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The contributions of multistep direct reactions with different sequences
of the leading continuum nucleons are presented for neutron scattering by
niobium at incident energy of 26 MeV. The multistep cross sections are
calculated within the framework of the Feshbach, Kerman and Koonin the-
ory using non-DWBA matrix elements. The one-step cross sections include
excitations of both incoherent particle–hole pairs and coherent collective
vibrations. The results show that the dominant sequences involve only
neutrons in the continuum, while sequences involving protons can be ne-
glected.

PACS numbers: 25.40.Fq, 24.60.Gv

1. Introduction

The multistep direct (MSD) reaction theory of Feshbach, Kerman and
Koonin (FKK) [1] has been widely used to describe nucleon induced reactions
in the continuum. This is mainly due to its appealing convolution structure
that makes the calculation of higher order cross sections feasible. In recent
works the formulation of the MSD cross section with non-DWBA matrix
elements has been applied extensively to the analysis of nucleon scatter-
ing and charge-exchange reactions [2-8]. The enhanced MSD cross sections
including the non-DWBA matrix elements have proved to be sufficient to
compensate for the reduction of the one-step (1SD) cross sections imposed
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by the energy weighted sum rules (EWSR). The 1SD cross sections include
contributions from the excitation of one-phonon collective states (vib) of
multipolarity λ ≤4 and from the incoherent excitation of particle–hole pairs
(ph) with orbital angular momenta reduced to L>4 only, both satisfying the
EWSR’s limits [9,10]. It has been also shown that the MSD reaction in-
cludes more than one sequence of M successive two-body collisions between
the leading continuum particle (being either a proton or a neutron) and the
bound nucleons of the target [6–8,11]. The relative contributions of these
sequences depend on the available energy and on the type of nucleons in each
of the two-body collisions, i.e. whether the collision involves a (pp), (nn),
(np) or (pn) reaction stage. So far in the literature [2–5,12–15], only col-
lisions resulting in M successive neutron scattering (nn) stages were taken
into account in the MSD cross sections for inelastic scattering of neutrons.
The novelty of the present paper lies in the fact that all multistep sequences
of the intranuclear reaction stages that contribute to the MSD cross section
for neutron scattering are calculated for the first time. Thus, the aim of
this paper is to corroborate or deny the commonly used assumption of the
negligence of sequences including protons. The calculations are done for the
93Nb(n, n′)93Nb reaction at 26 MeV.

2. The non-DWBA matrix elements in the MSD formalism

According to the FKK theory, the cross section for a multistep direct
reaction is obtained by multiple convolution of one-step 1SD cross sections
[1,16],
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EM , mM and ΩM are the energy, mass and the solid angle of the scat-
tered nucleon after the M -th stage of the reaction. In practical calculations
one assumes that the final states in the incoherent (ph) component of the
1SD cross section are those of the particle–hole just created, independent on
the reaction stage M . Thus, the particles and holes excited at the preced-
ing stages act as spectators only. On the other hand, each phonon in the
coherent collective (vib) term of the 1SD cross section, in Eq. (1), results
in multi-phonon states [17] built on the final phonon states of the preceding
reaction stage. Therefore it is important to include only one-phonon states
in the collective component of the 1SD cross section.
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The cross sections describing the successive transitions, in Eq. (1), in-
clude, apart from the last one, the non-DWBA matrix elements. The latter
are a result of biorthogonality of the distorted waves [18]. These non-DWBA
matrix elements can be obtained by multiplying each partial l-component
of the incoming distorted wave in the DWBA matrix element by the inverse
elastic Sl-matrix element [19]. One immediate consequence is that the non-
DWBA matrix elements are larger than the normal ones. Enhanced are both
the incoherent 1p1h-pairs as well as those pairs that add coherently to the
collective vibrations, since the distorted waves, whether the excited states
are single-particle ones or collective, are the same eigenfunctions of the com-
plex optical potential and form a complete set with the adjoint distorted
waves.

For any transfer of multipolarity λ or orbital angular momentum L, a
number of partial waves lM−1, lM−2 contribute to the incoming and outgoing
distorted waves (triangle rule), respectively. The incoming waves in the
outgoing channel (M −1) are just enhanced by the inverse elastic scattering
matrix elements |SℓM−1

|−1. However, these enhancing factors are too large
at incident energies higher than 50 MeV, and provide divergent MSD cross
sections [2,7]. Smaller enhancing factors are expected to result from energy
averaging in the continuum [10]. On the other hand, in the theory of FKK
the enhanced transition matrix elements are averaged over energy. To obtain
the energy average we approximate the net effect of the different averaged
enhancing factors 〈|SℓM−1

|〉−1, acting on each partial wave lM−1 for a specific

L, by an average enhancing factor 〈|SL|〉
−1. The elastic scattering matrix

elements are expressed in terms of the partial wave transmission coefficients
of the optical model TL, |SL|

2 = 1−TL. The energy averaging of 〈|SL|〉
−1

makes the enhancing factors smooth and free of singularities that arise at the
energies of the single-particle resonances, when the transmission coefficients
TL’s approach unity. In practice, such anomalies were removed by adopting
an average dependence of the respective TL on energy [10].

Following [10] the 1SD cross section for neutron scattering reads,
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and for (p, n) reactions,
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For proton scattering, Vπ,ν and Vν,ν in (2) are exchanged for Vπ,π and
Vπ,ν , respectively, while for the (n, p) reactions 1pπ1hν and εν

F in (3) are
swapped with 1pν1hπ and επ

F , respectively (see, e.g. [7,10]). The first term
in (2) describes the isoscalar one-phonon collective (vib) cross sections and
the two following terms describe the incoherent particle–hole (ph) cross sec-
tions for the excitation of proton and neutron ph-pairs, respectively. The
cross sections of the charge-exchange (pn) and (np) reaction stages are cal-
culated in an approximate way described in the Section 3.

Thus, (M − 1) out of the M 1SD cross sections, in Eq. (1), contain
a sum of the enhanced (vib S−2)=

∑

λ≤4 σλ(vib)〈Sλ〉
−2 and (phS−2) =

∑

L>4 σL(ph)〈SL〉
−2 cross sections. As a result the multistep cross section

of Eq. (1) includes the following combinations of the two terms [4,5,12]:
1SD, (vib) + (ph);
2SD, (vibS−2,vib) + (phS−2,vib) + (vibS−2, ph) + (phS−2, ph);
3SD, etc.

The factors S−2 act in the outgoing channels (on incoming distorted waves).
However, in the multistep approach we use, the leading particle in the con-
tinuum does not have to be the same throughout the scattering sequence
and this leads to different sequences of reaction stages. Therefore, the one-
phonon (vib) and the (ph) components are lumped into the 1SD cross sec-
tions for the (nn), (pp), (pn) and (np) reaction stages that are used, in
Eq. (1), repeatedly in the sequences of the M reaction stages that con-
tribute to the MSD reaction considered. In the case of neutron scattering
all the sequences are listed in Table I, where we have used the abbrevia-
tion (nnS−2) =

∑

L σL(n, n′)〈SL〉
−2. One can see that in order to obtain

the MSD cross sections for inelastic scattering of neutrons 93Nb(n, n′)93Nb,
one also has to calculate the 1SD cross sections in the remaining reaction
channels; 93Zr(p, p′)93Zr, 93Zr(p, n)93Nb and 93Nb(n, p)93Zr.
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TABLE I

The decomposition of the MSD cross sections for the 93Nb(n, n′)93Nb reaction at
26 MeV.

σ(1SD) (mb) σ(2SD) (mb) σ(3SD) (mb)

(ph) 214 (nnS−2, nn) 215 (nnS−2, nnS−2, nn) 96
(vib) 140 (npS−2, pn) 9.5 (nnS−2, npS−2, pn) 3.6

(npS−2, pnS−2, nn) 2.4
(npS−2, ppS−2, pn) 2.4

Total 354 224.5 104.4

3. Calculations and comparison with experiment

The (nn) and (pp) reaction stages are calculated according to Eq. (2).
The macroscopic DWBA cross sections in the first, (vib) term of the r.h.s. of
Eq. (2) are calculated with form factors Fλ = −R∂U/∂R obtained by using
the complex optical potential of [20] for neutrons and [21] for protons. The
following isoscalar (τ=0) one-phonon states are taken into account for 92Zr:
2+
1 at 0.93 MeV with β2=0.13, 2+

3 at 2.49 MeV with β2=0.08 and 3−1 at 2.30
MeV with β3=0.18. The dipole, quadrupole and low energy component of the
octupole (LEOR) giant resonances are also included. The LEOR exhausts
30% of the octupole strength [22]. The deformation parameters for the
giant resonances are obtained by depletion of the energy weighted sum rules
(EWSR’s). The energy distribution function fλ is a Gaussian type, adjusted
to the experimental energy resolution for the low-energy one-phonon levels,
or a Lorentzian type with width typical of the giant resonances.

The incoherent microscopic DWBA cross sections in the second and third
terms of Eq. (2) are calculated using a particle–hole form factor. A real
effective interaction of Yukawa form with 1 fm range and strengths Vπ,π =
12.7 MeV and Vπ,ν = 43.1 MeV [23], depending on energy according to [24],

is used. The spectroscopic amplitude (2jh + 1)1/2 is included. These cross
sections are averaged over final states (jpj

−1
h )LM of the shell model contained

in 1 MeV energy bins. When there are no states with given L transfer in the
1 MeV bin, the width of the bin is increased until at least one state is found.
This approximate method allows one to include also the continuum states
in the calculations using a standard DWBA code. The terms P = 1/2 and
R1,1(L) in (2) are the parity and spin distributions of the 1p1h states. The

density of the final 1p1h states ω1pi1hj
(U, εj

F) is given by the two-component
formula of Betak and Dobes [25] with the hole-depth restriction (εF):

ω1pi1hj
(U, εj

F) = gigj [U − (U − εj
F)Θ(U − εj

F)] , (4)
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and with i = j = π for pπ = hπ = 1 and pν = hν = 0; i = j = ν for
pν = hν = 1 and pπ = hπ = 0; i = π, j = ν for pν = hπ = 0 and
pπ = hν = 1; i = ν, j = π for pπ = hν = 0 and pν = hπ = 1. The Θ is
the Heaviside step function. The equidistant single-particle state densities
of protons and neutrons are gπ = Z/13 and gν = N/13, respectively. The
spin cutoff parameter in R1,1(L) is σ2 = 0.28nA2/3 with n = 2 being the
number of excited particles and holes.

The deformation parameters for the weak isovector (τ=1) excitations
are not well known (see, e.g. Refs. in [22]). Therefore, we have assumed
that the isovector cross sections are dominated by the giant resonances. The
latter, except for the giant dipole resonance, have a broad and smooth energy
dependence [22]. Bearing this in mind, we approximated the isovector cross
sections to the individual collective levels by the smooth (ph)-cross sections
of the second r.h.s. term of Eq. (3), calculated for L ≤4. These cross sections
are then reduced by applying the EWSR’s. Both the macroscopic and the
microscopic cross sections were calculated with the DWUCK-4 code [26].

In Fig. 1 the contributions from excitation of the one-phonon collective
states (vib) and the incoherent particle–hole (ph) states are included in the
1SD cross section for the neutron scattering stage (nn). The structure at

Fig. 1. The 1SD cross section of the 93Nb(n, n′)93Nb reaction, at incident neutron

energy of 26 MeV (thick solid line). The contributions due to one-phonon collective

vibrations of multipolarity λ ≤4 and to incoherent ph-pairs of transferred orbital

angular momenta L>4 are shown separately.

the highest outgoing energies corresponds to the low-energy collective states.
This structure, in the case of the two-step, (nnS−2, nn), and the three-step,
(nnS−2, nnS−2, nn) sequences, appears as two-phonon and three-phonon
structure at twice and trice the excitation energy, in Figs. 2 and 3, respec-
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tively. The angle- and energy-integrated cross sections for all relevant se-
quences of reaction stages are gathered together in Table I. From Figs. 2 and
3 and from Table I, it is evident that the sequences of collisions that include
only neutron scattering (nn) stages dominate markedly over the ones that
involve also protons. In the investigated case, the summed 1SD (nn), 2SD
(nnS−2, nn) and 3SD (nnS−2, nnS−2, nn) sequences give 665 mb, whereas
the ones involving the charge-exchange (np) and (pn) stages or the proton
scattering (pp) stage give only 18 mb. This result provides a clear evidence
that the neglect of all multistep sequences involving protons in [2-5], is a
justifiable approach.

Fig. 2. The same as in Fig. 1 but for the 2SD reaction. The contributions from

the two sequences of reaction stages are shown (sum of the two contributions is

indistinctive from the stronger one). The enhancing factors S−2 are omitted for

simplicity.

The contributions from the MSD processes are substantial. The inte-
grated 2SD and 3SD neutron emission cross sections at the incident energy
of 26 MeV are 225 mb and 104 mb, respectively, compared to the 354 mb of
the 1SD cross section which includes the contribution of (ph)=214 mb and
(vib)=140 mb.

Evaporation of low energy neutrons from the compound nucleus (CN) is
calculated according to the theory of Hauser and Feshbach. The cross sec-
tions for multistep compound (MSC) emission are calculated in the frame-
work of the theory of FKK [1,27]. Gradual absorption [3,27] of incident
flux directly into the quasi-bound states of the MSC reaction chain is taken
into account. The radial overlap integral of the single-particle wave func-
tions in the MSC cross section is calculated with constant wave functions
within the nuclear volume. The overlap integral is then reduced in order
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Fig. 3. The same as in Fig. 1 but for the 3SD reaction. The contributions from

the four sequences of reaction stages are shown (sum of the four contributions is

indistinctive from the strongest one). The enhancing factors S−2 are omitted for

simplicity.

to approximate the result of the microscopic calculation [28]. The resulting
cross sections amount to about 1/4 of those obtained with the constant wave
functions [28].

The calculated MSD-, MSC- and CN-cross sections are compared with
the inclusive neutron spectrum measured at incident energy of 25.7 MeV [29],
in Fig. 4. The overall agreement between theory and experiment is good over
the entire energy range. Fig. 4 clearly shows how the one-phonon maximum
in the 1SD spectrum developes into the two-phonon, three-phonon and four-
phonon maxima at twice, trice and four times higher excitation energy in the
2SD, 3SD and 4SD spectra, respectively. This result depends quite critically
on the fine integration grid, in Eq. (1), that saturates the numerical response
and removes the spurious one-phonon peaks from the MSD spectra shown
in Fig. 3 of Ref. [4].

It is worth noting that the contribution of the MSC reactions is insignif-
icant in comparison with the MSD component. This is partly due to the
reduced microscopic radial overlap integral applied [28] and partly to the
gradual absorption [3,27].

The cross sections for the 93Nb(n, xn)93Nb reaction have also been anal-
ysed by using the basis of collective states of the RPA. Only the first two
steps of the reaction were calculated in [30]. The results obtained at the
incident energy of 26 MeV — 1SD = 408 mb, 2SD = 260 mb — are in
satisfactory agreement with the results of the present work (see Table I).
From Fig. 5 it is evident that the RPA emission spectra are also similar to
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Fig. 4. Comparison of the calculated cross sections with the spectrum of neutrons

from the 93Nb(n,xn)93Nb reaction measured at incident energy of 25.7 MeV [29].

The thick line is a sum of all contributions. CN1 to CN3 denote the primary, sec-

ondary and tertiary neutrons evaporated from the compound nucleus, respectively.

CPN denotes secondary neutrons preceded by evaporation of a proton and MSC

labels the emission from the three steps of the compound reaction.

those obtained in the present work. These results further confirm [6] that
the MSD cross sections of Eq. (1), together with Eq. (2), make a closed form
approach of the RPA cross sections.

Fig. 5. Comparison of the 1SD and 2SD cross sections calculated for the
93Nb(n, n′)93Nb reaction at incident energy 26 MeV (FKK) with the corresponding

cross sections obtained by Lenske et al. [30] with use of the RPA basis states.
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4. Conclusions

The enhanced MSD cross sections of the FKK theory, obtained with the
1SD cross section of [10] and the non-DWBA matrix elements, and allow-
ing for all multistep sequences of reaction stages, reproduce the inclusive
inelastic neutron scattering data measured at 25.7 MeV [29] well. The re-
sults show that at this energy the multistep sequences of successive (nn)
reaction stages are by far the dominant ones and that contributions from
sequences also including protons amount only to about 3% of the total. This
result justifies the neglect of sequences including continuum protons in the
calculations, practiced in [2–5,12–15].

Already at 26 MeV the MSD reactions dominate over the MSC ones.
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