trivial and has two further
consequences. First, together with (14) and (20) it implies that Bαµνβ is
totally antisymmetric,

Bαµνβ = B[αµνβ] . (28)

In d = 4 one then infers that Bαµνβ = p(Aλ, Fλσ)εαµνβ with some definite
pseudoscalar function p. Second, it requires Cµνβ ≡ 0 or from (23),

∂Nαµ

∂Aν
+
∂Nαν

∂Aµ
≡ 0 . (29)

The latter shows that the following tensor is totally antisymmetric,

nαµν ≡ ∂Nαµ

∂Aν
= n[αµν] . (30)

The formula (12) for the Euler operator is reduced, upon applying Eqs. (28)
and (30), to

Eµ = −1

2
nµαβFαβ + lµ, (31)

now it contains no second order derivatives.
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Finally we study the last system of identities arising from (13), those
involving at most the first derivatives of Aµ, i.e. aα ≡ 0. After some manip-
ulations with the use of the Riemann tensor symmetries and Eqs. (28) and
(30) one arrives at the following expression:

aα = FαµE
µ −Aα

∂Eµ

∂Aν
Aν;µ ≡ 0 (32)

with Eµ given by (31). As in the case of Bα(µν)β one may use the analyticity
property to prove that Eµ ≡ 0. It is interesting, however, to see that this
result can also be attained in an independent way. Using the formula (31)
one easily finds that the scalar in the last term of (32) is equal to

∂Eµ

∂Aν
Aν;µ =

∂2L

∂Aµ∂Aν
Aµ;ν . (33)

One sees that the r.h.s. of Eq. (33) depends linearly on A(µ;ν) and upon in-
serting the scalar back into Eq. (32) the term FαµE

µ acquires the same
dependence. On the other hand it has already been proved that L =
L(Aµ, Fµν , gµν) and the symmetrized derivative cannot arise in the process of
differentiation of the Lagrangian. The contradiction is removed by requiring
that

∂2L

∂Aµ∂Aν
≡ 0 (34)

or L = Lµ(Fαβ)Aµ +L0(Fαβ). However for even number of dimensions it is
impossible to make up a vector out of Fαβ , gµν and the Levi–Civita tensor.
In consequence Lµ = 0 and the Lagrangian is some function of Fαβ and gµν

alone.
As a result of vanishing of the scalar (33) one gets from (32) that

FαµE
µ ≡ 0 and finally one arrives at the conclusion that for a generic vector

field the Euler operator associated with the Lagrangian generating the stress
tensor with Tµν

;ν ≡ 0 vanishes identically, Eµ[L(A)] ≡ 0. This outcome is
in agreement with Eq. (31) since the Lagrangian does not depend on Aµ and
then nαµν ≡ 0 ≡ lµ.

The last step of the proof consists in finding a relationship between the
identity Tµν

;ν ≡ 0 and the stress tensor itself in the case d = 4. From
Eq. (28) one infers that

Bαµνβ = 4
∂2L

∂Fαµ∂Fνβ
= p(Fλσ)εαµνβ (35)

with unknown pseudoscalar p. The Lagrangian, which depends on Aα only
via Fαβ , is a function of the two invariants of the field strength, V = FαβF

αβ
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and W = P 2 where P = εαβµνFαβFµν is a pseudoscalar, i.e. L = L(W,V ).
Then

Bαµνβ = 32PLWV (εαµλσF νβ + Fαµενβλσ)Fλσ

+32(LW + 2WLWW )εαµλσFλσε
νβτρFτρ

+16LV V F
αµF νβ + 4LV (gανgµβ − gαβgµν) + 16PLW εαµνβ

≡ Jαµνβ + 16PLW εαµνβ = p(W,V )εαµνβ , (36)

where LV = ∂L/∂V etc. The first four terms have lower symmetry than
that required: only αµνβ = [αµ][νβ] = νβαµ, thus their sum Jαµνβ must
vanish identically and this is possible only if each of them is separately zero.
To see this one assumes that the sum is zero for a fixed field F0µν . Let
Fµν = F0µν + δFµν where δFµν is arbitrary infinitesimal. The variation
δJαµνβ also must vanish,

δJαµνβ = 32δ(PLWV )(εαµλσF νβ
0 + Fαµ

0 ενβλσ)F0λσ

+32PLWV [(εαµλσδF νβ + δFαµενβλσ)F0λσ

+(εαµλσF νβ
0 + Fαµ

0 ενβλσ)δFλσ ]

+32δ(LW + 2WLWW )εαµλσF0λσε
νβτρF0τρ

+32(LW + 2WLWW )εαµλσενβτρ(δFλσF0τρ + F0λσδFτρ)

+16δLV V F
αµ
0 F νβ

0 + 16LV V (δFαµF νβ
0 + Fαµ

0 δF νβ)

+4δLV (gανgµβ − gαβgµν) ≡ 0 . (37)

Here for any Φ(W,V ) one has as usual δΦ = ΦW δW + ΦV δV where δW =
2P0δP = 4P0ε

αβµνF0αβδFµν and δV = 2Fµν
0 δFµν , all the derivatives and

W and V are taken at F0µν . At fixed F0µν one varies δFµν in such a way
that the variations δW and δV remain unaltered. Then the first, third,
fifth and seventh (the last) terms in (37) remain constant whereas the other
three are variable. For the identity holds for any δFµν , the constant terms
must vanish, i.e. δ(PLWV ) = δ(LW + 2WLWW ) = δLV V = δLV = 0
and these identities hold for any values of δW and δV . The last identity
yields then LV W = LV V = 0 or L(W,V ) = L(W ) + aV , a is constant.
Inserting this Lagrangian into Eq. (36) one sees that the first and third
terms are zero whereas the fourth term becomes independent of Fµν , thus
it must vanish too. This implies LV = 0 or a = 0. The vanishing sum
Jαµνβ = 0 consists now of the second term alone and it is zero provided
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LW + 2WLWW = 0. A general solution to this equation is (dropping an

additive constant) L = c
√
W = c|P | with constant c. Finally,

L = 2c|∇α(εαβµνAβFµν)|,

a textbook result [7]. This completes the proof of Proposition 2.
For dimensions d = 2n, n > 2, the tensor Fαβ has more invariants. One

may conjecture that also in higher dimensions Eq. (28) implies that

L = c|εα1β1...αnβnFα1β1
. . . Fαnβn

|

being a full divergence and hence Tµν(A) ≡ 0. However, it is harder to prove
that this solution is unique.

In principle one might envisage a scalar (or n < d scalars) or a single
vector field in d > 4 even with Tµν 6= 0 and T µν

;ν ≡ 0. Formally such a
field might appear in Einstein field equations. However, since the Lagrange
equations of motion are trivial and the field has no determined propagation,
it should be rejected on physical grounds. At first sight the stress tensor
for a ground state solution of a quantum field, 〈Tµν〉 = ρV gµν , where ρV

is a constant energy density for the classical nonzero value of the quantum
field in this state, contradicts the above statement. It should be there-
fore emphasized that this expectation value of Tµν comes from semiclassical
considerations and cannot be derived within classical field theory (formally
this expression is generated by the cosmological constant term in the full
Lagrangian including gravity); the proposition does not apply to that case.

The Proposition 2 cannot be generalized either to odd number of di-
mensions or to more than one vector field. This is shown by the following
counterexamples.
Example 2
Let d = 3. If one chooses a pseudoscalar L = εαβγFαβAγ , then Tµν(A) ≡ 0.

This Lagrangian is not a divergence and Eµ = 2εµαβFαβ , the operator in-
volves no second order derivatives since L is degenerate being linear in Fαβ.
The field equations read then Fαβ = 0 and admit only one solution, the
vacuum. The model is trivial.
Example 3
In d = 5 the analogous model is nontrivial. Let

L = W µAµ = εµαβγδFαβFγδAµ , (38)

where W µ ≡ εµαβγδFαβFγδ . The stress tensor is zero, Tµν(A) ≡ 0, whereas
the Lagrangian is not a divergence and is gauge invariant under A′

µ = Aµ +
∂µχ. L is apparently nondegenerate as being quadratic in Fαβ , nevertheless
the Euler operator is of the first order, Eµ = 3W µ, and in this sense the
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propagation equations for the field are degenerate. One finds that Eµ
;µ ≡ 0

owing to the gauge invariance. Then the Noether identity (8) reduces to
FαµE

µ ≡ 0 with Eµ nonvanishing in general (det(Fµν) ≡ 0). The field
equations W µ = 0 are quadratic in Fαβ and admit nonzero solutions. A
particular solution is, e.g.

A1 = a1x
0 − a2x

2 − a3x
3 − a4x

4, A0 = A2 = A3 = A4 = 0 , (39)

yielding F01 = a1, F12 = a2, F13 = a3 and F14 = a4, otherwise zero, with
a1, . . . , a4 constant.
Example 4
Next we consider two vector fields forming an open system, d = 4. A field
Aµ interacts with a given external field W µ. First one defines an antisym-
metric tensor Vµν ≡ WαA[α∂µAν] = 1

2W
αA[αFµν], where as usual, Fµν =

Aν,µ − Aµ,ν . The tensor is metric independent and thus may be used to
constructing an interaction Lagrangian,

L(A,W ) ≡ 1√−g [− det(Vµν)]1/2 =
1√
8
[2VαβV

βµVµνV
να − (VµνV

µν)2]1/2

=
1

8
|εαβµνVαβVµν | . (40)

L does not involve derivatives of the external field. In this model there is
no free Lagrangian for Aµ and obviously L(A, 0) ≡ 0. The stress tensor
generated by the interaction Lagrangian is Tµν(A,W ) ≡ 0. On the other
hand if one attempts to complete the system, i.e. to make it closed, by
adding a Lagrangian LW for W µ (free or including an interaction term),
then

√−gLW must depend on the metric. Thus a full stress tensor for a
closed system of the two vector fields is different from zero.

The open system described by L as in (40) has no simple symmetries.
The Euler operator Eµ for Aµ is nondegenerate and very complicated. The
second order derivatives appear in it in a term of the form

εµναβAνAα;(βγ)W
γW σAσ. (41)

Example 5
One can construct a model for a closed system of two interacting vector
fields in d = 4. One assigns field strengths to vector potentials Aµ and Bµ:

Fµν = Aν,µ −Aµ,ν and Hµν = Bν,µ −Bµ,ν . (42)

The interaction Lagrangian is chosen as

L(A,B) ≡ 1√−g [det(Fµν) det(Hµν)]
1/4 =

1

8
|LA(F )LB(H)|1/2 , (43)
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where LA ≡ εαβµνFαβFµν and LB ≡ εαβµνHαβHµν are pseudoscalars. As in
Example 4 there are no free Lagrangians for the fields (by introducing free
Lagrangians one will render the full Lagrangian density metric dependent,
Proposition 2) and the interaction Lagrangian is gauge invariant under A′

µ =
Aµ+∂µχ1 and B′

µ = Bµ+∂µχ2, χ1 and χ2 arbitrary. The interaction energy
and momentum for the system are zero, Tµν(A,B) ≡ 0, whereas the Euler
operator consists of two vector ones,

Eµ
A ≡ δL

δAµ
= − L

LA
εµναβFαβ

(

LA;ν

LA
− LB;ν

LB

)

(44)

and analogously, by applying the symmetry of interchanging the fields in L,

Eµ
B ≡ δL

δBµ
= − L

LB
εµναβHαβ

(

LB;ν

LB
− LA;ν

LA

)

. (45)

The operators contain second order derivatives (are nondegenerate). One
can find a special solution to the field equations Eµ

A = 0 = Eµ
B in Minkowski

spacetime in the following way. One assumes that the “electric” and “mag-
netic” fields corresponding to Fµν are parallel and of equal length and di-
rection, then FµνFµν = 0 and LA = −8a2, a > 0 with F01 = F32 = a,
otherwise zero; and analogously, HµνHµν = 0 and LB = −8b2, b > 0 and
H01 = H32 = b. In this case the two operators are proportional,

Eµ
A =

b

2
(−∂1, ∂0, ∂3,−∂2) ln

a

b
= −a

b
Eµ

B . (46)

A particular solution is then Aµ = −a(x, 0, 0, y) and Bµ = −b(x, 0, 0, y) with
a and b constant. Eq. (46) shows that a and b cannot vanish (no free fields).

3. The stress tensor vanishing for solutions

The Propositions 1 and 2 raise an obvious problem: is it possible that
Tµν , while being different from zero for some values (“off shell”) of the field
under consideration, ψA, vanishes for all solutions of EA = 0 and not only
for the trivial solution ψA = 0? Such a possibility would be more disturb-
ing than the case Tµν ≡ 0 for all values of the field, for field configurations
which do not obey some equations of motion do not exist in nature. Such
a matter, subject to deterministic causal propagation equations, would be a
truly nongravitating one. In the framework of classical field theory one can
almost exclude such fields under reasonable assumptions. We again consider
only scalar fields and a single vector field.
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Proposition 3. For a system of arbitrary number of interacting scalar fields
minimally coupled to gravity and described by nontrivial Lagrange equations
of motion, the full stress tensor cannot vanish for all solutions if it is not
identically zero.
Proof of Proposition 3. For minimally coupled scalars any Lagrangian
is of the form L(φa, φa,µ, gµν) and is free of the metric connection and this
results in the stress tensor free of the second order covariant derivatives, i.e.
Tµν = Tµν(φa, φa,µ, gµν). This means that on a Cauchy surface the stress Tµν

is determined solely by the initial data and thus can be given (since it does
not vanish identically) any prescribed value (apart from some restrictions)
independently of the field equations. By continuity, the stress tensor is also
different from zero in some neighbourhood of the Cauchy surface.

In the case of nonminimal coupling the proposition does not apply di-
rectly. However, all known cases comprise the scalar field of scalar–tensor
gravity theories (all generalizations of Brans–Dicke theory), the conformally
invariant scalar field (which mathematically is merely a special case of scalar–
tensor gravity) and a scalar field arising in restricted metric nonlinear gravity
theories (Lagrangian being a smooth function of the curvature scalar) via
a suitable Legendre transformation. The nonminimal coupling takes the
form f(φ)R, the Lagrangian may or may not contain a kinetic term for φ.
Then one introduces a new spacetime metric g̃µν by means of a Legendre
map (actually this map is a conformal map of the original metric gµν) and

suitably redefines the scalar, φ̃ = φ̃(φ). The mapping is commonly denoted
as a transition from Jordan frame, i.e. the system (gµν , φ), to Einstein

frame consisting of g̃µν and φ̃. In Einstein frame φ̃ is minimally coupled to
g̃µν (which should be regarded as the physical spacetime metric) [8, 9] and
Proposition 3 works.
Proposition 4. For a single vector field Aµ in Minkowski spacetime there
exist solutions in the space of all solutions vanishing sufficiently quickly at
spatial infinity for which Tµν(A) 6= 0.
Proof of Proposition 4. A first order Lagrangian L(Aµ, Aµ,ν) in Cartesian
coordinates generates Tµν(Aα, Aα,β , Aα,βγ) explicitly depending on second
derivatives except the case where L depends on Aµ,ν only via Fµν . Let S be
a Cauchy surface with a unit timelike normal vector nν, nνnν = −1. The
initial data for Aµ form a set CA ≡ {Aµ, n

νAµ,ν} of functions given on S.
On the boundary 2-sphere ∂S at spatial infinity the initial data vanish.

One integrates the Belinfante–Rosenfeld identity (Eq. (A.12) in Ap-
pendix), expressed in Cartesian coordinates, over S,

0 ≡
∫

S

(T µν − tµν +AµEν + ∂αK
µνα)nν dS . (47)



604 L.M. Sokołowski

On S the tensor Kµνα being a linear combination of the classical spin ten-
sor Sµνα, Eqs. (A.8)–(A.9), is determined by the initial data, Kµνα =
Kµνα(CA). Then applying the antisymmetry Kµνα = −Kµαν and the
Gauss’ formula one can replace the integral of nν∂αK

µνα over S by the
integral of Kµνα over ∂S and the latter is zero. Let Aµ be a solution of
Eν = 0 corresponding to the initial data CA. Eq. (47) reduces to

∫

S

(T µν − tµν)nν dS = 0 . (48)

The canonical energy-momentum tensor tµν , Eq. (A.7), is also determined
on S by the initial data, whereas the stress tensor is determined by the
solution Aµ. Since tµν is not zero in general, one can choose such initial
data CA that the integral of tµν(CA) does not vanish. Then the conserved
total 4-momentum of the field for the solution is different from zero,

Pµ =

∫

S

T µν(A)nν dS =

∫

S

tµν(CA)nν dS 6= 0 . (49)

The Proposition is proved.
In this form the proof works only in Minkowski spacetime. Let A0µ

be a solution in flat spacetime for which Eq. (49) holds. Making a small
perturbation Aµ = A0µ + ǫµ and gµν = ηµν + hµν (where hµν may be a
solution to Einstein field equations with some matter source, not necessarily
equal to Aµ) one finds that Tµν is altered by a small quantity TL

µν which
is linear in ǫµ and hµν . One then concludes that for spacetimes which are
sufficiently close to flat space and for solutions being a small perturbation
of A0µ, the stress tensor is nonzero too.

Furthermore, the proof of the Proposition may be generalized to at least
one class of curved spacetimes. Let a spacetime metric admit a covariantly
constant vector field kµ, kµ;ν = 0. For example, if the spacetime is empty,
Rµν = 0 (and d = 4), then kµ is null and the spacetime represents the plane-
fronted gravitational wave. In such a spacetime one considers a Cauchy
surface extending to the spatial infinity. As previously, the initial data for
Aµ are CA = {Aµ, n

νAµ;ν} with nν the unit normal vector to S; the data
vanish on the boundary ∂S at spatial infinity. The tensors Kµνα and tµν

are determined on S by the initial data whereas Tµν can be evaluated only
for the solution corresponding to CA.

One multiplies the identity (A.12) by kµ and integrates it over S for a so-

lution. The integral of the divergence term, kµnν∇αK
µνα =nν∇α(kµK

µ[να]),
is equal to the integral over ∂S and hence is zero. One then arrives at an
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expression analogous to (48),
∫

S

kµ(T µν − tµν)nν dS = 0 . (50)

Once again, choosing such initial data that the integral of kµt
µνnν is nonzero,

one gets T µν(A) 6= 0. Unfortunately, the class of spacetimes admitting a
covariantly constant Killing field is rather narrow.

Finally we remark that Propositions 3 and 4 cannot be further strength-
ened, i.e. one cannot exclude the situation that the stress tensor vanishes in
the whole spacetime for some particular solutions of the Lagrange equations
of motion. In fact, at least one counterexample is known: a nonlinear mas-
sive spin-two field generated by a higher derivative gravity theory. For this
field Tµν = 0 in the spacetime of a plane-fronted gravitational wave [10].

4. The canonical energy-momentum tensor

in a curved spacetime

In many theoretical investigations in classical and quantum field theory
in Minkowski spacetime one employs the canonical energy-momentum tensor
due to its conceptual simplicity and “naturalness”. Yet the variational stress
tensor is constructed in a way which is quite artificial in flat spacetime and
one must appeal to arguments from outside the Lagrange formalism to show
that the latter rather than the former is the physical energy-momentum
tensor [1, 4].

The canonical energy-momentum tensor for a field ψA is

tµ
ν(ψ) ≡ δν

µL− ψA;µ
∂L

∂ψA;ν
. (51)

Taking divergence of the tensor and employing Ricci identity (the formula
after Eq. (A.15)) and Eq. (A.14) one finds that

∇νtµ
ν(ψ) = EAψA;µ +

∂L

∂ψA;ν
ZA

β
αR

α
βνµ . (52)

This means that even if the field equations hold, EA = 0, the canonical
tensor is not conserved in a curved spacetime. This is the case of the elec-
tromagnetic (Maxwell) field,

∇νtµ
ν(A) =

1

4π
AσF

αβRσ
αβµ . (53)

The above and other bizarre properties of the canonical tensor are due to
the fact that the tensor, as defined in Eq. (51), does not fit well to the
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variational formalism of field theory. In fact, any full divergence term in
the field Lagrangian does not contribute to EA nor to Tµν(ψ), thus whether
one discards such terms or not whilst evaluating these quantities does not
affect the final outcome. Yet divergence terms in L do contribute to the
canonical tensor. For example, let for a vector field L = ∇α(f(AµAµ)Aα),
then tµν(A) = ∇α(fgµνAα − fgµαAν).

This example illustrates a generic feature of tµν for vector fields: if the
Lagrangian is a total divergence, then Tµν(A) ≡ 0 ≡ Eµ and the Belinfante–
Rosenfeld identity (A.12) yields

tµν =
1

2
∇α(Sµνα + Sαµν + Sανµ) (54)

with a nonvanishing spin tensor. This vector field has no physical propaga-
tion and carries no energy, yet tµν apparently attributes to it some nontrivial
feature. This fact convincingly shows that the canonical energy-momentum
tensor is not a physical quantity.
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Henryk Arodź, Wojciech Kopczyński, Jacek Jezierski and Jerzy Kijowski for
their comments on this work. This work was partially supported by the Pol-
ish State Committee for Scientific Research (KBN) grant no. 2P03D01417.

Appendix

For the reader’s convenience we rederive here the Belinfante–Rosenfeld
identity for any vector field generalized to a curved spacetime since it cannot
be easily found in the literature in the form suitable for the present paper.
The identity relates the variational and the canonical energy-momentum
tensors with the classical spin tensor and the Lagrange equations. Our
approach is closest to that in [11–13], for a different approach see [14–16].
(The Belinfante–Rosenfeld identity for the vacuum electromagnetic field, i.e.
Maxwell’s equations hold, in a curved spacetime is implicitly given in [17].)
We also recall the derivation of the Noether identity for any matter tensor
field arising from the diffeomorphism invariance of the field action in the
case of any metric theory of gravity. For an arbitrary vector matter field we
show the explicit relationship between the generalized Belinfante–Rosenfeld
identity and the Noether identity.

Let a classical vector matter field Aµ on a spacetime (M,gµν) be de-
scribed by a scalar Lagrangian L. The Lagrangian may be written either in
the explicitly covariant way as a function of tensors or in the noncovariant



Classical Matter Fields without Energy 607

form as a function of tensors and their partial derivatives,

L(Aµ, Aµ;ν , g
αβ) = L

(

Aµ, Aµ,ν − Γ
σ
νµAσ, g

α,β
)

≡ L′

(

Aµ, Aµ,ν , g
αβ , gαβ

,ν

)

. (A.1)

The Lie derivative of the scalar density (of the weight +1)
√−gL with

respect to an arbitrary vector field ξµ may be evaluated either with the aid
of the formula

Lξ(
√−gL) =

√−g∇µ(Lξµ)

=
√−g

[

Lξµ
;µ + ξµ

(

∂L

∂Aα
Aα;µ +

∂L

∂Aα;β
Aα;βµ

)]

, (A.2)

or by Lie differentiating it as a composite function,

Lξ(
√−gL) = Lξ(

√−gL′) =
∂(
√−gL′)

∂Aµ
LξAµ +

∂(
√−gL′)

∂Aµ,ν
Lξ(∂νAµ)

+
∂(
√−gL′)

∂gαβ
Lξg

αβ +
∂(
√−gL′)

∂gαβ
,ν

Lξg
αβ

,ν

=

[

∂(
√−gL′)

∂Aµ
− ∂ν

(

∂(
√−gL′)

∂Aµ,ν

)]

LξAµ

+

[

∂(
√−gL′)

∂gαβ
− ∂ν

(

∂(
√−gL′)

∂gαβ
,ν

)]

Lξg
αβ

+∂ν

[

∂(
√−gL′)

∂Aµ,ν
LξAµ +

∂(
√−gL′)

∂gαβ
,ν

Lξg
αβ

]

. (A.3)

One uses the noncovariant form L′ in order to arrive at the variational stress
tensor and in the other differentiations one replaces L′ by L. By applying
LξAµ = ξνAµ;ν +Aνξ

ν
;µ and Lξg

αβ = −2ξ(α;β) one recasts (A.3) to a form
explicitly exhibiting the dependence of the Lie derivative on ξµ and its first
and second order derivatives. First, denoting

dαβ ≡ ∂L

∂Aα;β

and

Eµ[L(A)] ≡ ∂L

∂Aµ
−∇α

(

∂L

∂Aµ;α

)

,
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the Euler operator, one finds

∂(
√−gL′)

∂Aµ
=

√−g
(

∂L

∂Aµ
+

∂L

∂Aα;β

∂Aα;β

∂Aµ

)

=
√−g

(

∂L

∂Aµ
− dαβ

Γ
µ
αβ

)

and

∂ν

(

∂(
√−gL′)

∂Aµ,ν

)

=
√−g

(

dµν
;ν − dαβ

Γ
µ
αβ

)

.

Then the first square bracket in (A.3) equals
√−gEµ. The second square

bracket is just −1
2

√−gTαβ(A). The first term in the third square bracket is
also simple,

∂(
√−gL′)

∂Aµ,ν
=

√−g ∂L

∂Aµ;ν
,

whereas the second term in this bracket is a complicated tensor density.
After several manipulations with the last bracket and upon equating (A.2)
to (A.3) one gets a scalar identity of the form

ξµPµ + ξµ;νQ
µν + ξα;(µν)R

α(µν) ≡ 0 . (A.4)

The identity holds for any vector fields Aµ and ξµ. At any spacetime point
the tensors ξµ, ξµ;ν and ξα;(µν) are independent quantities and therefore their
coefficients must identically vanish. Thus the identity splits into a cascade of
4+16+40 identities. The identities Rα(µν) ≡ 0 are purely algebraic functions
of of Aµ, gµν and dµν and are completely trivial in the sense that they hold
for any values of these 3 tensors. The identities Pµ ≡ 0 are also algebraic
functions of these tensors and Rαβµν (arising from ξα;[µν]) and are trivially
satisfied provided dµν equals ∂L/∂Aµ;ν . Only Qµν ≡ 0 are nontrivial and
read

Qµν = T µν +AµEν − Lgµν +Aα
;µdαν + ∇αK

µνα ≡ 0 , (A.5)

where

Kµνα ≡ AµNνα − SµαAν + SµνAα (A.6)

and Sµν ≡ d(µν) and Nµν ≡ d[µν]. One introduces the Pauli’s canonical
energy-momentum tensor

tµ
ν(A) ≡ δν

µL−Aα;µ
∂L

∂Aα;ν
(A.7)
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and splits Kµνα into its symmetric and antisymmetric parts w.r.t. to the
first two indices,

K [µν]α = 1
2(Aµdνα −Aνdµα) ≡ 1

2S
µνα , (A.8)

K(µν)α = Aαd(µν) − dα(µAν) = Sα(µν) . (A.9)

The tensor Sµνα may be interpreted as the density of the classical spin
(helicity) of the vector field. In fact, for the electromagnetic field in vacuum
in Minkowski spacetime the spin density tensor is defined as

Sµνα
EM = xµ(T να − tνα) − xν(T µα − tµα) . (A.10)

For LEM = −1/(16π)FαβF
αβ and assuming that Maxwell equations hold,

Fαβ
,β = 0, and the field vanishes sufficiently quickly at spatial infinity, one

can remove a full divergence term from the spin density tensor since it does
not contribute to the total spin of the electromagnetic field. As a result,

Sµνα
EM =

1

4π
(AµF να −AνFµα) = Aµdνα −Aνdµα, (A.11)

[11, 18]. The tensor Kµνα is antisymmetric, Kµνα = −Kµαν . Finally (A.5)
takes on the form

Qµν = T µν − tµν +AµEν +
1

2
∇α(Sµνα + Sαµν + Sανµ) ≡ 0 . (A.12)

These are the Belinfante–Rosenfeld identities [19, 20] for any vector field,
generalized to a curved spacetime. Notice that the identities arise due to
the fact that the field Lagrangian is a scalar, hence the action is invariant
under infinitesimal coordinate transformations (with appropriate boundary
conditions).

The proof of Propositions 1 and 2 in Sec. 2 is based on the famous
second Noether theorem (also named “the Noether identities”, “the strong
conservation laws” or “Bianchi identities for matter”) [21–23]; our approach
is based on [3, 23]. Let ψA denote an arbitrary tensor matter field (or a set
of tensor fields) with a collective index A, described by a scalar Lagrangian
L(ψ) = L(ψA, ψA;µ, gµν , Rαβµν), i.e. one admits a possible non-minimal
coupling to the curvature. The action integral for for Einstein gravity (actu-
ally one may envisage any metric theory of gravity since the derivation goes
then without alteration) and the matter field is (we set c = 8πG = 1)

S =

∫

Ω

(

1

2
R+ L

)√
−g d4x . (A.13)
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The Euler operator for the equations of motion for ψA is

EA[ψ, g] ≡ ∂L

∂ψA
−∇µ

(

∂L

∂ψA;µ

)

. (A.14)

The action (A.13) is diffeomorphism invariant and in particular it remains
unchanged by an infinitesimal point transformation x′µ = xµ + ξµ(x) with
arbitrary ξµ which vanishes on the boundary of the domain Ω . The integra-
tion domain is thus mapped onto itself whereas the variations of the fields
are given by Lie derivatives, δψA = −LξψA and δgµν = −Lξg

µν . These

variations can be expressed in terms of coefficients ZA
β

α(ψ), being linear
functions of ψA,

LξψA = ξαψA;α + ZA
β

αξ
α

;β , (A.15)

which also appear in the covariant derivative,

∇µψA = ∂µψA − ZA
β

α(ψ)Γα
µβ

and in Ricci identity,

ψA;µν − ψA;νµ = ZA
β

α(ψ)Rα
βµν .

The invariance of the action implies

0 = δS =

∫

Ω

[

1

2
(Gµν − Tµν)δgµν + EAδψA

]√−g d4x (A.16)

plus a surface integral which vanishes due to the boundary conditions. Ap-
plying (A.15), dropping again a total divergence and making use of the or-
dinary Bianchi identity Gν

µ;ν ≡ 0 one finds that the integrand is of the form
ξµBµ(ψ). Vanishing of the integral and arbitrariness of ξµ in the interior of
Ω entail Bµ ≡ 0 or

EAψA;α ≡ ∇β(Tα
β + EAZA

β
α) . (A.17)

This is the Noether identity for any classical tensor matter field, valid for
any dimension d ≥ 3. Notice that the second Noether theorem derived in
Refs. [12,24] does not include the variational (stress) energy-momentum ten-
sor Tµν(ψ). The tensor is absent there because it is (implicitly) assumed in
these papers that the matter action is invariant under a symmetry transfor-
mation of the matter field (a gauge transformation) alone and the metric is
left unaltered.
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In the case of a vector field Aµ the coefficients are Zµ
β

α = δβ
µAα and the

four Noether identities

EµFαµ ≡ Tαβ
;β + Eµ

;µAα , (A.18)

where Fαβ ≡ Aβ;α − Aα;β, can be derived from the Belinfante–Rosenfeld
identities (A.12). In fact, a direct and quite uphill calculation proves that

Qαµ
;µ = Tαµ

;µ − FαµE
µ +AαE

µ
;µ ≡ 0 . (A.19)

Analogous relationships exist for tensor fields.
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