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We investigate the interaction of the gravitational field with a quantum
particle. We derive the wave equation in the curved Galilean space-time
from the very broad Quantum Mechanical assumptions and from covari-
ance under the Milne group. The inertial and gravitational masses are
equal in that equation. So, we give the proof of the equality for the non-
relativistic quantum particle, without applying the equivalence principle to
the Schrödinger equation and without imposing any relation to the classical
equations of motion. This result constitutes a substantial strengthening of
the previous result obtained by Herdegen and the author.

PACS numbers: 04.20.–q

1. Introduction

We assume that the coefficients of the Schrödinger equation describing
a particle in the fundamental fields are local functions of the space-time co-
ordinates; compare the scalar or the electromagnetic potential for example.
At the same time we expect that the coefficients of the wave equation of a
freely falling quantum particle in the gravitational field are local functions
of space-time coordinates which can be built up in a local way from the
fields which describe the space-time. In this paper we consider only the
non-relativistic case and represent the Newtonian gravity in the geometric
way compatible with the equivalence principle [1–3]. Now the rather unex-
pected fact comes. Namely, if we assume the wave equation to be generally
covariant, then the inertial mass of the quantum particle has to be equal
to its gravitational mass. Strictly speaking the covariance under the Milne
group is sufficient. Note that the equality is proved independently of the
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equivalence principle applied to the wave equation. Moreover, as we will
see, the form of the wave equation is almost uniquely determined by the co-
variance condition. The covariance condition should be distinguished from
the symmetry condition. The covariance with respect to a group means that
the transform of a solution to the wave equation is a solution to the trans-
formed wave equation. The symmetry under the group means in addition
that the group is the symmetry group of the absolute elements of the the-
ory in question, compare [4] for the standard terminology. The geometrical
objects describing the space-time structure are the absolute objects in our
case on account of the fact that we neglect the influence of the particle on
the space-time. As we know, this is justified up to the second order effects
even for the electromagnetic interactions, compare the semi-classical theory
of radiation. The gravitational interaction is extremely weak. By this the
neglecting the influence on the space-time is justified.

It should be stressed here that the equality of the inertial and the gravita-
tional mass would not hold if the standard covariance condition with respect
to the Galilean group were considered. In general it is impossible to restrict
the covariance group to the Galilean one if the gravity is present. But in the
wide class of space-times, those which correspond to isolated systems, one
can restrict the covariance group in a consistent manner by distinguishing
the class of asymptotically inertial frames.

In our previous paper [5] we get the same result, but with the help of the
equivalence principle. That is we have assumed that the gravitational effects
may be “transformed away” by an appropriate reference frame. By this the
ordinary “flat” form can be given to the wave equation by an appropriate
coordinate transformation. Here we do not make any use of the equivalence
principle.

2. Derivation of the wave equation

Our assumptions are, more precisely, as follows:

(i) The quantum particle, when its kinetic energy is small in comparison
to its rest energy mc2, does not exert any influence on the space-time
structure.

(ii) The Born interpretation for the wave function is valid, and the tran-
sition probabilities in the Newton–Cartan space-time which describes
geometrically Newtonian gravity, are equal to the ordinary integral
over a simultaneity hyperplane and are preserved under the coordi-
nate transformations.

(iii) The wave equation is linear, of second order at most, generally covari-
ant, and can be built in a local way with the help of the geometrical
objects describing the space-time structure.
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(iv) The probability density ρ(X) = ψ∗ψ(X) is a scalar field, that is it has
the following transformation law ρ′(X ′) = ρ(X) (where all space-time
coordinates are denoted by X).

In fact the conditions (i), (ii), (iii) and (iv) are somewhat interrelated.
For example the linearity of the wave equation is deeply connected with the
Born interpretation. It will be shown below, that the equality of inertial and
gravitational masses for a spin-less non-relativistic particle is a consequence
of (i), (ii), (iii) and (iv).

We derive the most general form of the wave equation fulfilling (i), (ii),
(iii) and (iv). A great simplification follows from the fact that in the Newton-
Cartan theory the absolute elements exist1. The absolute elements fix the
privileged, i.e. non-rotating Cartesian, coordinates. In those coordinates the
absolute elements take on a particularly simple form. The transformations
connecting any two privileged coordinate frames form a group called the
Milne group [7]. The existence of such privileged frames largely simplifies the
investigation of the consequences of general covariance. The simplification
has its source in the fact that the absolute elements are invariant under the
Milne group and have the same canonical form in all privileged frames. This
implies that the Newtonian potential φ is the only object, which describes
the geometry and does not trivially simplify to a constant equal to 0 or 1, in
these coordinates. The wave equation written in the privileged coordinates
is covariant under the Milne group in consequence of the general covariance.
The Milne group is sufficiently rich to determine the wave equation as the
covariant equation under the group if we use the assumptions (i), (ii), (iii).
We confine ourselves then, to the privileged frames and the Milne group of
transformations r:

(t, xj) → (t+ b,Ri
jxi +Aj(t)) , (1)

where Ri
j is a rotation matrix, and Aj(t) are “arbitrary” functions of time.

Strictly speaking it is sufficient to consider a finite-dimensional subgroup of
the Milne group of polynomial Aj(t) of appropriately high degree. It follows
from assumption (iv) that the wave function ψ(X) of a spin-less particle has
the following transformation form

ψ′(X) = Trψ(X) = e−iθ(r,X)ψ(r−1X), (2)

where we denote the Milne transformation (1) by r. θ(r,X) is a real function.

1 The simplification does not exist in the General Relativity. But we expect the same
result for the bare masses in the relativistic theory. But the argumentation should
be within the path-integral formalism for the Feynman propagator of a structureless
particle, see [6].
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The exponent ξ(r, s, t) = θ(rs,X)− θ(r,X) − θ(s, r−1X) in the relation

TrTs = eiξ(r,s,t)Trs, (3)

depends on r, s and also on the time t. The nontrivial time dependence
of ξ originates from the gauge freedom of the wave equation which cannot
a priori be excluded if the gravitational field is present. A well-known
Bargmann’s theory [8] provides a classification of exponents ξ which are time
independent. In Ref. [9] a general classification of ξ’s has been presented for a
time dependent exponents as is necessary for the present article. In fact this
explicit time dependence of the exponent ξ is necessary to account for the
experiments [10–12]. That is, the gauge freedom is needed, compare [13,14]
or [15] for the simplest wave equation in the gravitational field which does
possess the gauge freedom.

The classification of all possible ξ-s gives us the classification of all pos-
sible θ-s in (2). The most general θ has the form [9]

θ(r,X) = −γ1
d

dt
Ajx

j − . . .− γn
dn

dtn
Ajx

j + θ̃(r, t), (4)

where θ̃ is any function of r and time t and γi in (4) are some arbitrary
constants. The coefficients a, bi, . . . in the wave equation

[
a∂2

t + bi∂i∂t + cij∂i∂j + f i∂i + d∂t + g
]
ψ = 0

are local functions of the potential and cannot depend on the arbitrary high
order derivatives of the potential. From (iii) it follows then, that the coef-
ficients are functions of the potential and its derivatives up to a (say) k-th
order. In the mathematical terminology this means that a, . . . , g are differ-
ential concomitants of the potential, see [16]. We assume in addition that
k = 2. We do not lose any generality by this assumption, beside this the
whole reasoning could be applied for any finite k. But the case with k > 2
would not be physically interesting. Namely, it is a priori possible that the
derivatives of second order are discontinuous, such that the derivatives of
order k > 2 do not exist, at least the classical geometry does allow such a
situation. On the other hand there does not exist any mathematical obstruc-
tion for a discontinuity of the wave equation coefficients, take for example
the wave equation with the “step-like” potential. Then the assumptions
about the existence of higher oder derivatives which are not necessary for
the space-time geometry, confines our reasoning rather then generalizes it.
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To simplify the reading we write the explicit form of the transformation
laws for φ and its derivatives.

φ′(X ′) = φ(X) − Äixi ,

∂′jφ
′(X ′) = R−1i

j∂jφ(X) −R−1i
jÄi ,

∂′i∂
′
jφ

′(X ′) = R−1k
iR

−1s
j∂k∂sφ(X) ,

∂′tφ
′(X ′) = ∂tφ(X) −

...
A

ixi −R−1i
kȦ

k∂iφ(X) +R−1i
kȦ

kÄi ,

∂′j∂
′
tφ

′(X ′) = R−1i
j∂i∂tφ(X)

−R−1r
kR

−1i
kȦ

k∂r∂iφ(X) −R−1r
j

...
Ar ,

∂′t
2
φ′(X ′) = ∂t

2φ(X) − 2R−1i
kȦ

k∂i∂tφ(X)

+R−1j
kR

−1i
sȦ

kȦs∂j∂iφ(X)

−
....
A ix

i −R−1i
kä

k∂kφ(X) +R−1i
kÄ

kÄi + 2R−1i
kȦ

k
...
Ai .

Now, we insert the formulas (2) and (4) to the covariance condition of
the wave equation. The covariance condition gives us the transformation
formulas for the coefficients in the wave equation under the Milne group.
For the coefficients a, bi, cij the transformations reads

b′
i
(X ′) = Ri

jb
j(X) + 2a(X)Ȧi, (5)

a′(X ′) = a(X), (6)

c′
ij

(X ′) = Ri
sR

j
kc

sk(X) + a(X)ȦiȦj + bkRi
kȦ

j , (7)

where the dot stands for the time derivative. The formula (5) is valid in
each privileged system and for any potential, and implicitly at any space-
time point. Let us take then, such a system and let X0 be any (but fixed)
space-time point. We consider the formula (5) for the special transformations

with R = 1 and b = 0, ~A(t) = A(t)~n, where ~n is a constant in space and
time space-like unit vector. The analysis of (5) for A(t) = λ(t − t0)

4, then
for A(t) = λ(t− t0)

3 and at last for A(t) = λ(t− t0)
2 with any value of the

parameter λ gives the following general form for the coefficient bk

bk(X) = bk(φ, ∂iφ, ∂i∂jφ, ∂tφ, ∂j∂tφ, ∂
2
t φ) = bk(∂i∂jφ).

It means, that bk is a vector concomitant, at least under rotations, spatial
inversion and spatial reflections, of a tensor ∂i∂jφ of valence 2. As is well
known from the theory of geometric objects, such a vector concomitant has
to be zero. The argumentation is as follows. Take any privileged system
and any point X0. Apply now the space inversion with the origin in X0,
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i.e. R = −1 and ~A = 2~x0, b = 0. Then, (5) at X0 with this inversion

gives the equation: ~b(X0) = −~b(X0) because the valence of ∂i∂jφ is even
and ∂i∂jφ does not change the sign under the inversion. Because the point
X0 and the privileged reference frame can be chosen in an arbitrary way the

concomitant ~b = 0. From (5) immediately follows, that also a = 0. We have
reduced our equation to the following form

[cij∂i∂j + d∂t + f i∂i + g]ψ = 0.

Covariance condition of the equation under the Milne group gives the fol-
lowing transformation law for f j

f ′
j
(X ′) = Rj

i f
i(X) − dȦj − 2icij∂iθ. (8)

First of all let us take notice of the fact that γj = 0 for j > 4. Indeed,
let X0 = ( ~x0, t0) be any point. We apply now a Milne transformation for

which all derivatives of ~A(t) disappear at t0 with the exception of the j-th
order derivative. For example, we can choose such a transformation as in the
preceding considerations A(t) = (t−t0)

j . Then, we insert the transformation
to the law (8). Because the derivatives of the order higher then the 4-th do
not appear in the transformation laws for φ, ∂iφ, . . . , ∂

2
t φ, then (8) at X0

implies that γj = 0. Note, that f i is an algebraic function of the potential
and its finite order derivatives with the order less or equal then k = 2. The
natural number n in (4) is then finite and it is equal k+ 2 = 4 at most. We
define the following object

f̃ j ≡ f j + 2iγ2c
ij∂iφ+ 2iγ3c

ij∂t∂iφ,

with the following transformation law

f̃
′i(X ′) = Ri

sf̃
s(X) − (d− 2iγ1c

sjRi
s

−2iγ3R
−1i

sR
−1q

pc
sk∂q∂kφδ

pj)Ȧj − 2iγ4c
sjRi

s

....
A j . (9)

A similar analysis as this applied to bk shows that f̃k = 0, or equivalently

fk = −2iγ2c
ij∂jφ− 2iγ3c

ij∂j∂tφ.

But this is possible only if γ2 = γ3 = 0 or equivalently, only if fk = 0.
Indeed, applying the transformation laws for ∂iφ and ∂i∂tφ to the above
formula one gets the transformation law for fk

f ′
i
(X ′) = Ri

sf
s(X) − 2iγ3R

−1i
sR

−1q
pc

sk∂k∂qφȦ
p

−2iγ2R
i
sc

skÄk − 2iγ3R
i
sc

sk...
Ak . (10)
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Consider the Milne transformation with R 6= 1 and Ai(t) = (t − t0)
2ni

such that vj ≡ cij0 ni 6= 0, where cij0 = cij(X0). This is possible because

cij0 6= 0. Note, that if cij0 = 0, the analysis for fk reduces to the case such
as with bk and fk = 0. Comparing (10) with (8) at X0 for this Milne
transformation one gets

γ2R
j
iv

i = γ2v
j ,

for all orthogonal R and ~v 6= 0, which means that γ2 = 0. In the similar
way, but with Ai = (t− t0)

3ni, one shows that γ3 = 0. Summing up fk = 0.
Now, looking back to the transformation law (8) we realize that

∂jθ = −γ1Ȧj , c
ij = cδij , c ≡

d

2iγ1
, (11)

where c is a scalar field: c′(X ′) = c(X) which follows from the fact that cij

is a tensor field, compare (7) and recall that bk = 0 as well as a = 0. Note
that γ1 is the inertial mass of the particle in question and by this γ1 6= 0.
The wave equation must be of the form

[
k

2γ1
δij∂i∂j + ik∂t + g

]
ψ = 0,

where we introduce ik ≡ d. The covariance condition of the equation gives
the following transformation law of g

g′(X ′) = g(X) −
kγ1

2
ȦiȦ

i + kγ1ȦiȦ
i

−k∂tθ̃(A
k, t) − kγ1Äix

i .

Let us define a new object

Λ(X) = g(X) + γ1k(X)φ(X).

It is clear that the transformation law of Λ is as follows

Λ′(X ′) = Λ(X) +
kγ1

2
ȦiȦ

i − k∂tθ̃(A
k, t).

Both θ̃ and Λ taken separately are not uniquely defined. This is because
the potential φ is determined up to a time dependent additive term, namely,

the gauge freedom term. So, one can assume any form for θ̃ by an ap-
propriate gauge redefinition of φ changing the first one by G(t) and the

second one by (1/γ1)Ġ(t). Assume then, that θ̃ is chosen in such a way that

∂tθ̃ = γ1/2ȦiȦ
i. After this the above transformation law for Λ takes on the
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following form Λ′(X ′) = Λ(X) and Λ is a scalar field. In the identical way as
for bk we show that Λ = Λ(∂i∂jφ). So, Λ is one of the Kronecker’s invariants
of the matrix (∂a∂bφ). Now, we come back to the equation and easily show
that it can be covariant if and only if k is a constant. We get, then, the
Schrödinger equation which after the standard notation of constants has the
form [

ℏ
2

2m
δij∂i∂j + iℏ∂t −mφ+ Λ

]
ψ = 0, (12)

with the θ in Tr given by

θ =
m

2ℏ

t∫

0

~̇A2(τ) dτ +
m

ℏ
Ȧix

i.

Note that the inertial mass m in the equation is equal to the parameter at
the gravitational potential. That is, the gravitational mass must be equal
to the inertial mass.

It is remarkable that the wave equation would be covariant with respect
to the Galilean group even whenmi 6= mg because the potential φ transforms
as a scalar under this group. This is a consequence of the Galilean covariance
of the ordinary Schrödinger equation with a scalar potential.

In the paper [5] the same wave equation has been derived with the ad-
ditional result Λ = 0 as a consequence of the equivalence principle applied
to the wave equation.

Equality of inertial and gravitational masses in the quantum regime was
verified experimentally, see [10,11]. In the beautiful experiment of Kasevich
and Chu [11] the Eötvös parameter for the sodium atom was estimated to
be ≤ 10−6.

3. Comparison with a classical point particle

The same result can be obtained for the classical test particle, but under
slightly stronger assumptions. The second theorem of Nöther connected
with the Milne covariance and with the gauge freedom of the potential gives
us the identities equivalent to the equation of motion of the particle, that
is, the geodetic equation.

Now we present this in details. Suppose we have a matter fields bA =
bA(X) with the Lagrange density function L = L(X, bA, φ). We consider
the Nöther identities. In our case the covariance transformations depend on
arbitrary functions of the time only, but not of all space-time coordinates.
Compare the Milne transformations or the time dependent gauge transfor-
mation of the potential φ→ φ+ ǫ̇(t). This arbitrariness does not allows us to
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obtain the differential identities, but it is sufficient to obtain some integral
identities, if we suppose that the matter density goes to zero sufficiently fast
when the space coordinates goes to infinity. Namely, let us denote the arbi-
trary functions of time defining the covariance transformations by ǫi = ǫi(t).
The variations of the fields ≡ {bA, φ} under the action of the transformation
are as follows

δyA = cAi ǫ
i + dAµ

i ∂µǫ
i + gAµν

i ∂µ∂νǫ
i.

Let us write LA ≡ {LA,L0} for the Euler–Lagrange derivatives of L with
respect to yA, L0 is the Euler–Lagrange derivative with respect to φ. Then
we have the following Nöther integral identities:

∫

R3

[
LAc

A
i − ∂µ(LAd

Aµ
i ) + ∂µ∂ν(LAg

Aµν
i )

]
d3x ≡ 0.

The identities for the gauge transformation φ → φ + ǫ̇(t) and the Milne
transformations xi → xi + ǫi(t) read

d

dt



∫

R3

L0 d3x


 ≡ 0, (13)

d2

dt2




∫

R3

(−L0xi) d3x


 ≡

∫

R3

L0∂iφd3x, (14)

by virtue of LA = 0. At this place we have to make additional assumption as
compared to quantum level, that in the limit for the point particle moving
along a trajectory zi = zi(t) we have

L = L(xi, t)δ(xi − zi), (15)

where δ is the three-dimensional Dirac delta function. Suppose first that
the matter is minimally coupled: L does not depend on derivatives of the
potential. From the identity (13) it follows that L0 = const δ(x − z) ≡
−mδ(x− z). Inserting this to the identity (14) one obtains

mz̈i = −m∂iφ. (16)

Now, suppose that the matter is not minimally coupled and the Lagrange
density does depend on the first degree derivatives of the potential. We
assume, however, that the Lagrange density does not depend on the second
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and the higher derivatives of the potential. As a consequence of this assump-
tion and from the identity (13) we get L0 = −const δ(x−z)−∂i(Q

iδ(x−z)),
where Qi = ∂L/∂(∂iφ). The identity (1) gives

mz̈i = −m∂iφ+Qj∂i∂jφ+ Q̈i . (17)

As is seen from this equation the quantity Wi = Qj∂i∂jφ + Q̈i has to be
a vector. In accord to our general assumption Wi is an algebraic func-
tion of φ, its derivatives up to the third order, żi and z̈i. An analysis
similar to that presented above shows that Wi = Wi(∂kφ + z̈i, ∂t∂j∂kφ +
ża∂a∂j∂kφ, ∂a∂bφ, ∂a∂b∂cφ). Taking this into account and the specific form
of the Wi in (17) we prove that Wi = 0 and the equation (17) takes on the
form of the geodetic equation (16). We have not analyzed the situation in
which the Lagrange density L of matter can a priori depend on second order
derivatives of φ. Because it is natural to assume that the field equations of
matter and gravity are of second order at most it is natural to assume that
L does not depend on second and higher order derivatives of the potential.

So, if one assume that the Lagrange density does not depend on second
and higher order derivatives of φ, and that the equations of matter are
generally covariant and can be constructed in a local way from the geometry
of space-time, then the equations of motion for the particle are determined
by the space-time geometry. Moreover, the equations are in accord with the
equivalence principle. Summing up, we have shown exactly the same for
the quantum particle2. Note, that the equation (12) cannot be derived from
the Lagrange density which does not contain the second derivatives of the
field φ if Λ 6= 0. Our result is nontrivial if one takes into account (1) the
observation of Trautman [17] that the equivalence principle can be violated
by a field with the Lagrange function containing the first degree derivatives
of φ and (2) the equation of motion for any matter field cannot be derived
in this way.

2 The equality of both masses can be obtained of course by considering the WKB
approximation of the corresponding classical particle. But this is the whole point: in
the classical equations of motion mass cancels out on both sides if the gravitational
mass is equal to the inertial one. WKB approximation is just equivalent to classical
mechanics. In full Schrödinger equation the mass does not cancel. The identities (13)
and (14) are also true for the Lagrange density function L of the Schrödinger equation.
The assumption (15) can be fulfilled approximately for a finite time interval. So, we
get the equivalence principle at the classical level without imposing any condition on
the inertial mass in the Schrödinger equation, because the identities (13) and (14)
do not involve the kinetic term which contains the inertial mass. So, there is no
immediate relation between the equality of the inertial and the gravitational masses
for a classical particle and the equality for a quantum particle. Therefore the ability
to prove the equality is nontrivial.
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