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The method of truncated Mellin moments in a solving QCD evolution
equations of the nonsinglet structure functions FNS

2 (x, Q2) and gNS
1 (x, Q2)

is presented. All calculations are performed within double logarithmic ln2 x
approximation. An equation for truncated moments which incorporates
ln2 x effects is formulated and solved for the unintegrated structure function
fNS(x, Q2). The contribution to the Bjorken sum rule coming from the
region of very small x is quantified. Further possible improvement of this
approach is also discussed.

PACS numbers: 12.38. Bx

1. Introduction

Structure functions play a central role in the perturbative QCD. Ex-
perimental measurements of the spin dependent and unpolarised structure
functions of the nucleon allow verification of sum rules and determination of
free parameters of the input parton distributions. From the other side, the-
oretical analysis within perturbative methods investigates the available ex-
perimentally region of the variables x and Q2 and the interesting very small
x region (still unmeasurable) as well. In this low x region QCD predicts a
strong growth of structure functions with decreasing x — the longitudinal
momentum fraction of a hadron carried by a parton. Small x behaviour of
the singlet unpolarised structure functions, driven by gluons, is governed by
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BFKL [1] or CCFM [2,3] equations which generate the steep x−λ (λ ∼ 0.3)
shape of F S

2 (x,Q2) [4]. For the nonsinglet unpolarised FNS
2 (x,Q2) the driv-

ing term at small x is a nonperturbative contribution of the A2 Regge pole
FNS

2 ∼ x0.5 [4] which dominates even over the αs ln2 x effects. These dou-
ble logarithmic terms control however the small x behaviour of both non-
singlet and singlet spin dependent structure function g1(x,Q2) [4, 5]. The
knowledge of structure functions at very low x is very important. The sum
rules, which can be verified by experiments, concern moments of structure

functions
∫ 1
0 dxxn−1g1(x,Q2) and

∫ 1
0 dxxn−1F2(x,Q2) and hence require the

knowledge of g1 and F2 over the entire region of x ∈ (0; 1). The lowest limit
of x in present experiments is about x ∼ 10−5 so in theoretical analysis one
should extrapolate results to x = 0 and x = 1. More important is, how-
ever, the extrapolation to x → 0, where structure functions grow stronger
than in the extrapolation to x = 1, where structure functions are equal
to 0. The limit x → 0 which implies that the invariant energy W 2 of the
inelastic lepton-hadron scattering becomes infinite (W 2 = Q2( 1

x − 1)) will
never be attained experimentally. So we will really never know “what hap-
pens” with the structure functions at x → 0. This situation is however
not quite hopeless. One can combine the QCD perturbative analysis in the
very interesting small x region with experimental data without uncertainty
from the region where x → 0. It could be achieved through dealing with
truncated moments of the structure functions, where one takes an integral
over x0 ≤ x ≤ 1 instead of over the whole region 0 ≤ x ≤ 1. In usually
used method of solving evolution equations in QCD one takes Mellin (full)
transforms of these equations what gives possibility of analytical solutions.
Then after inverse Mellin transform (performed numerically) one can obtain
suitable solutions of original equations in x space. In this way e.g. in a case
of DGLAP approximation, the differentio-integral equations for parton dis-
tributions q(x,Q2) after Mellin transform change into simple differential and
diagonalized ones in moment space n. The only problem is the knowledge
of input parametrisations for the whole region 0 ≤ x ≤ 1 what is necessary
in the determination of moments of distribution functions. Using truncated
moments approach one can avoid uncertainty from the unmeasurable x → 0
region and also obtain important theoretical results incorporating perturba-
tive QCD effects at small x, which could be verified experimentally. Trun-
cated moments of parton distributions in solving DGLAP equations have
been presented in [6]. Authors have shown that the evolution equations for
truncated moments though not diagonal can be solved with good precision.
This is because each n-th truncated moment couples only with n + j-th
(j ≥ 0) truncated moments. In our paper we adopt the truncated moments
method to double logarithmic ln2 x resummation. However, a technique we
use in this approach is quite different because suitable integral equations
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which correspond to ln2 x terms are, of course, different from the DGLAP
ones. As a result we obtain the equations for truncated moments of the un-
integrated structure function fNS(x,Q2), where each n-th moment (n 6= 0)
couples only with itself and with 0-th moment. For fixed coupling constant
αs the result for n-th truncated moment can be found analytically. The
purpose of this paper is to start the truncated moments method in the case
of perturbative QCD formalism, describing double logarithmic ln2 x terms
in the nonsinglet structure functions FNS

2 and gNS
1 . In the next section we

recall the approach which resums the double logarithmic terms. The integral
equation for the nonsinglet unintegrated quark distributions fNS(x,Q2) is
presented. In Section 3 the equation for truncated moments of fNS(x,Q2)
within ln2 x approach is derived. This equation is solved analytically for
fixed αs. Agreement for the limit case x0 → 0 (full moments) of our re-
sults is shown. Results for truncated moments of FNS

2 and gNS
1 for simple

Regge-type input parametrisations and different x0 are presented in Section
4. We calculate also the contribution to the Bjorken sum rule coming from
the region of very small x. Finally in Section 5 we summarise our results
and discuss further possible improvement of our treatment.

2. Idea of double logarithmic ln2 x resummation for the

nonsinglet unpolarised and polarised structure functions

of the nucleon

It has been noticed [4, 5] that the nonsinglet structure functions of the
nucleon in the small x region are governed by double logarithmic terms i.e.

powers of αs ln2 x at each order of the perturbative expansion. This contribu-
tion to the ln2 x resummation comes from the ladder diagram with quark and
gluon exchanges along the chain — cf. Fig.1. In contrast to the singlet spin
dependent structure function, for the nonsinglet one the “bremsstrahlung”
nonladder corrections vanish for the unpolarised structure function and are
negligible for the spin dependent one [5, 7]. In this way we do not need to
take into account the nonladder diagrams in the case of nonsinglet (both
polarised and unpolarised) structure functions. The Regge theory [8], which
concerns the Regge limit: x → 0 predicts singular behaviour of nonsinglet,
unpolarised distributions and nonsingular (flat) shape of nonsinglet polarised
ones

qNS ∼ x−0.5 , (2.1)

∆qNS ∼ x0 ÷ x−0.5 , (2.2)

where qNS denotes nonsinglet unpolarised and ∆qNS nonsinglet polarised
quark distributions. The nonsinglet part of the unpolarised structure func-
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Fig. 1. A ladder diagram generating double logarithmic ln2(1/x) terms in the non-

singlet spin structure functions.

tion has the form

FNS
2 (x,Q2) = F p

2 (x,Q2) − Fn
2 (x,Q2) , (2.3)

where
F2(x,Q2) =

∑

i=u,d,s,...

e2
i [xqi(x,Q2) + xq̄i(x,Q2)] . (2.4)

The spin dependent structure function is

gNS
1 (x,Q2) = gp

1(x,Q2) − gn
1 (x,Q2) (2.5)

and

g1(x,Q2) =
1

2

∑

i=u,d,s,...

e2
i ∆qi(x,Q2) . (2.6)

p and n in above formulae denote proton and neutron respectively, ei is a
charge of the i-flavour quark. Hence finally we get

xqNS = FNS
2 (x,Q2) =

x

3
(uval − dval)(x,Q2) (2.7)

and

∆qNS = gNS
1 (x,Q2) =

1

6
(∆uval − ∆dval)(x,Q2) , (2.8)
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where uval, dval, ∆uval, ∆dval are respectively spin and nonspin valence quark
distributions in the proton. In the double logarithmic approximation the
unintegrated nonsinglet quark distribution function fNS(x, k2) satisfies the
following integral equation [4]

fNS(x, k2) = fNS
0 (x) + ᾱs

1
∫

x

dz

z

k2/z
∫

k2

0

dk′2

k′2 fNS(
x

z
, k′2) , (2.9)

where

ᾱs =
2αs

3π
(2.10)

and fNS
0 (x) is a nonperturbative contribution which has a form

fNS
0 (x) = ᾱs

1
∫

x

dz

z
qNS(z) ∼ ᾱsx

−0.5 (2.11)

for nonspin distributions or

fNS
0 (x) = ᾱs

1
∫

x

dz

z
∆qNS(z) ∼ ᾱs ln

1

x
(2.12)

for spin dependent distributions. The driving terms of these nonperturbative
contributions qNS and ∆qNS are shown in (2.1) and (2.2). The unintegrated
distribution fNS(x, k2) is related to the quark distributions qNS (∆qNS) via

fNS(x, k2) =
∂ 1

xFNS
2 (x, k2)

∂ ln k2
(2.13)

in the unpolarised case and

fNS(x, k2) =
∂gNS

1 (x, k2)

∂ ln k2
(2.14)

in the polarised one. Using the method of the Mellin moment functions one
can obtain from (2.9) the following equation

f̄NS(n, k2) = f̄0
NS

(n)+
ᾱs

n







k2
∫

k2

0

dk′2

k′2 f̄NS(n, k′2)+

∞
∫

k2

dk′2

k′2

(

k2

k′2

)n

f̄NS(n, k′2)






,

(2.15)
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where the full Mellin moment of the function f(x) is defined as:

M (n) ≡
1

∫

0

dxxn−1f(x) (2.16)

and in our case

f̄NS(n, k2) =

1
∫

0

dxxn−1fNS(x, k2) . (2.17)

As it was shown in [4], equation (2.15) for fixed coupling ᾱs can be solved
analytically. Because later we would like to compare full-moments approach
with the truncated moments one, let us recall the way to obtain the analyt-
ical solution of (2.15). A short explanation of this is given in Appendix A.
Thus we get the solution of (2.15) in the form

f̄NS(n, k2) = f̄0
NS

(n)
nγ

ᾱs

(

k2

k2
0

)γ

, (2.18)

where

γ =
n

2

[

1 −
√

1 − (
n0

n
)2

]

(2.19)

and
n0 = 2

√
ᾱs . (2.20)

The inhomogeneous term f̄0
NS

(n) in (2.15) and (2.18) according to (2.16),
(2.11)–(2.12) and (2.1)–(2.2) behaves as

f̄0
NS

(n) ∼ ᾱs

n(n − 0.5)
(2.21)

for unpolarised structure functions and

f̄0
NS

(n) ∼ ᾱs

n2
(2.22)

for the spin dependent ones. The anomalous dimension of the moment of the
nonsinglet structure function γ from (2.19) has a (square root) branch point
singularity at n = n0. This gives the following behaviour of the nonsinglet
structure functions at small x:

fNS(x, k2) ∼ x−n0

(

k2

k2
0

)n0/2

(2.23)
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and hence also

1

x
FNS

2 (x, k2) ∼ gNS
1 (x, k2) ∼ x−n0

(

k2

k2
0

)n0/2

. (2.24)

This low x shape ∼ x−n0 , where n0 given in (2.20) is equal to 0.39 for
ᾱs = 0.038 (αs = 0.18), remains nonleading in the case of the nonsinglet
unpolarised structure function in comparison to the contribution of the non-
perturbative A2 Regge pole (2.1). In this way QCD perturbative singularity
at small x generated by the double logarithmic ln2 x resummation for non-
singlet unpolarised quark distributions is hidden behind the leading Regge
contribution:

qNS(x,Q2) ∼ x−n0 < x−αA2
(0) αA2

(0) = 0.5 . (2.25)

Quite different situation occurs for the nonsinglet spin dependent functions,
where the double logarithmic contribution becomes important:

∆qNS(x,Q2) ∼ x−n0 > x−αA1
(0) αA1

(0) ≤ 0 . (2.26)

This takes place because the nonperturbative Regge part for spin depen-
dent quark distributions involves a very low intercept αA1

(0) ≤ 0. Small x

behaviour ∼ x−2
√

ᾱs of the nonsinglet structure functions originating from
double logarithmic ln2 x resummation is a very interesting feature. Partic-
ularly for the polarised structure functions, where the double logarithmic
analysis enables one to estimate of parton parametrisations at low x. In the
next section we introduce the truncated moments method and combine it
with the ln2 x approach. This technique will give a novel advantage in the
QCD perturbative analysis: enable one to avoid dealing with the unmeasur-
able x → 0 region.

3. Truncated moments method within double logarithmic ln2 x

resummation for the nonsinglet structure functions

Truncated moments of parton distributions have been lately used in the
LO and NLO DGLAP analysis [6]. Authors avoid in this way an extrapola-
tion of well known quark distributions behaviour to the unmeasurable and
unknown x → 0 region. Apart from that they receive evolution equations for
the truncated moments, in which n-th truncated moment couples only with
n + j-th (j ≥ 0) moments and the series of couplings is convergent, which
ensures good accuracy. In our double logarithmic analysis we use truncated
moments of the unintegrated function fNS(x, k2) and for fixed coupling ᾱs

we can solve the suitable equation analytically. Let us shortly explain this
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treatment. The truncated n-th Mellin moment of the function fNS(x, k2)
from (2.13)–(2.14) is defined as

f̄NS(x0, n, k2) ≡
1

∫

x0

dxxn−1fNS(x, k2) . (3.1)

The evolution equation (2.9), generating double logarithmic terms ln2 x in
the truncated Mellin moment space takes a form

f̄NS(x0, n, k2) = f̄0
NS

(x0, n) + ᾱs

k2/x0
∫

k2

0

dk′2

k′2

×
1

∫

x0

dyyn−1fNS(y, k′2)

1
∫

x0/y

dzzn−1Θ

(

k2

k′2 − z

)

(3.2)

where Θ(t) is Heaviside’s function

Θ(t) =
{

1 for t > 0
0 for t ≤ 0

(3.3)

and we deal with the x-Bjorken region, where

x ≥ x0 . (3.4)

After taking into account the relations

1
∫

x0/y

dzzn−1Θ

(

k2

k′2 −z

)

=
1

n

[

Θ(k2−k′2) + Θ(k′2−k2)

(

k2

k′2

)n

−xn
0

yn

]

;n 6= 0

(3.5)
1

∫

x0/y

dzzn−1Θ

(

k2

k′2 −z

)

= ln
y

x0
+ Θ(k′2 − k2) ln

k2

k′2 ; n = 0 (3.6)

one can obtain from (3.2)
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f̄NS(x0, 0, k
2) = f̄0

NS
(x0, 0) + ᾱs







k2/x0
∫

k2

dk′2

k′2 ln
k2

k′2 f̄NS(x0, 0, k
′2)

+

k2/x0
∫

k2

0

dk′2

k′2

1
∫

x0

dy

y
ln yfNS(y, k′2) − ln x0

k2/x0
∫

k2

0

dk′2

k′2 f̄NS(x0, 0, k
′2)







(3.7)

and

f̄NS(x0, n, k2) = f̄0
NS

(x0, n) +
ᾱs

n







k2
∫

k2

0

dk′2

k′2 f̄NS(x0, n, k′2)

+

k2/x0
∫

k2

dk′2

k′2

(

k2

k′2

)n

f̄NS(x0, n, k′2) − xn
0

k2/x0
∫

k2

0

dk′2

k′2 f̄NS(x0, 0, k
′2)






;n 6= 0 .

(3.8)

For n 6= 0 we get the following solution (for details see Appendix B)

f̄NS(x0, n, k2) = f̄0
NS

(x0, n)

(

k2

k2
0

)γ
R

1 + (R − 1)xn
0

, (3.9)

where
R ≡ R(n, ᾱs) =

nγ

ᾱs
(3.10)

γ is given in (2.19) and f̄0
NS

(x0, n) is the inhomogeneous term, independent
on k2

f̄0
NS

(x0, n) =

1
∫

x0

dxxn−1fNS
0 (x) =

ᾱs

n

1
∫

x0

dx

x
(xn − xn

0 )p0(x) . (3.11)

The input parton distribution p0(x) in the above formula denotes qNS
0 (x) for

the unpolarised case or ∆qNS
0 (x) for the polarised one, respectively. From

(3.9) one can read that our solution for the truncated moment f̄NS(x0, n, k2)
reduces to (2.18) when x0 = 0 what must be, of course, fulfilled.
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4. Some results for truncated moments

f̄NS(x0, n, k2), F̄2

NS
(x0, n, k2), ḡ1

NS(x0, n, k2)
in the double logarithmic ln2 x approximation

The truncated n-th moment of the unintegrated nonsinglet function
fNS(x, k2) is given by Eqs. (3.9)–(3.11). In Figs. 2–3 we plot the moments
of fNS(x, k2) for different n as a function of x0 at k2 = 10GeV2. One can
see that the ratio pf (x0, n) defined as

pf (x0, n) ≡ f̄NS(x0, n, k2)

f̄NS(0, n, k2)
(4.1)

becomes very large (≃ 1) at x0 ≈ 10−4 (pf (x0 = 10−4, n = 1) = 0.997).
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Fig. 2. Truncated Mellin moments f̄NS(x0, n, k2) =
∫ 1

x0

dxxn−1fNS(x, k2) as a func-

tion of x0 for different n at k2 = 10GeV2 in ln2 x approach.
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Fig. 3. The truncated Mellin moment f̄NS(x0, n = 1, k2 = 10GeV2), similarly as in

Fig.2 but in a linear scale.
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This could be an advice that the truncated moments method is useful
in the region x ≥ x0 ∼ 10−4 because at lower x the results for the full and
the truncated moments are practically the same (at least for the Regge in-
put). From the other side double logarithmic ln2 x terms from our approach
become important in the small x region x ≤ 10−2 [7], [9]. So taking into ac-
count both above facts one should choose the limit point x0 in the truncated
moments of fNS, gNS

1 or FNS
2 as

10−2 ≥ x0 ≥ 10−4 . (4.2)

Truncated moments of the nonsinglet quark distributions are related to the
moments of fNS via

1
∫

x0

dxxn−1gNS
1 (x, k2) =

1
∫

x0

dxxn−1g0NS
1 (x) +

k2/x0
∫

k2

0

dk′2

k′2(1 + k′2

k2 )
f̄NS(x0, n, k′2)

(4.3)
for the spin dependent structure function and via

1
∫

x0

dxxn−2FNS
2 (x, k2) =

1
∫

x0

dxxn−2F 0NS
2 (x)+

k2/x0
∫

k2

0

dk′2

k′2(1 + k′2

k2 )
f̄NS(x0, n, k′2)

(4.4)
for the unpolarised case. This together with (3.9)–(3.11) gives the following
formulae

I1(x0, n, k2) ≡
1

∫

x0

dxxn−1gNS
1 (x, k2) = ḡ1

0NS(x0, n)

+B(x0, n, k2)[ḡ1
0NS(x0, n) − xn

0 ḡ1
0NS(x0, 0)] ,

(4.5)

I2(x0, n, k2) ≡
1

∫

x0

dxxn−1FNS
2 (x, k2) = F̄2

0NS
(x0, n)

+B(x0, n + 1, k2)[F̄2
0NS

(x0, n) − xn+1
0 F̄2

0NS
(x0, 0)] ,

(4.6)

where

B(x0, n, k2) =
γ(k2

k2

0

)γ

1 + (R − 1)xn
0

ln 1

x0
∫

ln
k2
0

k2

dt
eγt

1 + et
. (4.7)
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In Table I we collect results for different n-th moments of FNS
2 (x, k2) and

gNS
1 (x, k2) functions obtained from (4.5)–(4.6). The moments are truncated

at x0 = 10−1, 10−2, 10−3 and 10−4. For all moments in Table I k2 = 10GeV2,
αs = 0.18 and

F̄2
0NS

(x0, n) ≡
1

∫

x0

dxxn−1F 0NS
2 (x) , (4.8)

ḡ1
0NS(x0, n) ≡

1
∫

x0

dxxn−1g0NS
1 (x) . (4.9)

TABLE I

Truncated moments I1(x0, n, k2) ≡
∫ 1

x0

dxxn−1gNS
1 (x, k2) and I2(x0, n, k2) ≡

∫ 1

x0

dxxn−1FNS
2 (x, k2) for different x0 and n in the ln2 x approach.

x0 n I1(x0, n, k2) I2(x0, n, k2)

1 0.144631 0.031977
2 0.039952 0.010018

10−1 3 0.014137 0.003945
4 0.006101 0.001843

1 0.219244 0.038540
2 0.043831 0.010413

10−2 3 0.014400 0.003975
4 0.006124 0.001846

1 0.229486 0.038791
2 0.043892 0.010416

10−3 3 0.014402 0.003975
4 0.006125 0.001847

1 0.230692 0.038801
2 0.043894 0.010416

10−4 3 0.014402 0.003975
4 0.006125 0.001847

Input parametrisations g0NS
1 (x) and F 0NS

2 (x) are chosen at k2
0 = 1GeV2 in

the simple Regge form

F 0NS
2 (x) =

35

96

√
x(1 − x)3 , (4.10)

g0NS
1 (x) = 0.838(1 − x)3 (4.11)
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which satisfy the sea flavour symmetric Gottfried [10] and Bjorken [11] sum
rules

IGSR =

1
∫

0

dx

x
FNS

2 (x, k2) =
1

3
, (4.12)

IBSR =

1
∫

0

dxgNS
1 (x, k2) =

1

6
gA = 0.21 , (4.13)

where gA = 1.257 is the axial vector coupling. In order to determine the
moment integrals we need knowledge of structure functions over the entire
region of x. The small x behaviour of structure functions is driven by the
double logarithmic ln2 x terms. This ln2 x approximation is, however, in-
accurate in describing the Q2 evolution for large values of x. Therefore,
double logarithmic ln2 x approach should be completed by LO DGLAP Q2

evolution. Dealing with truncated moments of fNS within unified ln2 x+LO
resummation one encounters difficulties because suitable evolution equations
are, of course, more complicated than in the pure double logarithmic ap-
proach presented here. Probably the only successful method to solve the
evolution equations for truncated moments in ln2 x+LO treatment is the
numerical calculus. We will discuss this in detail in the forthcoming paper.
Now we are able to employ the truncated moment method in calculation of
the contribution to moment integrals coming from the region of very small
x. Using the definition of the truncated moment (3.1) we can in a very easy
way find the double truncated moments of fNS, gNS

1 or FNS
2 :

x2
∫

x1

dxxn−1fNS(x, k2) =

1
∫

x1

dxxn−1fNS(x, k2) −
1

∫

x2

dxxn−1fNS(x, k2) (4.14)

etc. In this way for the partial Bjorken sum rule, according to (4.5), we have

x2
∫

x1

dxgNS
1 (x, k2 = 10) = I1(x1, 1, 10) − I1(x2, 1, 10) , (4.15)

where x1 and x2 are both very small

x1 ≤ x2 ≤ 10−2 . (4.16)

We have thus estimated a contribution

∆IBSR(x1, x2, k
2) =

x2
∫

x1

dxgNS
1 (x, k2) (4.17)
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and found that ∆IBSR(10−4, 10−2, 10) = 0.011, ∆IBSR(10−5, 10−3, 10) =
0.0013 what is equal to around 5% and 0.6%, respectively, of the value of
the full sum (4.13). In our above estimation we have assumed the simple
Regge input parametrisation of g0NS

1 (4.11).

5. Summary and conclusions

In our paper we have derived the integral equation for truncated mo-
ments of the unintegrated nonsinglet structure function fNS(x,Q2) in the
case of double logarithmic ln2 x approximation. Analytical results at fixed
αs for truncated moments of FNS

2 and gNS
1 have been presented. We have

received the clear, new solutions and what is important, in the limit x0 → 0
our calculations confirm the well known analytical result for full moments of
fNS(x,Q2). The resummation of ln2 x terms at small x goes beyond the stan-
dard LO (and even NLO) QCD evolution of spin dependent parton densities.
In the case of unpolarised structure functions, the Regge behaviour, origi-
nating from the nonperturbative contribution is the leading one at small x.
Therefore, the double logarithmic approximation is very important partic-
ularly for the polarised structure function g1, which at low x is dominated
just by ln2 x terms. In our paper we have obtained analytical solutions for
truncated Mellin moments of gNS

1 (and FNS
2 too). Dealing with truncated

moments at x0:
∫ 1
x0

dxxn−1g1(x,Q2) one can avoid uncertainty from the un-
measurable very small x → 0 region. In this way the theoretical predictions
of QCD analysis for structure functions at small x can be compared with
experimental data without necessity to extrapolate results into nonavailable
x < x0 range. In our analysis for nonsinglet structure functions gNS

1 and
FNS

2 we have found their truncated at x0 moments, what could be helpful
in the estimation of Bjorken (gNS

1 ) and Gottfried (FNS
2 ) sum rules. We have

estimated the contribution to the Bjorken sum rule from the very small x
region (10−4 < x < 10−2) and found it to be around 5% of the value of the
sum. Evolution equations, we have derived for truncated Mellin moments
of fNS(x,Q2) generate correctly the leading small x behaviour but do not
describe Q2 evolution at large values of x. In the integrals for moments
of structure functions one needs to have values of g1 or F2 from the entire
range of x: x0 ≤ x ≤ 1 so for large x one should include in the formalism
LO Altarelli–Parisi (DGLAP) evolution. The aim of our paper was to focus
attention on the truncated moments technique within ln2 x approach itself.
We found an analytical solution for the truncated moments of structure
functions within ln2 x approximation. This is an important stage before
further investigations. The next step in the improvement of our analysis
will be including LO DGLAP evolution into equations generating double
logarithmic terms ln2 x for truncated moments of the nonsinglet structure
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functions. This should give a proper determination of truncated and thus
experimentally verifiable sum rules.

The work presented here is the result of discussions of one of the authors
(D.K.) with Jan Kwieciński. He was, as usual, very helpful, patient and
stimulating. We are greatly indebted to him for many years of teaching us
QCD. It is painful to us to express our appreciation of the help we received
from Jan Kwieciński after he is gone.

Appendix A

Analytical solution of the evolution equation for the full moments of the

function fNS(x, k2) generating double logarithmic ln2 x effects at small x

After double differentiation of (2.15) with respect to ln k2 one obtains

∂2f̄NS(n, k2)

∂t2
= n

∂f̄NS(n, k2)

∂t
− ᾱsf̄

NS(n, k2) (A.1)

with

t = ln k2 . (A.2)

Hence function f̄NS(n, k2) has a form

f̄NS(n, k2) =

(

k2

k2
0

)γ

H(n, ᾱs) , (A.3)

where H(n, ᾱs) from initial conditions should be

H(n, ᾱs) = f̄0
NS

(n)R(n, ᾱs) (A.4)

and γ is given by (2.19)–(2.20). After inserting the solution (A.3)–(A.4) into
(2.15) one finds that R is connected with ᾱs, n and γ via

R(n, ᾱs) =
nγ

ᾱs
. (A.5)

Finally, the solutions (A.3)–(A.5) for n-th moment f̄NS(n, k2) giving (2.18),
imply via inverse Mellin transform

fNS(x, k2) =
1

2πi

c+i∞
∫

c−i∞

dnx−nf̄NS(n, k2) (A.6)
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the following small x behaviour for fNS(x, k2)

fNS(x, τ) ∼
√

2n0

4ᾱs
√

π
(n0 ln τ + 1)(

τ

x
)n0(ln

τ

x
)−3/2 , (A.7)

where

τ =

(

k2

k2
0

)1/2

(A.8)

and n0 defined in (2.20) denotes branch point singularity of the anomalous
dimension γ.

Appendix B

Analytical solution of the evolution equation for truncated moments of the

function fNS(x, k2) generating double logarithmic ln2 x effects at small x

From the definition of the n-th (n 6= 0) truncated moment of f(x, k2)
(3.1) one can read the following relation

∂f̄NS(x0, n, k2)

∂x0
= xn

0

∂f̄NS(x0, 0, k
2)

∂x0
. (B.1)

On the strength of this above relation we can replace f̄NS(x0, 0, k
′2) in (3.8)

via

f̄NS(x0, 0, k
′2) = x−n

0 f̄NS(x0, n, k′2) − n

1
∫

x0

dy

yn+1
f̄NS(y, n, k′2) (B.2)

and hence we get for (3.8)

f̄NS(x0, n, k2) = f̄0
NS

(x0, n) +
ᾱs

n

k2/x0
∫

k2

dk′2

k′2

[(

k2

k′2

)n

− 1

]

f̄NS(x0, n, k′2)

+ᾱsx
n
0

k2/x0
∫

k2

dk′2

k′2

1
∫

x0

dy

yn+1
f̄NS(y, n, k′2) .

(B.3)

Now we “guess” the solution of (3.8) in the form

f̄NS(x0, n, k2) = f̄0
NS

(x0, n)

(

k2

k2
0

)γ

g(x0, n, ᾱs) , (B.4)



Truncated Moments of Nonsinglet Parton Distributions in . . . 721

where we postulate the same anomalous dimension γ to be in agreement
with the result for the full moment

f̄NS(x0 = 0, n, k2) = f̄NS(n, k2) . (B.5)

After insertion (B.4) into (B.3) we can find a simple form of the auxiliary
function g(x0, n, ᾱs)

g(x0, n, ᾱs) =
n

n − γ + γxn
0

(B.6)

or equivalently

g(x0, n, ᾱs) =
R

1 + (R − 1)xn
0

(B.7)

with R = R(n, ᾱs) given by (3.10).
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