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The 2 → n scattering with final particles at rest is discussed. The com-
parison with purely soft processes allows to identify symmetries responsible
for vanishing of certain 2 → n amplitudes. Some examples are given.
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1. Introduction

In the present paper, third of the series (cf. [1, 2]), we consider 2 → n
processes: two particles of opposite momenta scatter to produce n bosons
at rest. This process has been already considered, on the tree level, using
propagator approach [3–6], diagrammatics [7, 8] or Feynman wave function
method [1, 9]. Last method seems to be the most efficient. In Sec. 2 we
present a very simple and straightforward derivation of the Brown–Zhai [9]
algorithm. We give a general procedure to construct 2 → n amplitudes
which, in particular, allows us, for a wide class of theories, to compare
2 → n amplitude with a purely soft one. By using the results concerning the
relations between symmetries and vanishing of purely soft amplitudes [2,10]
we are able to identify, in certain cases, the symmetries underlying nullifica-
tion in 2 → n scattering. In Sec. 3 we discuss some examples involving only
bosons while Sec. 4 is devoted to fermion–antifermion scattering. The latter
is discussed in more detail and the complete expression for the amplitude is
given and compared, for n = 2, with diagrammatic result. Sec. 5 contains
some conclusions.
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2. Calculating 2 → n amplitudes

Let us first remind the general procedure for calculating the matrix ele-
ments of field operators in the tree approximation [1, 9]. Our starting point
is a Lagrangian

L =
1

2

N
∑

i=1

(∂µΦi∂
µΦi −m2

iΦ
2
i ) − V (Φ) , (1)

where {Φi}N
i=1 is a multiplet of scalar fields; higher-spin fields can be also

included.
Let {f (i)

n }∞n=0 be a complete set of normalized positive-energy solutions
to the Klein–Gordon equation of mass mi; in what follows we shall use

momentum basis, f
(i)
~p

(x) = 1√
(2π)32Ep

e−ipx, p2 = m2
i . Define the classical

free field by

Φ0i(x) =
∑

n

(

β(i)
n f (i)

n (x) + β̄(i)
n f

(i)
n (x)

)

. (2)

Consider the set of integral equations for Φi(x),

Φi(x) = Φ0i(x) −
∫

d4y∆Fij
(x− y)

∂V

∂Φj(y)
, (3)

where ∆Fij
(x) = ∆F(x; m2

i )δij is the Feynman propagator. Under some
assumptions Eq. (3) admits unique solution, at least at the formal pertur-

bative level. Once Eq. (3) is solved we obtain Φi(x) as a function of β
(i)
n and

β̄
(i)
n ,

Φi(x) ≡ Φi(x | β, β̄) . (4)

Taking succesive derivatives with respect to β’s and β̄’s at β = β̄ = 0 one
obtains the matrix elements of the field operator Φ̂i(x) between in- and out
states in the tree-level approximation [1, 9]; for example,

∂2Φi(x | β, β̄)

∂β
(k)
n ∂β̄

(l)
m

∣

∣

∣

∣

∣

β=β̄=0

= 〈(ml); out | Φ̂i(x) | (nk); in〉
∣

∣

∣

tree
. (5)

In practice, it is more convenient to work with differential equations
instead of integral ones. Eqs. (2), (3) imply

(2 +m2
i )Φi(x | β, β̄) +

∂V (Φ)

∂Φi(x | β, β̄)
= 0 , (6)

Φi(x
∣

∣ β, β̄)
∣

∣

V =0
= Φ0i(x) . (7)
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The converse is, in general, not true. Indeed, β’s and β̄’s enter
Φi(x | β, β̄) as arbitrary constants; they can be replaced, without altern-
ing (6) and (7), by any coupling constant dependent functions β(λ), β̄(λ)
such that β(0) = β, β̄(0) = β̄. The solution to (6), (7) can be made unique
by adding further constraints following from the tree-graph interpretation.
Consider Φ4-theory as an example,

V (Φ) =
λ

4!
Φ4 .

Topological relations for tree graphs imply that β, β̄ and λ enter the matrix
elements of field operator in the combination λnβkβ̄l with k+ l = 2n+ 1; in
other words, the contribution of the λn-order is a homogeneous polynomial in
β and β̄ of degree 2n+1. This additional condition makes (6), (7) equivalent
to (3).

Let us now apply the above formalism to the problem of 2 → n scat-
tering. Assume we have two initial particles of the same kind, carried, say,
by Φ1, with the momenta ~p and −~p; we want to compute the amplitude for
producing n particles at rest, the final particles being of different kind than
the initial ones.

Differentiating (6), (7) with respect to β
(1)
~p we arrive at the following set

of equations

(2 +m2
i )
∂Φi(x)

∂β
(1)
~p

+
∂2V

∂Φi(x)∂Φj(x)

∂Φj(x)

∂β
(1)
~p

= 0 , (8)

∂Φi(x)

∂β
(1)
~p

∣

∣

∣

∣

V =0

≡ δi1f
(1)
~p

(x) . (9)

Now,
∂Φj(x)

∂β
(1)
~p

generates, in the tree approximation, the matrix elements of i-th

field operator with one “1” particle carrying the momentum ~p already present
in the initial state. The second initial particle is obtained by applying LSZ
reduction procedure to the matrix elements of Φ̂1(x). Therefore, we have
only to generate final particles at the threshold and the only parameters we

need to keep nonvanishing are β
(i)
0 , i = 2, . . . , N . This allows us to simplify

the whole algorithm. First of all note that all matrix elements generated
by the solutions to (6) are now ~x -independent and Eqs. (6), (7) can be
rewritten as

(∂2
t +m2

i )Φi(t | β, β) +
∂V (Φ)

∂Φi(t | β, β)
= 0 , (10)

Φi(t
∣

∣ β, β)
∣

∣

V =0
=

β
(i)
0

√

(2π)32mi

eimit . (11)
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Denote

ψi(x | β, β) ≡ ∂Φi(x | β, β)

∂β
(1)
~p

(12)

again with all β’s and β’s, except β
(i)
0 , i 6= 1, vanishing: ψi(x | β, β) generate

matrix elements with one particle, carrying the momentum ~p, in the initial
state and arbitrany number of particles at rest in the final one. Therefore,
due to the translational invariance,

ψi(x | β, β) = ψ̃i(t | β, β)ei~p~x , (13)

and Eqs. (8), (9) take form

(∂2
t +M2

i )ψ̃i(t | β, β) +
∂2V

∂Φi(t)∂Φj(t)
ψ̃j(t | β, β) = 0 , (14)

ψ̃i(t)
∣

∣

∣

V =0
= δi1

1
√

(2π)32M1

e−iM1t , (15)

where M2
i ≡ m2

i + ~p2.
Having solved (14), (15) one can compute the relevant amplitude from

LSZ formalism:

i(2π)3δ(3)(~p+ ~q)
√

(2π)32M1

∞
∫

−∞

dte−iM1t(∂2
t +M2

1 )ψ̃1(t |β, β) (16)

generates all 2 → n amplitudes.
Eqs. (13)–(16) provide the general solution to our problem.

Particulary interesting situation emerges if the theory exhibits additional
symmetry

Φ1 −→ Φ′
1 = −Φ1 , Φi −→ Φ′

i = Φi , i 6= 1 . (17)

Consider first Eqs. (6), (7); once we put β
(1)
~q = 0 = β

(1)
~q both Eq. (6) and the

initial condition (7) are invariant under (17). By uniqueness of the solution
we find

Φ1(x
∣

∣β, β)
∣

∣

β
(1)
~q

=0=β
(1)
~q

= 0 . (18)

This conclusion is obviously equivalent to the statement that only graphs
with even number of external “1”-lines are allowed. The counterparts of (10),
(11) read now

(∂2
t +m2

i )Φi(t) +
∂V1(Φ)

∂Φ1(t)
= 0 , i = Z, . . . ,N (19)

Φi(t)|V =0 = β
(i)
0 eimit , i = 2, . . . , N (20)

V1(Φ) = V (Φ)|Φ1=0 , (21)
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which is a set of coupled dynamical equations for the reduced system ob-
tained by ignoring Φ1. Let us further consider Eq. (14). We show that

∂Φj(x | β, β)

∂β
(1)
~p

∣

∣

∣

∣

∣

∣

β
(1)
~q

=0=β
(1)
~q

= 0 , j 6= 1 . (22)

This is, again, a consequence of the fact that only even number of external
“1”-lines is admitted. The formal proof is based on symmetry (17): from the
uniqueness of the solution to (6), (7) it follows then that Φi(x | β, β), i 6= 1,

are even functions of β
(1)
~q
, β

(1)
~q which implies (22).

Taking into account the above property we can rewrite (14) as

(∂2
t +M2

1 )ψ̃1(t | β, β) +
∂2V

∂Φ1(t)2

∣

∣

∣

∣

Φ1=0

· ψ̃1(t | β, β) = 0 , (23)

ψ̃1(t) |V =0 =
1

√

(2π)32M1

e−iM1t . (24)

We see that in the presence of the symmetry (17) the problem gets simplified:
first we solve N − 1 equations for Φi(t | β, β), i = 2, . . . , N and then one

equation (23) for ψ̃1(t | β, β).
Let us now make the following important observation. Take the modified

theory given by the Lagrangian

L̃ =
1

2

(

∂µΦ1∂
µΦ1 −M2

1Φ
2
1

)

+
1

2

N
∑

i=2

(

∂µΦi∂
µΦi −m2

iΦ
2
i

)

− V (Φ) (25)

with M2
1 ≡ m2

1 + ~p 2, and consider the same process 2 → n except that now
all particles, both initial as well as final, are at rest. Repeating the pro-
cedure outlined above we conclude that the amplitudes for both processes
coincide, up to irrelevant delta function expressing momentum conservation.
This result can again be easily understood on the diagrammar level. Sym-
metry (17) implies that there is a unique chain of Φ1-lines connecting both
initial particles and the three-momentum flows only through lines of this
chain.

The observation made above allows us to explain, at least in some cases,
the origin of amplitudes nullification in 2 → n processes. In fact, for purely
threshold amplitudes their nullification may result from symmetry properties
of the reduced Hamiltonian system obtained by ignoring space-dependence
in the original problem [9].
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3. Some examples

3.1. Quartic interaction: 0(2)-theory

Let us start with the model considered in [9]:

L =
1

2

2
∑

i=1

(

∂µΦi∂
µΦi −m2

iΦ
2
i

)

− λ

4!

(

Φ2
1 + Φ2

2

)

. (26)

The reduced theory is integrable and separable in elliptic coordinates [11];
in fact, it is an example of the so-called Garnier system [11]. In order to
calculate amplitudes “1” → “2” at the threshold we look for the solution to
the field equations obeying

Φ1(t) |λ=0 =
β1e

−im1t

√

(2π)32m1

≡ z1(t) , (27)

Φ2(t) |λ=0 =
β2e

im2t

√

(2π)32m2

≡ z2(t) . (28)

They read [12]

Φ1 = z1

(

1 − λκ

48m2
2

z2
2

)(

1 − λ

48m2
1

z2
1 − λ

48m2
2

z2
2 +

λ2κ2

482m2
1m

2
2

z2
1z

2
2

)−1

,

(29)

Φ2 = z2

(

1 +
λκ

48m2
1

z2
1

)(

1 − λ

48m2
1

z2
1 − λ

48m2
2

z2
2 +

λ2κ2

482m2
1m

2
2

z2
1z

2
2

)−1

,

(30)

where κ ≡ m1+m2
m1−m2

.
In order to calculate 2 → n amplitude, with all particles at rest, we

compute

∂Φ1

∂β1
|β1=0=

(

1 − λκz2
2

48m2
2

)(

1 − λ

48m2
2

z2
2

)−1 e−im1t

√

(2π)32m1

. (31)

On the other hand consider 2 → n process with hard initial particles. The
relevant amplitude can be computed according to the scheme presended
in [9]. The appropriate wave function obeys Eq. (3.3) of [9] with a = 2 and
is given by Eq. (3.8) therein

ψ(x) = e−ipxF

(

1,−1, 1 − Ep

m2
; y

)

, (32)

y ≡ − λ

48m2
2

z2
2

1 − λ
48m2

2
z2
2

, (33)
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or, explicitly,

ψ(x) = e−ipx





1 − λ
48m2

2
(

Ep+m2

EP−m2
)z2

2

1 − λ
48m2

2
z2
2



 . (34)

Eqs. (31) and (34) can be now compared. According to the general reason-
ing presented in Sec. 2 one should identify Ep ↔ m1 and neglect space-
dependent factor in (34). Then we see that (31) and (34) indeed coincide
(one should also take into account the difference in wave function normal-
ization).

In particular, the nuliffication of 2 → n hard-soft amplitudes results from
Ward identities for purely soft ones [2].

3.2. Henon–Heiles system

Consider the theory given by the Lagrangian

L =
1

2

(

∂µΦ1∂
µΦ1 −m2

1Φ
2
1

)

+
1

2

(

∂µΦ2∂
µΦ2 −m2

2Φ
2
2

)

+ − g

2!
Φ2

1Φ2 −
λ

3!
Φ3

2 . (35)

It is symetric under Φ1 → −Φ1, Φ2 → Φ2. There exists no stable ground
state here but on the perturbative level theory is perfectly well defined. We
shall analyse its threshold behaviour in few steps.
(A) 2 → n amplitudes: Φ1-particles

We assume that both initial particles are carried by Φ1 field. According
to the procedure outlined in Sec. 2 we have to solve first the field equation
for Φ2 assuming Φ1 ≡ 0 and no space-dependence,

(

∂2
t +m2

2

)

Φ2 +
λ

2
Φ2

2 = 0 , (36)

Φ2 |λ=0 = zeim2t ≡ β
√

(2π)32m2

eim2t . (37)

The proper solution (i.e. the one reproducing tree-graph expansion) is ob-
tained by assuming the total energy to vanish; it reads

Φ2(t) =
zeim2t

(

1 − zλ
12m2

2
eim2t

)2 . (38)

This is the generating function for Φ3-theory. The counterpart of Eq. (23)
takes the form

(2 +m2
1 + gΦ2(t))ψ(x) = 0 . (39)
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Puting

ψ(x) =
1

√

(2π)32Ep

e−ipxψ̃(t), p2 = m2
1, Ep ≡

√

~p2 +m2
1 (40)

we arrive at

(

∂2
t − 2iEp∂t + gΦ2(t)

)

ψ̃(t) = 0 , (41)

ψ̃(t)|g=0 = 1 . (42)

In order to solve (41) we make a change of variable [9]

y =

−zλ
12m2

2
eim2t

1 − zλ
12m2

2
eim2t

, (43)

which converts (41) into

(

y(1 − y)
d2

dy2
+

((

1 − 2Ep

m2

)

− 2y

)

d

dy
+

12g

λ

)

ψ̃(y) = 0 . (44)

The relevant solution reads

ψ̃(t) = F

(

a1, a2, 1 − 2Ep

m2
; y

)

, (45)

where F is the hypergeometric function and

a1,2 =
1 ±

√

1 + 48g
λ

2
. (46)

Let us now apply the LSZ-reduction to produce the second initial particle:

i
√

(2π)32Eq

∫

d4xe−iqx(2 +m2
1)ψ(x)

=
iδ(3)(~p+ ~q)

2Ep

∞
∫

−∞

dte−iEpt(∂2
t + E2

p)(e−iEptψ̃(t)) . (47)

Now, from (47) we see that ψ̃(t) has the following exspansion

ψ̃(t) =
∑

n≥0

αneinm2t . (48)
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Taking into account the contribution from n-th term one gets

i
√

(2π)32Eq

∫

d4xe−iqx(2 +m2
1)ψ(x) |n

= 2iπδ(3)(~p+ ~q)δ(2Ep − nm2)(2Ep − nm2)αn ; (49)

the conribution is nonvanishing only provided αn has a pole at 2Ep = nm2.
This pole term is easily identified from the solution (45). The result reads

A(2 → n) =
4iπδ(3)(~p+ ~q)δ(2Ep − nm2)Ep

((2π)32m2)
n
2 n!

(

λ

12m2
2

)n

×Γ (a1 + n)Γ (a2 + n)

Γ (a1)Γ (a2)
. (50)

Eq. (50) can be checked by Feynman-graph method. The relevant Feynman
rules read

1 1
i

p2 −m2
1 + iε

2 2
i

p2 −m2
2 + iε

1 1

2

− ig

2 2

2

− iλ

For n = 1 there is only one contribution coming from the elementary
vertex

1

1

2

which contributes an amount
−igπδ(2Ep−m2)δ(3)(~p+~q)√

(2π)32m2Ep

, in agreement with (50)

for n = 1.
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The case n = 2 is slightly more complicated. There are three graphs
contributing

1

1

2

2
+

1

1

2

2
+

1

1

2

2
Fig. 1

and they sum up to

iδ(3)(~p+ ~q)δ(2Ep − 2m2)g

(2π)22m4
2

(

g − λ

6

)

, (51)

which again agrees with general formula (50).
Let us now note the following: for

g

λ
=
N(N + 1)

12
(52)

one finds a2 =−N . Therefore, due to Γ (a2+n)/Γ (a2)=(−N)(1−N) . . . (n−
1−N), all amplitudes A(2 → n), n ≥ N+1, vanish. In particular, for N = 1
the only nonvanishing amplitude corresponds to n = 1. This latter result
can be understood by invoking the equivalence with purely threshold am-
plitudes, as discussed in Sec. 2. In fact, N = 1 implies, through (52),
g = λ

6 ; in this case the Henon–Heiles system becomes integrable and sepa-
rable in parabolic coordinates [11]. Let us consider the relevant solution in
more detail.
(B) Henon–Heiles model: integrable case

If g = λ
6 the reduced dynamics becomes separable in parabolic coordi-

nates

Φ2
1 = −4ζη ,

κ ≡ 3

λ
(4m2

1 −m2
2) ,

Φ2 = ζ + η + κ . (53)

The additional integral of motion resulting from the separation of variables
reads

F =
λ

2
Φ̇1(Φ1Φ̇2 − Φ2Φ̇1) +

λκ

2
(Φ̇2

1 +m2
1Φ

2
1) +

λm2
1

2
Φ2

1Φ2

+
λ2

24
Φ2

1

(

Φ2
1

4
+ Φ2

2

)

. (54)
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F generates the following symmetry transformation

Φ1 → Φ′
1 = Φ1 + ελ

(

κΦ̇1 +
1

2
(Φ1Φ̇2 − 2Φ2Φ̇1)

)

,

Φ2 → Φ′
2 = Φ2 +

ελ

2
Φ1Φ̇1 . (55)

We are looking for the solution obeying

Φ1 |λ=0 = z1e
−im1t ,

zi ≡ βi
√

(2π)32mi

,

Φ2 |λ=0 = z2e
im2t . (56)

It corresponds to E = 0 and F = 0 and reads

Φ1 =
2m1(4m

2
1 −m2

2)(1 − x)y

λ(2m1(1 − x)(1 − y2) +m2(1 + x)(1 + y2))
, (57)

Φ2 =
4κ(m2

2x(1 + y2)2 + 4m2
1y

2(1 − x)2)

(2m1(1 − x)(1 − y2) +m2(1 + x)(1 + y2))2
, (58)

where

x =
z2λ

m2
2

(

2m1 +m2

2m1 −m2

)

eim2t , (59)

y =
z1λe−im1t

2m1(2m1 −m2)
. (60)

Let us analyse this solution in some detail. For 2m1 6= m2 there are no
resonances so the relevant threshold amplitudes vanish. On the other hand,

∂Φ1

∂z1
|z1=0=

1 −
(

2m1+m2
2m1−m2

)

z2λ
m2

2
eim2t

1 − z2λ
m2

2
eim2t

≃ 1 − 2λz2e
im2t

m2(2m1 −m2)
+O

(

z2
2

)

, (61)

which gives nonzero amplitude 2 → 1 for 2m1 = m2. This is in agreement
with general arguments concerning the relation between symmetries and
amplitude nullification [2,10]; in fact, for 2m1 = m2 the relevant linear part
in the transformation formulae (55) is absent.

By replacing m1 by Ep ≡
√

~p2 +m2
1 our expression (61) coincides

with (45) calculated for N = 1. Therefore, the symmetry (55), which is
valid for arbitrary masses, inplies the vanishing of 2 → n hard-soft ampli-
tudes.
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4. Fermions

It is straightforward to include higher-spin bosons into our scheme. As
far as fermions are concerned the only but crucial modification is to replace
the parameters β, β̄ entering (2) by anticommuting Grassman variables;
this allows to implement Pauli exclusion principle.

As an example we shall compute the threshold amplitudes for n-boson
production by fermion-antifermion pair. The theory we are considering pro-
vides a toy model for fermionic mass generation is the standard model via
spontaneous symmetry breaking. It has been considered from the point
of view of amplitudes nullification in Refs. [4, 5]; diagrammatic approach
through recurrence relations has been developed in [7].

Our model contains massless fermionic field coupled by Yukawa term to
the Higgs field. The relevant Lagrangian reads

L = iψ̄γµ∂µψ +
1

2

(

∂µΦ∂
µΦ+m2Φ2

)

− λ

4!
Φ4 − gΦψψ̄ . (62)

Due to the wrong sign of mass term the vacuum solution is nontrivial

ψ = 0 , ψ̄ = 0 , Φ = v ≡
√

3!m2

λ
. (63)

Define the physical field ρ by

ρ ≡ Φ− v . (64)

In terms of this new field the Lagrangian reads

L = ψ̄(iγµ∂µ −M)ψ

+
1

2
(∂µρ∂

µρ−m2
ρρ

2) − λv

3!
ρ3 − λ

4!
ρ4 + −gρψ̄ψ ; (65)

here M = gv, mρ =
√

2m are fermionic and bosonic masses, respectively.
L is invariant under ψ → −ψ, ψ̄ → −ψ̄, ρ → ρ; therefore, one can

apply the strategy of Sec. 2. First, we solve field equations for ρ under the
condition ψ = ψ̄ = 0 and

ρ |λ=0 =
βeimρt

√

(2π)32mρ

≡ z0e
imρt ≡ z(t) . (66)
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The solution reads [9]

ρ(t) =
z(t)

1 − z(t)
2v

, (67)

or

Φ(t) = v
1 + z(t)

2v

1 − z(t)
2v

. (68)

The counterpart of (23) takes now the form

(iγµ∂µ − gΦ(t))ψps(x) = 0 , (69)

ψps(x)| g=0
gv=M

=

√

M

(2π)3Ep
u(p, s)e−ipx . (70)

The same reasoning as in bosonic case suggests the following Ansatz for ψps:

ψps(x) =

(

ζF (t)

ηF̃ (t)

)

eipkxk

e−iEpt , (71)

where
(

ζ

η

)

=

√

M

(2π)3Ep
u(p, s) (72)

is the standard solution to Dirac equation [13]. Inserting the Ansatz (71),
(72) into Eq. (69) we arrive at

(Ep + i∂t − gΦ(t))F (t)ζ + F̃ (t)pkσ
kη = 0 , (73)

(−Ep − i∂t − gΦ(t))F̃ (t)η − F (t)pkσ
kζ = 0 (74)

or, using (72),

(Ep + i∂t − gΦ(t))F (t) − (E −M)F̃ (t) = 0 , (75)

(Ep + i∂t + gΦ(t))F̃ (t) − (E +M)F (t) = 0 ; (76)

the boundary condition (70) is obeyed provided

F | g=0
gv=M

= 1, F̃ | g=0
gv=M

= 1 . (77)

It is not difficult to find the solution to (75), (76) obeying (77). We apply
(Ep + i∂t + gΦ(t)) to (75) and use (76); then

(

∂2
t − 2iEp∂t + g2Φ2(t) + ig∂tΦ(t) +M2

)

F = 0 . (78)
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Changing the variable,

y =
− z(t)

2v

1 − z(t)
2v

, (79)

we arrive at the hipergeometric equation. Its solution reads

F (t) = F (α, β, γ; y) , (80)

α ≡ 2M

mρ
,

β ≡ 1 − 2M

mρ
,

γ ≡ 1 − 2Ep

mρ
. (81)

For F̃ (t) we obtain, respectively,

F̃ (t) = F (α+ 1, β − 1, γ; y) ; (82)

(80) and (82) satisfy (75), (76).

We are now ready to calculate the exact expression for the tree-graph
threshold amplitude A(f f̄ → nρ). To this end we reduce the fermionic
antiparticle by LSZ formula. Then

−i
∫

d4xv̄p′s′(x)(iγ
µ∂µ −M)ψps(x) (83)

becomes the generating functional for all such amplitudes; here

v̄p′s′(x) =

√

M

(2π)3Ep′
v̄(p′, s′)e−ip′x . (84)

In order to calculate (83) let us write

ψps(x) =

√

M

(2π)3Ep
ψ̃(x0)e−ipx ; (85)

then (83) can be rewritten as follows
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−iM
(2π)3

√

EpEp′

∫

d4xv̄(p′, s′)e−ip′x(iγµ∂µ −M)ψ̃(x0)e−ipx

=
−iM

(2π)3
√

Ep′Ep′

∫

d4xv̄(p′, s′)e−i(p+p′)x(iγµpµ −M + iγ0∂0)ψ̃(x0)

=
−iM
Ep

δ(3)(~p+ ~p′)

∞
∫

−∞

dx0e−2iEpx0
v̄(p′, s′)(γµpµ −M + iγ0∂0)ψ̃(x0) . (86)

Let us note that, due to ~p ′ = −~p ′,

v̄(p′, s′)(γµpµ −M) = 2Epv̄(p
′, s′)γ0 (87)

and our functional takes the form

−iM
Ep

δ(3)(~p+ ~p′)

∞
∫

−∞

dx0e−2iEpx0
v̄(p′, s′)γ0(2Ep + i∂0)ψ̃(x0) . (88)

Consider the last expression. It can be analysed in a similar way as in purely
bosonic case. In order to isolate the amplitude for the creation of n bosons
one has to single out the term proportional to zn

0 . Due to the structure of
the solution ψps(x) it can be expanded in Fourier series in eimρt. The term
einmρt produces the energy delta function δ(2Ep−nmρ); however, because of
time derivative in (88) this delta function is accompanied by 2Ep −nmρ, so
the result is zero unless there is an additional pole coming from the gamma
functions entering hipergeometric series. It is straightforward to isolate this
term arriving at the following final expression for the amplitude

A(f f̄ → nρ)

=
−4πiMδ(2Ep − nmρ)δ

(3)(~p+ ~p′)

(
√

(2π)32mρ)
n
(n− 1)!(2v)n

Γ (n+ 2M
mρ

)Γ (n− 2M
mρ

)

Γ (2M
mρ

)Γ (1 − 2M
mρ

)
v̄(p′, s′)u(p, s) .

(89)

The spin structure of this formula is dictated by invariance properties, angu-
lar momentum and parity conservation. In order to check the formula (89)
we compare it with Feynman-graph computation. For n = 2 Eq. (89) takes
the form

A(f f̄ → 2ρ)

=
−i
4π2

δ(2Ep − 2mρ)δ
(3)(~p+ ~p′)

(

M2

2m2
ρv

2
− 2M4

m4
ρv

2

)

v̄(p′, s′)u(p, s) . (90)
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The relevant Feynman rules are

i(γµpµ +M)

p2 −M2 + iε

i

p2 −m2
ρ + iε

− ig

− iλv

− iλ

Fig. 2

The graphs contributing to A(f f̄ → 2ρ) are depicted in Fig. 3

+ +

Fig. 3

Again, the amplitude exhibits nullification phenomenon [4, 5, 7, 9]. Due
to

Γ (n− α)

Γ (1 − α)
= (1 − α)(2 − α) . . . (n− 1 − α) (91)

the amplitude vanishes for n > N provided α ≡ 2M
mρ

= N is an integer

(actually, n ≤ N amplitudes also vanish due to energy conservation and the
properties of spinor wave functions). In particular, for N = 1 all amplitudes,
vanish.
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5. Final remarks

We presented a simple derivation of the Brown–Zhai Feynman wave func-
tion algorithm for general theories. It allows to compare our process with a
purely soft one. The important point is that, for the latter, we can use Ward
identities following from the integrability of reduced dynamics [2] to prove
their vanishing. This argument works in purely scalar case (cf. also [2])
as well as fermionic one [14]. In this way we identify, in some cases, the
symmetry underlying nullification of 2 → n amplitudes.
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