
Vol. 35 (2004) ACTA PHYSICA POLONICA B No 2

SCHWINGER TUNNELING AND THERMAL

CHARACTER OF HADRON SPECTRA

Wojciech Florkowski

H. Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences

Radzikowskiego 152, 31-342 Kraków, Poland
and

Institute of Physics, Świętokrzyska Academy
Świętokrzyska 15, 25-406 Kielce, Poland

(Received September 19, 2003)

It is shown that an oscillatory character of the solutions of the colli-
sionless kinetic equations describing production of the quark–gluon plasma
in strong color fields leads to the exponential (thermal-like) transverse-
momentum spectra of partons produced in the soft region (100 MeV <
p⊥ < 1 GeV). In addition, the production of partons in the very soft region
(p⊥ < 100 MeV) is clearly enhanced above the thermal-like background.
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1. Introduction

The transverse-momentum spectra of hadrons measured at RHIC are
very well reproduced by the thermal model [1]. Since the thermal-like spectra
appear also in the collisions of more elementary systems, the question arises
if the thermal behavior observed at RHIC may be truly attributed to the
rescattering processes or is it of a completely different origin connected, e.g.,
with a trivial phase-space dominance effect (for a recent discussion of this
and similar issues see Refs. [2–5]).

In this paper we follow the idea formulated by Bialas and argue that the
thermal shape of the transverse-momentum spectra of hadrons may have its
origin in the fluctuations of the string tension. In Ref. [6] Bialas showed that
the thermal character of the measured transverse-momentum spectra,
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may be understood as an effect of the fluctuations of the string tension κ2

which appears in the Schwinger formula [7–10],

dNSchwinger

d2p⊥
∼ exp

(

−πm2
⊥

κ2

)

. (2)

Although the m⊥-dependence in Eqs. (1) and (2) is different, the appropriate
averaging of formula (2) over κ may produce indeed an exponential function,

∫

dκP (κ) exp

(

−πm2
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κ2

)

∼ exp

(

−m⊥

T

)

. (3)

The explicit (gaussian) form of the distribution P (κ) as well as a relation
connecting T with the average value of κ2,

T =

√

〈κ2〉

2π
, (4)

was given and discussed in Ref. [6].
In this paper we show that the situation described above appears nat-

urally in the kinetic equations describing production of the quark-gluon
plasma in strong color fields. In this case, due to the screening effects, the
color fields change in time and may even oscillate [11]. As a consequence,
the transverse-momentum spectra acquire a form very similar to Eq. (3).
The only difference is that κ2 should be treated now as a function of time

∫

dt P ′(t) exp

(

−πm2
⊥

κ2(t)

)

∼ exp

(

−m⊥

T

)

. (5)

The form of the distribution P ′(t) is uniquely determined by the kinetic
equations and, as we shall see, formula (5) yields effectively the exponen-
tial spectra in the soft region, 100 MeV < p⊥ < 1GeV. For larger values
of p⊥ the model based on the Schwinger formula gives the spectrum which
decays faster than the exponential function. However, in this region the
production of particles becomes a hard process and the use of the Schwinger
formula is inadequate. On the other hand, for very small values of p⊥ we
find an enhancement above the exponential background, which is a desirable
effect in view of the experimental measurements of the pion spectra which
consistently show such an increase.

Although there is a formal similarity between our formulas and those
used by Bialas, there is also an important physical difference between the two
approaches. In our calculations we consider the values of the string tension
which are larger than the elementary string tension. This may be a realistic
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situation in heavy-ion collisions [12]. On the other hand, Bialas considers
possible fluctuations of the elementary string tension, which may appear
due to stochastic nature of the QCD vacuum [13]. Thus, our approach may
explain the origin of the thermal spectra observed in heavy-ions but it is not
capable of describing the thermal features observed in, e.g., electron-positron
annihilations. It is conceivable, however, that the effect of the stochastic
vacuum plays an additional role in the heavy-ion collisions leading to even
more pronounced thermalization effects.

2. Tunneling of partons in oscillatory chromoelectric fields

In our approach we use the semi-classical kinetic equations for the quark-
gluon plasma written in the abelian dominance approximation [11, 14–17]

(

pµ∂µ ± gǫi · F
µνpν∂

p
µ

)

G±
i (x, p) =

dN±
i

dΓ
, (6)

(

pµ∂µ + gηij · F
µνpν∂

p
µ

)

G̃ij(x, p) =
dÑij

dΓ
, (7)

where G+
i (x, p) , G−

i (x, p) and G̃ij(x, p) are the phase-space densities of
quarks, antiquarks and gluons, respectively. Here g is the strong coupling
constant and i, j = (1, 2, 3) are color indices. The terms on the left-hand-
side describe the free motion of the particles as well as their interaction
with the mean color field F µν . The terms on the right-hand-side describe
production of quarks and gluons due to the decay of the field. In our present
calculations we include only the two lightest flavors and neglect the quark
masses (m⊥ = p⊥).

We note that Eqs. (6) and (7) do not include any thermalization effects.
The latter can be taken into account if the collision integrals are incorporated
on the right-hand-side of Eqs. (6) and (7). So far, most of the approaches
have included the collision integrals in the relaxation-time approximation
[18–20]. A more recent and elaborated treatment of the collision integrals
may be found in Ref. [21]. We note also that the semi-classical kinetic
equations may be derived within a field-theoretic approach if a separation
of different time scales can be achieved: the time scales associated with
quantum phase oscillations and amplitudes of pair creation should be much
smaller than the time scales associated with the oscillations of the fields
[22–25].

In the next sections we shall consider a one-dimensional (i.e., uniform in
the transverse direction) boost-invariant system. In this case it is convenient
to use the boost-invariant variables introduced in Refs. [26]

u = τ2 = t2 − z2 , w = tp‖ − zE , p⊥ , (8)
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and also

v = Et − p‖ z =
√

w2 + m2
⊥u . (9)

From these two equations one can easily find the energy and the longitudinal
momentum of a particle

E = p0 =
vt + wz

u
= p⊥ cosh y , p‖ =

wt + vz

u
= p⊥ sinh y . (10)

Besides the rapidity y, we also introduce the quasirapidity variable η which
is related to the space-time coordinates t and z by equations

t = τ cosh η , z = τ sinh η . (11)

The invariant measure in the momentum space is

dP = d2p⊥
dp‖

p0
= d2p⊥

dw

v
, (12)

whereas in the Minkowski space-time the appropriate measure has the form

d4x = τ sinh η dτ dη dx dy . (13)

The invariant measure in the phase-space is dΓ = d4xd3p/p0. In the consid-
ered situation, the only non-zero components of the tensor F µν = (F 3

µν , F 8
µν)

are those corresponding to the color field E = F 30. The quarks and gluons
couple to the field E through the charges εi and ηij defined in [11, 27].

3. Transverse-momentum spectra

For one-dimensional boost-invariant systems the production rates ap-
pearing on the right-hand-side of Eqs. (6) and (7) have a general form [28]1
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= p0 dN

d4x d3p
=
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4π3

∣

∣

∣

∣

ln

(

1 ∓ exp

(

−
πp2

⊥

F
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∣

∣

∣

∣

δ (w − w0) v , (14)

where F is the force acting on a parton (for the boost-invariant systems F
depends only on τ and the color charge of a quark or a gluon), w0 is the
longitudinal momentum gained by a parton during the tunneling process
[28, 29],

w0 = −
p2
⊥

2F
, (15)

1 We neglect here the finite-size effects in the pseudorapidity space taken into account
in Ref. [28], since they have a negligible effect on the time evolution of the system.
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and the plus/minus sign is connected with the statistics of the tunneling
particles (plus for bosons and minus for fermions). Introducing the notation

dN

dΓ
= R(τ, p⊥)δ (w ∓ w0) v , (16)

we find that the transverse-momentum spectra of partons are given by the
formula

dN

dy d2p⊥
=

∫

d4x
dN

dΓ
= πR2

∞
∫

0

dτ ′ τ ′

+∞
∫

−∞
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= πR2

∞
∫

0
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or more explicitly
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. (18)

Here we have introduced the sum over all tunneling partons, i.e., quarks
and gluons, and R is the transverse radius of our system. However, for sim-
plicity of notation we skip the indices denoting different quantum numbers
of partons. The explicit expressions for F and all other details are given
in Ref. [28]. In the numerical calculations we use the value πR2 = 1 fm2,
hence our results describe the production of partons per unit transverse area.
Eq. (18) is the counterpart of Eq. (3) studied by Bialas.

We note that formula (18) may be alternatively obtained from the
Cooper–Frye formalism outlined shortly in the Appendix. We also note that
the transverse-momentum spectra have not been calculated so far in the for-
malism outlined in Section 2, only the mean p⊥ was studied in Ref. [16].

4. Results

The starting point of our calculation is Eq. (18). The time dependence
of the forces F is known (in the numerical form) from the studies performed
in Ref. [28]. In practice, the integration range over τ ′ is always finite; the
forces F (τ ′) are different from zero only at the initial stage of the evolution of
the system (τ ′ < 1.5 fm). The initial condition for the color field is obtained
from the Gauss law

E0 =

√

2σg

πR2
k η12 . (19)
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Here the string tension σg = 3σq = 3 GeV/fm, and the number of color
charges which span the initial field is denoted by k (note that η12 = (1, 0)).

In Figs. 1 and 2 we show our results obtained for k = 2 and k = 3. The
transverse-momentum spectra are represented by the solid lines. In both
cases one can observe that the spectra may be well approximated by the
exponential function, especially in the soft region 100MeV < p⊥ < 1GeV.
Hence, the Schwinger tunneling mechanism in time-dependent fields indeed
leads to the thermal-like spectra, although no rescattering processes are
taken into account in this picture.

The dashed lines in Figs. 1 and 2 represent the exponential functions
with the inverse-slope parameter T and the normalization fitted at p⊥ =
350 MeV. The inverse-slope parameters are T = 220 MeV and T = 270 for
k = 2 and k = 3, respectively. We thus see that larger initial fields lead to
higher effective temperatures. This is already expected from Eq. (4), since
larger initial fields lead to larger fluctuations (changes) of the field in time
and, finally, to larger values of the parameter T . We may even try to apply
Eq. (4) in our case, replacing the average value of κ2 by the time average
of F . In this way we find T = 258 MeV for k = 2 and T = 307 MeV for
k = 3. As we can see, the rough estimate based on Eq. (4) gives the correct
magnitude of T . In the case k = 2 we find the mean transverse momentum
〈p⊥〉 = 376 MeV and the rapidity density (per unit transverse area) dN/dy
= 1.2. In the case k = 3 we find 〈p⊥〉 = 426 MeV and dN/dy = 1.9. These
results are consistent with the earlier reported values [17].

Fig. 1. The transverse-momentum spectrum of quarks and gluons obtained in the
case k = 2 (solid line) and the exponential function const× exp[−p⊥/(220MeV)]

(dashed line). The inverse slope parameter T was fitted at p⊥ = 350 MeV.

Another interesting feature of the spectra shown in Figs. 1 and 2 is the
enhancement of the particle production above the thermal-like background
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Fig. 2. The spectrum obtained in the case k = 3 (solid line) and the exponential
function const× exp[−p⊥/(270MeV)] (dashed line). The inverse slope parameter
T was fitted also at p⊥ = 350 MeV.

in the very soft region p⊥ < 100 MeV. This type of the behavior is observed
in the pion spectra measured by various experiments at CERN and RHIC,
and is usually explained as the effect of the resonance decays which give
contributions mainly in the low-p⊥ region. The production of such very soft
partons occurs in our model at later times when the forces F are small and
the production of the particles with large p⊥ is strongly suppressed. In other
words, this may be treated as a phase-space effect – when the initial string
breaks into many small pieces, only particles with small p⊥ can tunnel and
they contribute mainly to the low-p⊥ peak. Nota bene, such type of the
behavior was also found in the simulations of the sequential decays of the
color-flux tubes [30].

We conclude that the Schwinger tunneling mechanism in strong varying
fields offers an appealing explanation of a very fast formation of the thermal-
like system in heavy-ion collisions.

Appendix A

Cooper–Frye formula

The transverse-momentum spectra may be calculated from the Cooper–
Frye formula [31]

dN

dy d2p⊥
=

∫

dΣµ(x)pµ f(x, p) . (A.1)

In Eq. (A.1) the quantity dΣµ(x) is the element of the freeze-out hypersur-
face and f(x, p) denotes the phase-space distribution function. Assuming
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that the system is boost invariant in the longitudinal (z) direction and uni-
form in the transverse (x, y) directions, we may rewrite Eq. (A.1) in the
form

dN

dy d2p⊥
=

∫

dx dy dη v f(τ, w, p⊥) . (A.2)

Here we used the property dΣµ = uµτ dη dx dy, which follows from the
condition that freeze-out occurs at a constant value of the invariant time τ .
We also used the explicit form of the boost-invariant four-velocity, uµ =
(t, 0, 0, z)/τ , which gives pµuµ = v/τ. Now using the explicit form for the
solutions of the kinetic equations (6) and (7) obtained in Ref. [28]

f(τ, w, p⊥) =

τ
∫

0

dτ ′ τ ′R(τ ′, p⊥)δ
(

∆h(τ, τ ′) ± w − w0(τ
′, p⊥)

)

(A.3)

we arrive at formula (18).
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