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Šiauliai University
P. Višinskio 25, 5400 Šiauliai, Lithuania

e-mail: AYanavi@takas.lt

(Received July 1, 2003)

In previous papers the relativistic corrections for the mass and po-
tential energy to one-nucleon levels and the significant terms of the rela-
tivistic corrections for the mass of nucleons were obtained. In this paper
the mathematical problems of semi-relativistic model are considered. The
semi-relativistic single-particle equation is a differential equation of the
fourth-order and it can be reduced to the integral–differential equations.
The general solution of this equation must be expressed by the superpo-
sition of the four linearly independent solutions. Developing the modified
method of Lagrange’s and the multiplicative perturbation theory we ob-
tained the integral–differential equations for the wave functions with usual
asymptotic at the origin rL+1 and unusual rL+3, r−L+2. The wave func-
tions with asymptotic at the origin rL+3 must be used when the singular
realistic nuclear potentials are included.

PACS numbers: 21.60.–n, 21.60.Cs

1. Introduction

Usually we consider the nuclei as the non-relativistic systems. We must
take into consideration [1] that the nuclear force has a repulsive core
(−0.4 fm) and a great spin–orbit interaction, which has the relativistic de-
scent. The repulsive core is generating the wave functions with high mo-
mentum [1] and we cannot solve the task of the energy-spectra for nucleus
without including relativistic corrections for mass of nucleons and poten-
tial [2]. The aim of our paper is to obtain the integral equations for the
solutions of semi-relativistic equation.
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We begin from the consideration of the semi-relativistic Hamiltonian for
one-particle wave equation

Hr = Hm +
−→p 2

2m
+ Hν + V (r) + Vsl(r) . (1.1)

The first term of Hamiltonian

Hm = −
−→p 4

8m3c2
(1.2)

and the third term of it

Hν =
~

2

4m2c2

(

d

dr
V (r)

)

d

dr
(1.3)

include the relativistic corrections to the mass of nucleons and the potential
of their interaction. The following term

Vsl(r) = −κ
1

r

(

d

dr
V (r)

)

· (−→σ · −→l ) (1.4)

is the spin–orbit potential which has also the relativistic origin. The semi-
relativistic equation for the eigenfunction

Rα =
Uα

r
(1.5)

can be obtained [2] from Hamiltonian (1.1) for the central potential V (r),
spin–orbit potential Vsl(r) and model potential V1(r) in the form

d2

dr2
Uα − L(L + 1)

r2
Uα + C(Eα − VD − V1(r))Uα = 0 , (1.6)

VD = V (r) + Vsl(r) − V1(r) +
C1

C
D(r) + C1r

(

d

dr
V (r)

)

d

dr

1

r
, (1.7)

C =
2m

~2
, C1 =

(

~

2mc

)2

, CC1 =
1

2mc2
,

D(r) =
d4

dr4
− 2L0

r2

d2

dr2
+

4L0

r3

d

dr
+

(L0)
2 − 6L0

r4
,

L0 = L(L + 1) . (1.8)

The fourth and the fifth terms in (1.7) represent the relativistic correc-
tions for the mass of nucleons and potential. Substituting the asymptotic
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expression of the eigenfunction Uβ
∼= rβ as r → 0 in (1.6) we get four partial

independent asymptotic solutions

Uβ1 = rL+1 , Uβ2 = r−L , Uβ3 = rL+3 , Uβ4 = r−L+2 . (1.9)

Then a general solution of the fourth order linear differential equation can
be expressed as a linear combination of these linear independent solutions

Uα(r) = ϕα1(r)Uβ1(r) + ϕα2(r)Uβ2(r)

+ϕα3(r)Uβ3(r) + ϕα4(r)Uβ4(r) . (1.10)

The wave functions Uαi = ϕαiUβi with asymptotic Uα1
∼= rL+1 and sin-

gular solutions Uα2
∼= r−L have different behavior at the origin for r → 0

and are named as physical and nonphysical solutions [3] of radial Schrödinger
equation. For the semi-relativistic equation (1.6) we obtained the comple-
mentary physical solutions Uα3

∼= RL+3 for L = 0, 1, 2, . . .. For the quantum
numbers L = 0 and L = 1 of the orbital angular momentum we have regular
physical solution Uα4

∼= r−L+2 at the origin.
Assuming that the potential energies V (r) and Vsl(r) vanish at great

distances, we can find the asymptotic expression of differential equation
(1.6)

C1
d4

dr4
Uα(r) +

d2

dr2
Uα(r) + CEαUα(r) = 0 (1.11)

and the following four asymptotic solutions of (1.6) in the exponential form
Uα

∼= ekαr. In this case we get

kα1 = −kα, kα2 = kα, kα =
1√
2C1

( − 1 +
√

1 − 4C1CEα)1/2,

kα3 = ikαm, kα4 = kαm, kαm =
1√
2C1

(1 +
√

1 − 4C1CEα)1/2 .

(1.12)

Usually 4C1CEα < 1 and we can use for bound states the approxi-
mate expression kα ≈

√
−CEα. Taking into account (1.12) we see that the

energies for the semi-relativistic kα represent the more tightly bounded nu-
cleons. The semi-relativistic bound energies of the nucleons are larger than
the bound energies in the non-relativistic case [2]. The partial solutions of
(1.6) can be expressed in the following form:

Uαi = ϕαir
β(i) , i = 1, 2, 3, 4. (1.13)
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2. The solutions of the integral–differential

semi-relativistic equation for the singular potentials

The integral–differential semi-relativistic equation (1.6) was considered
in [2] like some perturbation of the Schrödinger equation. The semi-relati-
vistic solutions represent more tightly bounded nucleons and are decreasing
at infinity more fast than the solutions of the Schrödinger equation. This
fact is important in consideration of stability of nucleons shells for the super-
heavy nuclei. For the semi-relativistic equation at the origin we have three
kinds of different physical solutions Uα1, Uα3, Uα4 when for the Schrödinger
equation we have only one — Uα1.

The semi-relativistic solutions Uα1 can be used for non-singular or for sin-
gular potentials which behave at the origin like r−γ where
0 < γ < 2. The solutions Uα1 of the first kind of equation (1.6) can be
used for Coulomb, Yukawa, Woods–Saxon and spin–orbit potentials [1] for
average field of nucleus. These potentials have the asymptotic r−1 at the
origin and semi-relativistic solutions with asymptotic rL+1 are similar to
the wave functions of the Schrödinger equation. Also in the semi-relativistic
approach [2] we have the non-physical solutions Uα2 with the behavior at
the origin like r−L. We can use the second physical semi-relativistic solu-
tion Uα3 where the singular potentials [1] with the singularity r−3 can be
included because the last term in (1.8) of semi-relativistic equation (1.6) has
the asymptotic r−4 at the origin. Using solutions Uα1, Uα3 we can find the
expectation values for all terms of the realistic Hamada–Johnston poten-
tial [1], which has singularity r−6. Introducing a dimensionless parameter
ρ = r/F in the radial semi-relativistic equation (1.6) with (1.7), (1.8) we
obtain [2]

CF D(ρ)Uα + CF Cρ(
d

dr
V )

d

dρ

Uα

ρ
+

d2

dρ2
Uα

−L0

ρ2
Uα + CF 2(Eα − V )Uα = 0,

D(ρ) =
d4

dρ4
− 2L0

ρ2

d2

dρ2
+

4L0

ρ3

d

dρ
+

(L0)
2 − 6L0

ρ4
,

L0 = L(L + 1) , CF =
C1

F 2
, C2 = C1C. (2.1)

Now we can see that for large F the semi-relativistic equation (2.1) re-
duces into the Schrodinger equation. For the nucleons localized around the
center of force about 1 fm we have CF = 0.011. In the region of repul-
sive core (0.4 fm) CF = 0.07. For the electrons in the first Bohr orbit
CF = 1.3 × 10−5. These results show that in the theory of atomic spec-
troscopy we can calculate the relativistic corrections with the sufficient ac-
curacy in the first approximation of the perturbation theory [2]. But for
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calculations of the nuclear energy levels or consideration of the bound quark–
antiquark systems we must include the higher order perturbations and all
solutions Uα1, Uα3 and Uα4 of semi-relativistic equation (1.6) must be used.

3. The system of integral semi-relativistic equations

General solutions of the Schrödinger equation in the potential repre-
sentation can be presented in the form of integral equations [3]. In this
representation the one-particle wave functions are expressed as a product of
the unperturbed solution and the function, which depends on the pertur-
bation potential. This method was used [2] in semi-relativistic equation for
the one-particle case for calculations of relativistic corrections in the average
field of neutron and proton shells. Now we can generalize this method for
the differential equation (2.1) of the fourth order

p0U
(4)
α + p2U

(2)
α + p3U

(1)
α + p4Uα = qα(ρ), U (n)

α =
dnUα(ρ)

dρn
, (3.1)

where comparing the last equation with (1.6), (2.1) we have

p0 = CF , p2 = −CF
2L0

r2
,

p3 = CF
4L0

r3
, p4 = CF

(L0)
2 − 6L0

r4
, (3.2)

qα(ρ) = −CF Cρ(
d

dρ
V )

d

dρ

Uα

ρ
− d2

dρ2
Uα

+
L0

ρ2
Uα − CF 2(Eα − V )Uα . (3.3)

Without the right-hand side of the equation (3.1) it becomes the homoge-
neous equation, which solutions coincide with (1.9). Using the multiplicative
perturbation theory considered in papers [3–5] and taking into the care that
zero approximation or unperturbed solutions (1.9) coincide with exact par-
tial solutions (1.9) of the inhomogeneous equation (2.1) only at the origin
when ρ → 0 it will be better if the first approximation of the perturbed solu-
tion (1.13) will be close to the exact solution of the inhomogeneous equation
(2.1) in all interval 0 ≤ ρ ≤ ∞. In order to get the single-nucleon levels the
model harmonic oscillator potential can be used [2]

V1(r) =
mω2r2

2
(3.4)
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for average field of the nucleus. The radial wave functions and singular
nonphysical solutions [2] for the model potential (3.4)

UnL,i = e−0.5ρ2

ρβ(i)
n−1
∑

k=0

akρ
2k and FnL,i = e−0.5ρ2

ργ(i)
∞
∑

k=0

bkρ
2k, (3.5)

where

ρ2 =
r2

F 2
, F =

√

~

mω
, n = 1, 2, 3, . . . ,

β(i) = −L + 2 , L ≤ 1 , β(i) = L + 1 , L + 3, L = 0, 1, 2, . . . ,
γ(i) = −L , L = 0 , 1, 2, . . . , γ(i) = −L + 2 , L ≥ 2 , i = 1 , 3, 4,

a0 = 1 , ak+1 =
k − 0.5(εnL,i − β(i) − 0.5)

(k + 1)(k + β(i) + 0.5)
ak ,

b0 = 1 , bk+1 =
k − 0.5(εnL,i − γ(i) − 0.5)

(k + 1)(k + γ(i) + 0.5)
bk,

of Schrödinger equation

d2

dρ2
Uα − L(L + 1)

ρ2
Uα − CF 2(EnL,i − V1)Uα = 0. (3.6)

These wave functions have the following eigenvalues

EnL,i = εnL,i~ω, εnL,i = 2n + β(i) − 3

2
, n = 1, 2, 3, . . . (3.7)

for β(1) = L + 1, β(3) = L + 3, L = 0, 1, 2, 3, . . ., β(4) = −L + 2, L = 0, 1.
Requiring that partial solutions (1.10) must satisfy the following bound-

ary conditions at the origin

lim
ρ→0

Uα1 · ρ−L−1 = 1 , lim
ρ→0

Uα2 · ρL = 1 ,

lim
ρ→0

Uα3 · ρ−L−3 = 1 , lim
ρ→0

Uα4 · ρL−2 = 1 , (3.8)

and at infinity

lim
ρ→∞

ϕα1 · ρL+1 = 0 , lim
ρ→∞

ϕα2 · ρ−L = ∞,

lim
ρ→∞

ϕα3 · ρL+3 = 0 , lim
ρ→∞

ϕα4 · ρ−L+2 = 0 . (3.9)

Using the method of undefinited coefficients [6] the following integral
equations for the partial physical solutions, we obtained of the linearly in-
dependent solutions (3.8) with Wronskian

W = −64L4 − 128L3 − 32L2 + 32L + 12 .
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Taking into account this fact and denoting

d1 =
8L2 + 16L + 6

W
, d2 =

8L2 − 2

W
, d3 = −d2 , d4 = −d1 ,

I1,∞ =

∞
∫

ρ

ρ−L+2qαdρ , I2,0 =

ρ
∫

0

ρL+3qαdρ , I2,∞ =

∞
∫

ρ

ρL+3qαdρ ,

I3,0 =

r
∫

0

ρ−Lqαdρ, I3,∞ =

∞
∫

ρ

ρ−Lqαdρ ,

I4,0 =

ρ
∫

0

ρL+1qαdρ , I4,∞(L = 0, 1) =

∞
∫

ρ

ρL+1qαdρ ,

I1,0,∞ =

∞
∫

0

ρ−L+2qαdρ , I3,0,∞ =

∞
∫

0

ρ−Lqαdρ , I4,0,∞ =

∞
∫

0

ρL+1qαdρ ,

we obtained for L = 0, 1, 2, 3, . . .

ϕα1ρ
L+1 = ρL+1 I1,∞

I1,0,∞
+ ρ−L d2I2,0

d1I1,0,∞

+ρL+3 d3I3,∞

d1I1,0,∞
+ ρ−L+2 d4I4,∞

d1I1,0,∞
, (L = 0, 1) , (3.10)

I4,∞ → I4,0 when L = 2, 3, . . . ;

ϕα2ρ
−L = ρ−L + d2ρ

−LI2,∞ + d1ρ
L+1I1,∞

+d3ρ
L+3I3,0 + d4ρ

−L+2I4,0 ; (3.11)

ϕα3ρ
L+3 = ρL+3 I3,∞

I3,0,∞
+ ρL+1 d1I1,∞

d3I3,0,∞

+ρ−L d2I2,0

d3I3,0,∞
+ ρ−L+2 d4I4,∞

d3I3,0,∞
, (L = 0, 1) , (3.12)

I4,∞ → I4,0 when L = 2, 3, . . . ;

ϕα4ρ
−L+2 = ρ−L+2 · δ + d4ρ

−L+2I4,∞ + d1ρ
L+1I1,∞

+d2ρ
−LI2,0 + d3ρ

L+3I3,∞ , δ = 0, L ≤ 1 , (3.13)

δ = 1, L ≥ 2, then

I4,∞ → I4,∞

d4I4,0,∞
, I1,∞ → I1,∞

d4I4,0,∞
,

I2,0 → I2,0

d4I4,0,∞
, I3,∞ → I3,∞

d4I4,0,∞
.

When L = 2, 3, 4, . . . in equations (3.10), (3.12) instead I4,∞ we use
I4,0 (denoting I4,∞ → I4,0) and in this case only two physical solutions
Uα1 = ϕα1ρ

L+1 and Uα3 = ϕα3ρ
L+3 remain.
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The nonphysical singular at the origin solutions ϕα2ρ
−L have the eigen-

values, which coincide with the eigenvalues for the wave functions ϕα1ρ
L+1.

The first approximation of ϕα2ρ
−L must coincide with FnL in (3.6).

From the boundary conditions at infinity (3.9) and integral–differential
equations (3.10), (3.12), (3.13) we can obtain three different sets of eigenval-
ues of semi-relativistic equation for different physical solutions with L = 0, 1
and i = 1, 3, 4

△EnLj,i =

∫

∞

0 ρL+3(qαi − (V − V1))Uαidρ
∫

∞

0 ρL+3Uαidρ
,

EnLj,i = EnL,i + △EnL,i , j = L ± 1

2
. (3.14)

For L = 2, 3, 4, . . . and i = 1, 3 we have only two sets of physical solutions
and two sets of the eigenvalues

△EnLj,i =

∫

∞

0 ρL+1(qαi − (V − V1))Uαidρ
∫

∞

0 ρL+1Uαidρ
. (3.15)

We must solve simultaneously equations (3.10), (3.12), (3.13) and (3.14),
(3.15) taking for the first iteration Eα = EnL,i and Uαi = UnL,i from (3.7)
and (3.5). This approach was successfully used in [2] for the Woods–Saxon
potential and the results of high accuracy were obtained using the small
number of iterations.

4. Conclusions

In this paper we presented three different sets of physical solutions of
semi-relativistic equation with different asymptotic at the origin. The semi-
relativistic model in the single-particle approach was considered and the
integral equations for the singular realistic nucleon–nucleon potentials were
obtained. The important relativistic corrections for mass of nucleons in the
obtained integral equations are exactly included. Using results presented
in [7], where relativistic corrections in the modified Hartree–Fock terms were
included only approximately, the obtained integral equations can be similarly
transformed including the exact Hartree–Fock terms for the consideration
of energy levels of nucleus and bound quark–antiquark systems [1]. The
obtained integral equations can be used for the consideration of stability of
protons and neutrons shells of super heavy nucleus where relativistic effects
also are important [8].
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