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Accuracy of a relativistic weak-coupling expansion procedure for solving
the Hamiltonian bound-state eigenvalue problem in theories with asymp-
totic freedom is measured using a well-known matrix model. The model is
exactly soluble and simple enough to study the method up to sixth order
in the expansion. The procedure is found in this case to match the pre-
cision of the best available benchmark method of the altered Wegner flow
equation, reaching the accuracy of a few percent.
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1. Introduction

This article describes a foretaste study of accuracy for a recently pro-
posed Hamiltonian weak-coupling expansion procedure that in principle can
start from a local asymptotically-free quantum field theory and produce
sufficiently small relativistic effective Hamiltonian eigenvalue problems that
may be soluble on a computer and yield the wave functions of bound states
in that theory. The study is needed to determine the prospects of reaching
a reasonable accuracy in the expansion since the strong coupling constant
rises when the renormalization group scale is lowered toward the scale of
binding mechanism [1, 2]. So far, successful approaches required different
formulations of the theory at the bound-state and high-energy scales, such
as Wilson’s lattice and Feynman’s diagrammatic techniques [3–6]. They also
used approximations such as the non-relativistic limit that applies in the
case of heavy quarkonia [7–10] and helps in constructing effective theories in
analogy with QED [11–14]. In the new method, the renormalization group
design implies two physically and mathematically well separated steps: the
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weak-coupling expansion calculus for effective bound-state eigenvalue equa-
tions, and the non-perturbative solution of these equations (see below). In
principle, the exact diagonalization circumvents the renormalon and related
issues that arise in perturbative formulae for observables [15, 16], and the
present accuracy estimate does not involve renormalons.

The accuracy of the new method is estimated using a basic and well-
known matrix model that allows for verification of the multi-scale effects
associated with asymptotic freedom. The underlying motivation is that such
tests should precede any extensive application of a new method to complex
and hard to solve theories. If the basic model study shows lack of acceptable
accuracy for a given method, there is little hope for improvement when the
same method is applied to a more complex theory. The results of such
tests should be made available to public, or, if such tests are absent, their
absence should also be pointed out. In the model case, the new method
discussed here passed the basic test well. Of course, the test study does not
predict how the same method will work in more complex cases than the test
model, but the weak-coupling expansion in the method is already known to
work in second and third order derivation of relativistic effective dynamics
in quantum field theory.

The approach discussed here is the renormalization group procedure for
effective particles (RGEP) [19] that stems from the application of the sim-
ilarity renormalization group procedure [17] to the light-front Hamiltonian
of QCD [18]. In one and the same scheme, RGEP produces the asymptoti-
cally free coupling constant in the Hamiltonians for quarks and gluons [20],
provides the conceptual framework for constructing the whole renormalized
Poincare algebra in terms of the creation and annihilation operators for ef-
fective particles [21], and leads to a simple first approximation in the case
of heavy quarkonia [22]. The procedure is boost invariant and raises a hope
for connecting the constituent model for hadrons at rest [23] and the parton
picture in the infinite momentum frame [24]. The key ingredient of the pro-
cedure is the vertex form factor f that multiplies all interaction terms. It
falls off quickly to zero when the change of an invariant mass in an interac-
tion vertex exceeds the width parameter λ. This width variable is also the
renormalization-group evolution parameter. The effective particles that cor-
respond to a small value of λ cannot be copiously created because the form
factor makes the interactions effectively weak even if the coupling constant
becomes large. The internal structure of the effective particles at such small
λ may still be given by the parton-like picture in terms of constituents that
correspond to a much larger value of λ ∼ Q in the same flow, where Q is
the momentum scale of the external probe [25].

Qualitative accuracy studies of a similarity scheme were performed be-
fore [26] using the elegant Wegner flow equation [27,28], which was invented
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independently for solving Hamiltonian eigenvalue problems in solid state
physics. Unfortunately, it was found that the Wegner equation was not suit-
able for a straightforward weak-coupling expansion beyond second order.
The coefficients of the expansion grew too fast and alternated in sign, which
led to erratic results for bound state energies with no signs of convergence.
But the Wegner equation can be modified within the similarity scheme [29]
and the improved equation provides the benchmark here for estimating the
accuracy prospects for the relativistic RGEP procedure. The comparison
with the altered Wegner equation and the fact that improvements are also
needed in condensed matter physics [30–32], imply that the effective par-
ticle approach may also find application outside QCD, i.e., wherever the
dynamical couplings increase in the flow of Hamiltonians toward the region
of physical interest.

The RGEP strategy that is tested here is to start with a regulated H
of the theory to be solved (this H provides an initial condition for the dif-
ferential equations of RGEP at λ = ∞), and to evaluate Hλ with λ on the
order of a bound-state energy as a series in powers of a coupling constant
gλ. After evaluation of Hλ, one calculates its matrix elements in the basis
defined by eigenstates of the Hamiltonian H0λ, which is obtaind from Hλ

by setting gλ = 0; H0λ|n〉 = En|n〉 for all values of the label n. Suppose
that the labels are ordered so that Em < En implies m < n and the initial
Hamiltonian is regulated by forcing matrix elements Hmn = 〈m|H|n〉 to
vanish unless M ≤ m,n ≤ N with certain ultraviolet cutoff number N and
infrared cutoff M . The RGEP procedure is designed in such a way that the
matrix elements 〈m|Hλ|n〉 quickly tend to 0 when |Em − En| grows above
λ, see Fig. 1. The next step is to focus attention on the window Wλ of
matrix elements of Hλ among the basis states that have energies similar to
the energy scale E of the physical problem at hand, i.e.,

Wλ mn = 〈m|Hλ|n〉 , (1)

with M̃ ≤ m,n ≤ Ñ and E
M̃

. E . E
Ñ

. Since only states within the width
λ on the energy scale can directly interact with each other, states that differ
in energy from E by much more than λ are usually not important [26, 29].
They can be important as long as the coupling strength can overcome the
difference in energy, but it does not matter here because the coupling con-
stant turns out to not grow to such large values. The next step is to solve
the non-perturbative eigenvalue equation for the matrix Wλmn by diagonal-
izing it on a computer. The middle-size eigenvalues of W are expected to be
close to the exact solutions with accuracy that depends on many factors in
the procedure. These dependencies need to be estimated. The main ques-
tion addressed here concerns the accuracy of the weak-coupling expansion
for Wλ.
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Fig. 1. This out-of-scale figure illustrates Eq. (1) for the matrix Wλ mn with indices

M̃ ≤ m, n ≤ Ñ . The matrix of Hλ is represented by the large square. Matrix

elements of Hλ outside the diagonal band of width λ are equivalent to zero. In the

model study: EN ∼ 65000 GeV, E
Ñ

∼ 4 GeV, and the width λ ∼ 2 GeV.

An exact RGEP procedure provides Wλ mn whose structure depends on
λ but the eigenvalues in the middle of the window spectrum do not. Becasue
the couplings to the states outside the window are ignored, the eigenvalues
of sizes at the limits of the window spectrum cannot be accurate even if
the window is calculated exactly. Now, when one calculates Wλ in the
expansion in powers of gλ to some order, and extrapolates the result to
gλ ∼ 1, considerable errors can ensue because of the missing terms in the
series. Moreover, one never knows the right value of gλ at given λ from
the theory. Therefore, one must fit gλ to the bound-state observables and
perform consistency checks for a whole set of them. The smaller is λ the
larger is gλ and the more significant are the errors of perturbation theory in
evaluation of Wλ. But at the same time the larger is λ, the larger must be the
range [M̃, Ñ ] of basis states needed in the computer diagonalization of Wλ.
A compromise must be made and the critical question is how close one can
come to a true solution using RGEP equations. The question is essential for
the prospects of applying RGEP to QCD. A well-known asymptotically free
matrix model is used here to find out what level of accuracy can in principle
be expected. One should stress at this point that even if the test gave a
promising result in the model, the utility of the procedure would remain only
tentative until the actual calculations in realistic theories are performed and
display signs of stability as functions of the order of the expansion, size of λ,
variation of the window, and other more specific features of the eigenvalue
problems at hand.
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Section 2 defines the test model and quotes equations used for calculating
Hλ in the benchmark case of the altered Wegner’s flow and in the RGEP case.
Section 3 describes results obtained using six different ways of fitting the
coupling constant to the exact spectrum. These ways are labeled throughout
the paper by letters A, B, C, D, E, and F. Each of these versions is studied
in six successive orders of the weak-coupling expansion. Section 4 provides
a brief conclusion. Appendix A contains the generic analytic RGEP formula
for 4th order calculations that applies to arbitrary H, and Appendix B
provides the numbers that illustrate in detail what happens in the expansions
including from one to six orders.

2. Model

The matrix elements of the model Hamiltonian used here for estimating
the accuracy of RGEP are [26, 29]

Hmn = En δmn − g
√

EmEn , (2)

where En = bn, b > 1, and n is an integer, with a convention that the energy
equal 1 corresponds to 1 GeV. The model diverges and needs to be regulated
by the ultraviolet cutoff Λ = bN that limits the allowed energies En from
above. Also a low energy cutoff, bM , is introduced for making the Hamilto-
nian matrix finite and thus enabling us to perform exact computations, but
the lower bound is of no physical consequence for the results reported here.
Thus, the subscripts in Eq. (2) are limited to the range [M,N ], M being
large negative and N large positive. The ultraviolet renormalizability of the
model, its asymptotic freedom, and its lack of sensitivity to the infrared
cutoff, were described in [26, 29].

Two values of the cutoff N and the corresponding coupling constant
g = gN are used in this study of RGEP: g16 = 0.060600631 and g20 =
0.04878048667. The two cutoffs are introduced to verify the accuracy of
renormalizability in the RGEP scheme. It is known that for such large
values of N the effective dynamics with λ ∼ 1 is practically independent of
N in the case of altered Wegner’s equation, and one can verify how well the
RGEP approach satisfies this condition. At the same time, this condition
puts constraints on the range of changes that one can consider in varying
the RGEP generator without interference with renormalizability (see below).
The coupling constants g16 amd g20 are fitted to obtain the exact bound-
state eigenvalue E = −1 with 8 digits of accuracy for b = 2 and M = −21,
as in [29]. With these choices, the Hamiltonian H is a (N − M + 1) ×
(N − M + 1) matrix with N − M positive eigenvalues, and one negative,
spanning the range of energies between EM ∼ 0.5 KeV and EN ∼ 65 or
1000 TeV.



728 S.D. Głazek, J. Młynik

The similarity renormalization group procedure for Hamiltonians that
leads to the altered Wegner equation [27, 29] and provides the benchmark
here, can be written in the differential form as

dH

dλ
= [F{H},H] , (3)

with the initial condition H = H when λ = ∞. The initial condition contains
counterterms but the similarity analysis showed [17] that the structure of
the counterterms is simple and the presence of them is equivalent for large
N to making g in H depend on N . This is precisely what is done by the
fitting mentioned earlier that guarantees that the eigenvalue E = −1 stays
unchanged for different Ns. All small eigenvalues are then independent
of N . The generator of the similarity transformation can be written as
(Dm = Hmm)

〈m|F{H}|n〉 = hmn(Dm −Dn)Hmn . (4)

Different choices of hmn lead to different matrix elements of the renormalized
Hamiltonians. Assuming

hmn = φmn

ds

dλ
, (5)

one obtains Wegner’s equation when φmn ≡ 1, and s = 1/λ2 plays the role of
the original Wegner parameter l [27]. The altered Wegner equation has [29]

φmn =
1

1 + |m − n|
, (6)

and this new equation is referred to as the benchmark.
In the plain perturbative RGEP procedure, the matrix elements of Hλ

in the effective basis states associated with the scale λ, are obtained from
the matrix elements of an auxiliary Hamiltonian H in the initial basis [19].
The structure of H is given by

H = H0 + fGI . (7)

The Hamiltonian H0 is equal to the initial H0, which is the free part of H,
i.e., H with g = 0. f denotes the form factor that can be written in all
matrix elements using eigenvalues of H0, and reads

fmn = exp

[

−φmn

(Em − En)2

λ2

]

. (8)

The RGEP equation for GI is

dGI

dλ
=

[

fGI ,

{

d

dλ
(1 − f)GI

}]

, (9)
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where the curly bracket around an operator has the following meaning in
terms of the matrix elements,

{A}mn =
Amn

En − Em

. (10)

A priori, the optimal choice for φmn in the RGEP could be different from
the one that optimized the benchmark [29]. But we have studied various
factors φmn a la [29] and found that c ∼ 1 is also the best choice to make
in RGEP, for similar reasons. In addition, it is useful for the test that these
factors are made equal since then the first order calculations give identical
results in both approaches. The factor φmn is included in the analytic 4th
order RGEP formulae provided in Appendix A.

The RGEP Eq. (9) cannot be integrated exactly on a computer as easily
as Wegner’s equation can, because it contains the derivative of GI on its
right-hand side. One has to solve a complex linear problem to extract G′

I .
But the altered Wegner equation provides a perturbative benchmark pattern
that is known to approximate an exact solution well and one can estimate
the accuracy of RGEP by comparison.

In the perturbative evaluation of Hλ, the RGEP calculus is free from the
problem of extracting G′

I because the derivative is computed order by order
and all terms needed on the right-hand side are known at each successive
order from the lower order results. In fact, the new procedure is designed
for a perturbative approach. It is simpler than the Wegner case in the sense
that the form factors guarantee the band structure in perturbation theory so
that this structure does not have to be recovered from and controlled in the
evolution of specific matrix elements. Small energy denominators that might
otherwise lead to infrared singularities are excluded by design of RGEP. It
also does not generate any terms with inverse powers of λ in the coefficients
of products of the interaction Hamiltonian (see Appendix A and Eq. (3.2)
in [29]). Such terms can in principle lead to a variety of mixing effects in
the evolution of Hλ, when one uses the Wegner equation. On top of these
purely quantum mechanical features, the perturbative RGEP calculus is
capable of respecting seven Poincare symmetries in an economic way and has
a potential to obtain the remaining three [21]. At the same time, it preserves
the cluster decomposition property [33] in the effective interactions. All these
features are desired for the description of relativistic particles using theories
with asymptotic freedom. But the accuracy of the weak-coupling expansion
for windows Wλ in RGEP must be measured against the benchmark to
estimate the cost of the apparent advantages in terms of precision.
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3. Accuracy of RGEP

The results of weak-coupling expansions up to the first-order terms in
the RGEP and altered Wegner equation are identical, and read

Hmn = Emδmn − gλ

√

EmEn fmn . (11)

The form factor fmn causes that the interaction Hamiltonian matrix is nar-
row on the energy scale and has width λ, see figure 1. It is clear that in the
case of Eq. (11) the effective coupling constant can be extracted from the
matrix H using the formula

gλ = 1 −
HM,M (λ)

EM

, (12)

which is analogous to the Thomson limit in QED when M is large and
negative. The same Eq. (12) is used for defining gλ also in higher order
calculations.

In the weak-coupling expansion in powers of gλ to order k (see e.g. [29]),

H = H0 + gλH1 + g2
λH2 + ... + gk

λHk . (13)

Appendix A contains analytic expressions for Hk with k = 1, 2, 3, and 4.
The right value of gλ can be found by solving the flow equations with the
initial condition g∞ = gN exactly. Then, one can check the accuracy of a
perturbatively computed Hλ by diagonalizing it for the exact value of gλ,
and by comparing the resulting bound-state eigenvalue with E = −1 that
was secured to exist by the initial choice of gN [26,29]. The accuracy test for
RGEP is carried out differently because the exact solution of Eq. (9) is not
known. This situation is analogous to QCD where one can use perturbation
theory to calculate Hλ but an exact value of gλ is not available as a function
of gN . For the purpose of the accuracy test, the exact spectrum of the
model is treated as experimental data. An approximate value of gλ is found
by fitting some eigenvalue of the perturbatively calculated Wλ to the data,
or by performing a fit for a whole group of eigenvalues. Then one checks
how well the bound-state eigenvalue E = −1 is reproduced using the best-fit
value for gλ. In principle, one could fit gλ at one value of λ that is most
convenient for that purpose, evolve this value using RGEP to the new λ
that is most suitable for the bound-state calculation, and then compare the
calculated spectrum with data [6,34–36]. In fact, the model used here can be
used for testing accuracy of such procedures in a comprehensive way. This
type of tests may help in narrowing the current spread of estimates for αs

that come from various sources [23], by distinguishing theoretical procedures
of least ambiguity. But the accuracy of RGEP is checked here using one and



Accuracy Estimate for a Relativistic Hamiltonian Approach. . . 731

the same scale for fitting gλ and calculating the bound-state energy, for
simplicity. The scale we choose is λ = 2.

There exist infinitely many options for how one can fit gλ so that the
spectrum of the window Wλ at λ = 2 approximates the exact one as closely
as possible. We display results for six options that illustrate the dependence
of results on such choices, labeled by A, B, C, D, E, and F. The differ-
ent choices we study are needed to estimate the range of variations which
one obtains by changing computational strategies, all of which would be
equivalent in an exact procedure but differ considerably when carried out
approximately. Analogous ambiguities must occur in studies of complex the-
ories. The size of the variations should be tested in the simplest model before
any hope for accuracy becomes reasonable in the case of complex theories,
where an exact benchmark is absent. All methods we consider resemble
strategies available in realistic theories. They are based on the minimaliza-
tion of certain function K(gλ). Although the analysis of various choices of
K(gλ) may appear boring, the fact of the matter is that one must realize
how presumably marginal changes in K(gλ) influence the outcomes, and how
big absolute errors must be anticipated by analogy in theories where exact
solutions are entirely unknown. In the model study these ambiguities easily
reach 10%. We use

Kr(gλ) = Z
∑

n

(

vn

ve n

− 1

)2

, (14)

and

Ks(gλ) = Z
∑

n

(

vn − vn+1

ve n − ve n+1

− 1

)2

, (15)

where ve n is the exact eigenvalue of number n, and vn is the corresponding
eigenvalue of Wλ when Wλ is derived in a given order k. Z is the normal-
ization constant equal to the inverse of the number of terms in the sum.
Z is not important in the minimalization of K(gλ) as function of gλ. The
subscript r refers to the ratios of eigenvalues used in Kr, and the subscript s
refers to the splittings between the eigenvalues used in Ks. The six choices
differ by which function K(gλ) is used and what is the range of summation
over n in Eqs. (14) or (15).

The eigenvalues of H are numbered from M to N in the order in which
they appear on the diagonal of Hλ when λ → 0 in the benchmark calculation.
This numbering is also applied to the corresponding rows and columns of the
matrix Hλmn. The window Wλ is always chosen to extend from M̃ = −8
to Ñ = 2 [29], and it has 11 eigenvalues. These are numbered in the same
order as for Hλ, with the bound-state eigenvalue having number n0. We
distinguish two eigenvalues that are closest in modulus to the bound-state
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energy E = −1, one just smaller than 1, with number ns, and one just larger
than 1 with number nl. The six fitting procedures are designated as follows:

A ⇒ Kr, n = ns , (16)

B ⇒ Kr, n = nl , (17)

C ⇒ Kr, n ∈ {ns, nl} , (18)

D ⇒ Ks, n = ns , (19)

E ⇒ Kr, n ∈ [M̃ + 2, Ñ − 2] , n 6= n0 , (20)

F ⇒ Ks, n ∈ [M̃ + 2, Ñ − 2] , n 6= n0 . (21)

In cases E and F, the two smallest and two largest eigenvalues are dropped
because they are too much distorted by the edge of Wλ, as explained in
Section 1. The description of results obtained in the benchmark and in the
tested approach in six successive orders of perturbation theory in each of
these fitting schemes involves 72 results. The benchmark results are labeled
“Wegner” and the tested case is labeled “RGEP”. Appendix B contains all
pertinent numbers. An example is given below to help in reading the figures
and tables in the appendix. Otherwise, only main features of the results are
explained.

Fig. 2 corresponds to the case C of Eq. (18). The shape of K(gλ) clearly
selects the value of gλ preferred by a given fitting procedure. Similar plots in
other cases are given in Fig. 6 in Appendix B. The numbers that result from
the fits for the coupling constants, along with the corresponding bound-state
eigenvalues of Wλ, are also tabulated in Appendix B.

The summary of results for the coupling constants obtained in the fits
is given in Fig. 3. The numbers 1 to 6 on the horizontal axis correspond
to the order of perturbation theory in the evaluation of Wλ. The columns
labeled A to F correspond to the algorithms given in Eqs. (16) to (21). The
RGEP calculation equals the benchmark in the first order results. It is also
visible that the fits of gλ in the benchmark case consistently reproduce the
exact value of gλ = 0.2852 at λ = 2 GeV [29]. The RGEP displays similar
stability and coalesces around 0.3. However, when the nearst neighbor level
with energy larger than 1 is included in a fit as the only one (case B), or
together with a nearest lower level using ratios of eigenvalues (case C), or
together with the nearest lower level but using ratios of splittings between
the two eigenvalues (case D), a visible variation in the fits occurs. This
variation can be attributed to the lack of accuracy in the calculation of the
nearst higher level, since in the cases E and F that include additional five
lower levels, the higher level becoming much less significant, the fits resemble
case A where the higher level is absent. This result suggests a rule for fits
in future calculations that they should be focused on states with eigenvalues
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Fig. 2. Plots of K(gλ) from Eq. (14), in the altered Wegner case (benchmark),

and in the RGEP procedure, as marked, in the fit C of Eq. (18) and six successive

orders of perturbation theory used in evaluation of the window Wλ, with the renor-

malization group parameter λ = 2 GeV, as functions of the a priori unknown value

of the coupling constant gλ at this λ. K(gλ) measures deviation of two selected

eigenvalues of the window Wλ (those which are nearst-in-size to the bound-state

eigenvalue) from their exact counterparts. The shapes of the functions point to-

ward the required values of gλ. This example is provided for explanation of how to

read other examples given in Appendix B.

as far as possible from the bounds implied by the window choice and λ, in
order to avoid the lack of convergence. Note that even in the benchmark
case the 4th order calculation has to be corrected in the orders 5th and 6th
to bring the accuracy into the few percent range around the exact value of
gλ. The same effect is observed in the bound-state eigenvalues themselves.

The summary of results for the bound-state eigenvalues is provided in
Fig. 4 in a one-to-one correspondence to Fig. 3. The eigenvalues are obtained
by diagonalization of windows Wλ that are calculated in the six consecutive
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Fig. 3. Coupling constants gλ obtained from fits described in Eqs. (16) to (21),

gathered in the columns labeled by A to F, in the benchmark case (Wegner) and

the tested case (RGEP). The six entries in each column correspond to six successive

orders of perturbation theory used in the calculation of the window Wλ with λ =

2 GeV.
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Order
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Fig. 4. Energies of bound states obtained from a non-perturbative diagonalization

of window matrices Wλ with λ = 2 GeV. The matrices were derived in perturbation

theory and evaluated using the corresponding values of the renormalized coupling

constants, gλ, from Fig. 3. The eigenvalues are displayed in the same convention

and in the one-to-one correspondence to Fig. 3. Numerical values are tabulated in

Appendix B. The exact result is −1.
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orders of perturbation theory (indicated on the horizontal axis in the individ-
ual columns), using the corresponding values of gλ from Fig. 3 (the numbers
are given in Appendix B). It is visible that the RGEP procedure matches
accuracy of the altered Wegner equation. One also sees the dramatic effect
of the attempts to include the next higher level. The results clearly point
out that both procedures should not be used for calculations of energy levels
close to the size of λ. The fourth order calculations achieve accuracy on the
order of 5%. This is encouraging, because orders 5 and 6 lead to even bet-
ter results and one can expect that fits for gλ can be improved by focusing
on the properties of low energy levels, including properties other than just
eigenvalues. It is hard to imagine that such focus could lead to worsening of
the accuracy.

The last question concerning accuracy of the RGEP method concerns
renormalizability, which can be studied in analogy to [29]. However, one has
to measure the sensitivity of the effective theory at the scale λ to the cutoff
Λ = bN in a whole range of coupling constants, because the exact value of
gλ is not known in the RGEP procedure. Using g16 and g20 from Section
2, we calculate Wλ starting from H with the two different values of Λ for
N = 16 and N = 20, and we compare the resulting matrix elements of Wλ at
λ = 2 GeV. For b = 2 the cutoff is changed by the factor 16, i.e. from about
65 TeV to about 1000 TeV. The divergence in the bare theory is logarithmic.
The results could change at the rates implied by the change in the logarithm
of Λ, i.e., about 25%, but in the presence of a proper set of counterterms [17]
one expects no change to occur. Fig. 5 shows the measure of changes in Wλ

that are obtained here with only one counterterm, which amounts to the
change of the coupling constant from g16 to g20. The function plotted in 5
is defined as

R(gλ) =

Ñ
∑

n,m=M̃

[

Wλmn(N = 16)

Wλmn(N = 20)
− 1

]2

. (22)

The results change with the order of perturbation theory used for evalu-
ation of Wλ. The sensitivity of results to the change of Λ in 1st order is the
same in RGEP as in the benchmark case [29]. Inclusion of higher orders,
from 2 to 6, exhibits slight variations to the advantage of one or the other
method, as shown in Fig. 5 (the solid line for the benchmark and the dashed
one for RGEP). The last diagram in Fig. 5 shows the corresponding ratio
RW /RR, and it demonstrates that the renormalizability condition is satisfied
with the same accuracy in both approaches. A closer comparison requires
that the benchmark case (or RW ) is taken for gλ = 0.2852, and RGEP (or
RR) for some gλ ∼ 0.3 ± 0.005 (see Appendix B), but these corrections are
negligible at the current stage of the analysis.
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Fig. 5. Plots of the renormalizability measure R(gλ) from Eq. (22) for the RGEP

procedure (dashed lines) and the altered Wegner equation (solid line). The last

diagram displays the ratios RW /RR (with RW standing for the benchmark R,

and RR for the R in the RGEP procedure), and the integer labels indicate the

corresponding orders of the weak-coupling expansion.

4. Conclusion

The RGEP weak-coupling expansion achieves precision in the derivation
of effective eigenvalue equations that is comparable with that of the best
available benchmark method of the altered Wegner equation in the case of a
basic matrix model of theories with asymptotic freedom and bound states.
The few percent accuracy is reached by introducing a factor of φ in Eq. (6),
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which is similar in both methods. Since the RGEP procedure is designed
for application to relativistic quantum field theory, the model test calcu-
lation provides a comprehensive outline of steps that can be repeated in
realistic cases, especially in the theory of quarks and gluons. On the other
hand, knowing that Wegner’s equation is useful in condensed matter physics,
one can expect that the altered Wegner equation and the RGEP procedure
may also find applications in many-body theory. The model study indicates
a possibility that the weak-coupling expansion may lead to a systematic
approximation scheme despite the growth of the coupling when the char-
acteristic scale λ of the effective theories is lowered. This is indicated in
columns E and F in Figs. 3 and 4, where one can see the convergence of the
coupling constant to a stable value and the corresponding convergence of the
bound-state energy to the exact result. One should also note that already
second order calculations render effective window Hamiltonians Wλ that can
produce the bound-state eigenvalue with accuracy better than 10%.

The fact that both methods have similar accuracy suggests that they
already show the range of calculational power that is available through a
plain expansion in a single coupling constant such as the one defined in
Eq. (12). In order to move beyond the 1% accuracy level one has to achieve
better understanding of the structure of Hλ. For example, there exist terms
in Hλ with specific dependence on the eigenvalues of H0 and λ, like (Em −
En)2/λ2 in the model. One may hope to understand how the coefficients
of these terms depend on a more suitably defined coupling constant than
the one given in Eq. (12). It is conceivable that such understanding may
further improve the weak-coupling expansion. Note also that none of the
renormalization group universality features were so far explicitly employed in
the plain expansion tested here. Such options for improvement may depend
on a theory. One has to study specific theories using concrete versions of the
RGEP procedure in order to identify the dominant terms and their universal
behavior.

The accuracy study for the RGEP procedure shows also that one should
be able to carry out similar tests for any other approach to the bound-state
problem in asymptotically free theories. For such a test to become possible,
the approach in question would have to be understood sufficiently well to
determine the steps that that approach implies for handling of the initial
H in the model. But such understanding is demanded of most formulations
of relativistic quantum theories for fundamental reasons and the accuracy
tests of similar kind can be consider a challenge for any scheme intended to
solve the bound-state problem in theories with asymptotic freedom.
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Appendix A

RGEP of 4th order

The RGEP weak-coupling expansion for terms of order gn, is written
using terms of orders k < n,

G
′

n =
n−1
∑

k=1

[

fGk, {(1 − f)Gn−k}
′

]

. (A.1)

If the interaction Hamiltonian HI = H − H0 is proportional to g, the ex-
pansion in powers of g is the same as the expansion in powers of HI . If HI

contains a polynomial in g with operator coefficients, then the expansion in
powers of HI is an intermediate step for obtaining an expansion for Hλ in
powers of g. Therefore, this appendix provides a generic set of coefficients
for expansion of Gk(λ) in powers of HI . The argument λ is omitted in what
follows. The procedure of rewriting the expansion in powers of the bare g
into the expansion in powers of gλ requires a definition of gλ in the structure
of Hλ. This definition, in analogy to Eq. (12), provides then a series expres-
sion for gλ(g). This expression is inverted and substituted into the formal
expansion of Hλ in powers of the bare g, producing the desired expansion
in powers of gλ.

The first four terms in the perturbative expansion are written as

[G1]mn = HImn , (A.2)

[G2]mn = am1nHIm1HI1n , (A.3)

[G3]mn = bm12nHIm1HI12HI2n , (A.4)

[G4]mn = cm123nHIm1HI12HI23HI3n . (A.5)

It is uderstood that the indices 1, 2, and 3, are summed over the entire range
available for them in the theory.

In order to write down expressions for the coefficients a, b, and c, we
introduce a set of auxiliary symbols. Their meaning becomes sucessively
self-evident when one decifers them in the order they are given here. The
variables s and t have the meaning of the renormalization group parame-
ter 1/λ2.

Emn = Em − En , (A.6)

Gmn = ϕmn (Em − En) , (A.7)

Fmn = ϕmn (Em − En)2 , (A.8)

Gm1n = G1m + G1n , (A.9)

Fm...lkn = Fm...lk + Fkn , (A.10)
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Aml...kn(t) = fml...fkn , (A.11)

Am...l+k...n(t) = Am...l(t)Ak...n(t) , (A.12)

Bm...k(s) =

∫ s

0

dtAm...k(t) . (A.13)

In this notation one obtains

am1n = Gm1n Bm1n . (A.14)

bm12n =
Gm12

Em2

[Bm12n+m2 − Bm12n]

+
Gn12

En2

[Bm21n+n2 − Bm21n]

+
Gm1n Gm12

Fm12

[Bm2n+m12 − Bm2n]

+
Gm1n Gn12

Fn12

[Bm2n+n12 − Bm2n] . (A.15)

cm123n =
G23m

Em1 Em2

[Bm321n − Bm321n+1m − Bm321n+2m + Bm321n+1m2]

+
G23n

En1 En2

[Bm123n − Bm123n+1n − Bm123n+2n + Bm123n+1n2]

+
G132

E12 Em1

[Bm231n − Bm231n+21 − Bm231n+m1 + Bm231n+m12]

+
G132

E12 En1

[Bm132n − Bm132n+21 − Bm132n+n1 + Bm132n+n12]

+
G12m G23m

F23m Em1

[Bm21n − Bm21n+m1 − Bm21n+m32 + Bm21n+1m32]

+
G12n G23n

F23n En1

[Bm12n − Bm12n+n1 − Bm12n+n32 + Bm12n+1n32]

+
G12m G13n

F13n Em1

[Bm21n − Bm21n+m1 − Bm21n+n31 + Bm21n+m13n]

+
G12n G13m

F13m En1

[Bm12n − Bm12n+n1 − Bm12n+m31 + Bm12n+m31n]

+
G12m G132

F132 Em1

[Bm21n − Bm21n+m1 − Bm21n+132 + Bm21n+m132]

+
G12n G132

F132 En1

[Bm12n − Bm12n+n1 − Bm12n+132 + Bm12n+n132]
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+
Gm1n G23m

Em2

[

Bm1n − Bm1n+m321

Fm321

−
Bm1n − Bm1n+m321+m2

Fm321 + F2m

]

+
Gm1n G23n

En2

[

Bm1n − Bm1n+n321

Fn321

−
Bm1n − Bm1n+n321+n2

Fn321 + F2n

]

+
Gm1n G132

E12

[

Bm1n − Bm1n+m231

Fm231

−
Bm1n − Bm1n+m2132

Fm231 + F21

]

+
Gm1n G132

E12

[

Bm1n − Bm1n+n231

Fn231

−
Bm1n − Bm1n+n2132

Fn231 + F21

]

+
Gm1n G12m G23m

F23m

[

Bm1n − Bm1n+m21

Fm21

−
Bm1n − Bm1n+m321+m2

Fm21 + Fm32

]

+
Gm1n G12n G23n

F23n

[

Bm1n − Bm1n+n21

Fn21

−
Bm1n − Bm1n+n321+n2

Fn21 + Fn32

]

+
Gm1n G12m G132

F132

[

Bm1n − Bm1n+m21

Fm21

−
Bm1n − Bm1n+m2312

Fm21 + F231

]

+
Gm1n G12n G132

F132

[

Bm1n − Bm1n+n21

Fn21

−
Bm1n − Bm1n+n2312

Fn21 + F231

]

+
Gm1n G12n G13m

F12n F13m

[Bm1n − Bm1n+n21 − Bm1n+m31 + Bm1n+m312n] .

(A.16)

In relativistic applications, these formulae need a replacement of the
differences of energies like Em − En by the changes of invariant masses in
the interaction vertices, and multiplication of Gmn by the parent momenta
P+

mn in the vertices, see e.g. [20, 22].

Appendix B

Numerical details

Numerical integration of Eqs. (3) and (9) was performed using fourth-
order Runge–Kutta procedure and an automated algorithm for generating
expressions of order n from expressions of orders k < n. The numerically
calculated matrix elements Hλmn were checked using analytic formula from
Appendix A.

The fits of the coupling constants gλ that were used in the perturbative
evaluation of the windows Wλ, were obtained using the functions K(gλ) from
Eqs. (14) and (15) that are plotted in Fig. 6. The corresponding numbers
for the coupling constants are given in Table I.
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TABLE I

The values of the couplings gλ, which correspond to the minima of curves in Fig. 6

(the last digit is given with error margin of 5), and the corresponding results

(obtained with the coupling constants given in this table) for the bound state

energy |Ek| (the exact value is 1), obtained by diagonalization of Wλ with λ = 2

GeV, that was calculated in six successive orders of the weak-coupling expansion, k.

Wegner RGEP

k gλ |Ek| gλ |Ek|
A

1 0.43340 0.830955 0.43340 0.830955

2 0.31900 0.984874 0.31460 0.826301

3 0.28985 1.006771 0.29040 0.864725

4 0.29095 1.045453 0.29370 0.911430

5 0.28930 1.032121 0.29865 0.958206

6 0.28545 1.005530 0.30195 0.987875

B

1 0.35915 0.539380 0.35915 0.539380

2 0.29700 0.807142 0.28380 0.619971

3 0.28380 0.943143 0.27665 0.746829

4 0.29425 1.082537 0.29205 0.896377

5 0.29260 1.069262 0.30525 1.020620

6 0.28545 1.005530 0.29205 0.896377

C

1 0.38720 0.644935 0.38720 0.644935

2 0.30690 0.885308 0.29645 0.701781

3 0.28655 0.971815 0.28270 0.797715

4 0.29260 1.063916 0.29315 0.906400

5 0.29095 1.050609 0.30140 0.984000

6 0.28545 1.005530 0.30415 1.008693

D

1 0.31460 0.385414 0.31460 0.385414

2 0.28160 0.691679 0.26290 0.494306

3 0.27885 0.892589 0.26620 0.662643

4 0.29755 1.120255 0.29040 0.881438

5 0.29590 1.107059 0.31350 1.101064

6 0.28545 1.005530 0.31460 1.110135

E

1 0.48345 1.046788 0.48345 1.046788

2 0.33330 1.108054 0.33605 0.983708

3 0.29205 1.030408 0.30030 0.954532

4 0.28655 0.996998 0.29755 0.946995

5 0.28435 0.977641 0.29810 0.953083

6 0.28270 0.974623 0.29920 0.962119

F

1 0.45760 0.933635 0.45760 0.933635

2 0.32780 1.059985 0.32615 0.909722

3 0.29205 1.030408 0.29645 0.919122

4 0.28930 1.027150 0.29700 0.941877

5 0.28765 1.013796 0.29975 0.968487

6 0.28490 0.999307 0.30140 0.982700
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Fig. 6. The functions K(gλ) from Eqs. (16) to (21) plotted for Wegner and RGEP

cases, λ = 2 GeV. In all cases a preferred value of gλ is clearly identified. These

are given in Table I.
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