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We argue that recent data on fluctuations observed in heavy ion colli-
sions show non-monotonic behaviour as function of number of participants
(or “wounded nucleons”) NW. When interpreted in thermodynamical ap-
proach this result can be associated with a possible structure occurring
in the corresponding equation of state (EoS). This in turn could be fur-
ther interpreted as due to the occurrence of some characteristic points (like
softest point or critical point) of EoS discussed in the literature and therefore
be regarded as a possible signal of the QGP formation in such collisions.
We show, however, that the actual situation is still far from being clear
and calls for more investigations of fluctuation phenomena in multiparticle
production processes to be performed.

PACS numbers: 24.60.Ky, 25.75.Nq, 05.20.–y

1. Introduction

The primary goal of all high energy heavy ion experiments is to find the
phase transition between hadronic matter and quark–gluon plasma (QGP)
as predicted by the lattice QCD1. It is natural then to look at experimental
results from such perspective and to scrutinize them for the possible sig-
nals of QGP formation. In this work we would like to concentrate on one
characteristic feature, which could signal such phase transition, namely it

† e-mail: mryb@pu.kielce.pl
‡ e-mail: wlod@pu.kielce.pl
§ e-mail: wilk@fuw.edu.pl
1 For relevant references see, for example, proceedings on recent QM conference [1].
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should be accompanied by enhanced fluctuations in some variables [2–5].
For it turns out that, when measuring in final states only hadronic probes
produced with small transverse momenta, the only observables surviving the
possible phase transition (and, in principle, actually depending on its form)
is the observed fluctuation pattern in properly selected variables. Follow-
ing [2] we shall be interested in the quantity being the ratio of fluctuations
in entropy to fluctuations in energy. The reason is that, in thermodynamical
approach to be pursued here, both quantities are well defined for any form of
matter (confined, mixed and deconfined) both in early stage of collisions and
in the final state of the hadronizing system under consideration. When pro-
duced matter can be treated as an isolated system, energy is conserved and
entropy is also expected to be conserved during the expansion and freezeout
stages of the hadronization. Therefore simultaneous measurements of both
quantities are likely to provide us with information on the equation of state
(EoS) of the hadronizing system. This ratio can be written (see Appendix A
for details) as

R =

(

δS
S

)2

(

δE
E

)2 =

(

1 +
α

1 + αφ

)−2

, where φ =
d ln V

d ln T
=

T

V

dV

dT
. (1)

Here α = dp/dε = p/ε characterizes EoS, p denotes the pressure and
ε = E/V energy density with V being the volume of our system and T its
temperature (statistical equilibrium is assumed). The entropy of the system,
S, should be connected with the multiplicity of the produced secondaries,
S ∼ N and, similarly, energy released in the production process, E, should
be connected with the measured sum of transverse momenta, E ∼∑N

i=1 pT.
When variations of the reaction volume (identified with the volume of sys-
tem) can be neglected, i.e., for φ = 0, one gets formula proposed in [2] as
the right quantity the energy dependence of which should be investigated
experimentally2:

R =

(δS)2

S2

(δE)2

E2

=
(

1 +
p

ε

)−2
=

1

(1 + α)2
. (2)

Notice that R is directly sensitive to the equation of state (EoS) of hadroniz-
ing matter because of occurrence of parameter α. In what follows we shall
assume that

δS

S
=

δN

N
and

δE

E
=

δ
∑

pT

〈∑ pT〉
. (3)

We identify throughout this work δN and δ
∑

pT with fluctuations caused
by all possible sources (as only such are accessible in experiment), i.e., also

2 For recent reviews on this matter see [6].
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all our results concerning different estimations of p/ε by means of Eq. (2)
include influences of all possible sources of fluctuations. In [2] R has been in-
vestigated by using some specific statistical model of nuclear collisions. The
predicted very characteristic shape of energy dependence of this quantity
(non-monotonic, with a single “shark fin”-like maximum) was then proposed
as a possible signal of QGP phase transition which should therefore be sub-
jected to future experimental tests [6].

In this work we would like to bring attention to the fact that apparently
similar kind of fluctuations (but in function of NW, which can be connected
with the reaction volume, rather than energy, as is the case in [2]) have
been already observed and reported in [8] and [9]. In what follows, using
some minimal input, we shall in the next section rewrite results of [8, 9] in
terms of variable R defined by (2) and (3), clearly demonstrating that it
has similar non-monotonic character as that obtained in [2]. It is therefore
tempting to argue that these data show us either what has been called in
the literature the softest point of the corresponding EoS [10] or what is
named in other investigations the critical point of EoS [11]. However, at this
stage one not only cannot distinguish between both possibilities but even one
cannot take them very seriously, for when confronting these data with similar
data obtained recently in [13], which use different measure of fluctuations,
one discovers that no such feature are seen there3. Still, there are some
other possibilities offered recently, as, for example, spinodial decomposition
occuring at the hadronization stage [12], which deserve also attention.

In Section 3 we shall also analyse (with the same aim as above, i.e.,
looking for a possible signal of QGP) recent interferometric data, which
provide us information on the interaction volume [15]4. It turns out that they
lead to similar results for EoS as data from [8,9] (albeit this time at different
energy). The last section contains our summary whereas Appendices contain
derivation of our basic formulas.

2. Nonmonotonical dependences observed in data on fluctuations

In [8] the following measure of fluctuations has been presented as a func-
tion of the number of participants NW (or “wounded” nucleons)5:

FT =
Ωdata − Ωrandom

Ωrandom
; Ω =

√

〈p̄2
T〉 − 〈p̄T〉2

〈p̄T〉
. (4)

3 Ref. [13] provides data for parameter Φ (defined in [14]) at energies 40, 80 and
158 A GeV for the following centrality bins: 0–5%, 0–6.5%, 5–10%, 10–15% and
15–20%.

4 The volume V measured here is the freeze-out volume but in our discussion we identify
it with the production volume.

5 For proper definition of different types of averages and mean values used here see [16].
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It increases with NW, reaches maximum at NW ∼ 200, and decreases for
higher values of NW. Whereas in [7] such behaviour has been attributed
to the peculiar feature of the hadronization model used, namely to the per-
colation of hadronizing strings produced in collision process6, here we shall
connect it directly, in a similar way as in [2], to the behaviour of EoS of the
matter produced at the early stage of the collision. This can be done by
rewriting FT in terms of R defined in Eq. (2). To do so let us first notice
that, because

Var (
∑

pT)

〈∑ pT〉2
=

Var (pT)

〈pT〉2
1

〈N〉 +
Var(N)

〈N〉2 , (5)

one can write R as

R =

Var(N)
〈N〉2

Var(
∑

pT)

〈
∑

pT〉2

=
1

1 + 1
r

, (6)

where

r =
1

ω

Var(N)

〈N〉 and ω =
Var(pT)

〈pT〉2
. (7)

On the other hand, as shown in Appendix B, FT can be expressed in terms
of r and parameter ρ,

FT =

√

1 + 2r − 2ρ
√

r2 + r − 1 , (8)

where ρ ∈ [−1, 1], the correlation coefficient between number of particles N

and
∑

pT =
∑N

i=1 pT, is our minimal input mentioned above7. Using (6) it
is now straightforward to rewrite Eq. (8) in the following form:

(1 + FT)2 − 1

2
=

R

1 − R

[

1 − ρ√
R

]

, (9)

from which our main result follows:

R =
ρ2 + 2y(1 + y) ± ρ ·

√

ρ2 + 4y(1 + y)

2(1 + y)2
, (10)

6 Without introducing notion of EoS or phase transitions, unless phenomenon of perco-
lation itself is regarded as a kind of phase transition. But even then it would be phase
transition between bigger and smaller number of strings only, not between hadronic
matter and quark–gluon plasma.

7 It appears because, whereas R depends on fluctuations in N and on fluctuations in
∑

N

i=1
pT, so far in experiment one measures quantities like Φ or FT in which both

type of fluctuations occur together. Parameter ρ describes therefore their mutual
(unknown a priori) correlations.
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where

y =
1

2

[

(1 + FT)2 − 1
]

. (11)

In addition to the a priori unknown correlation coefficient ρ there is also
some freedom in the choice of sign in (10). To fix both of them let us notice
the following:

(a) It is known that purely statistical or broader fluctuations encountered
in all multiparticle production processes, i.e., the fact that Var(N) ≥
〈N〉, lead to the condition that8

Var(N)

〈N〉 =
ω

1
R
− 1

≥ 1 . (12)

(b) Furthermore, analysis of recent CERES data [13] shows clearly, see Fig.
4 below, that parameter ω is very slowly varying function of energy
and multiplicity (essentially ω ≃ 0.43). This practical constancy of
fluctuations in pT means that fluctuations of energy E, which are given
by fluctuations of

∑

pT, is not so much given by fluctuations in pT but
by fluctuations in multiplicity N , cf., Eq. (5).

These two observations mean therefore that for the multiplicity distri-
butions of the poissonian type and broader, R is limited from below:

R >
1

1 + ω
> 0.699 (13)

(for ω = 0.43). Using this limit together with Eq. (10) one obtains that also
ρ2 is limited from below, namely

ρ2 >
(ωy − 1)2

ω + 1
. (14)

Because, without any additional correlations between xi and N , the
∑N

i=1 xi

increases with N , the positive correlation coefficient, ρ > 0, seems to be the
only natural choice. In addition, results of PHENIX [8] show that FT is very
small (actually not exceeding FT ∼ 0.04). Neglecting therefore term with y
in (14) one can estimate that ρ > 0.83 (in our calculations we have put it
slightly above this limit using value ρ = 0.85). It means that R corresponds
to a stronger than poissonian fluctuations. To be consistent with limitations
on R imposed by (13) we shall choose to the solution with positive sign
in (10) (the other one would lead to unacceptable small values of R).

8 See, for example, [18]. Multiplicity distributions broader than poissonian distribu-
tions are also observed in hadronic collisions [19].
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Fig. 1. Left panel: results of transforming PHENIX data from [8] (i.e., FT versus

NW) to R as function of the number of participant (or number of “wounded”)
nucleons, NW by using Eq. (10). As explained in the text the positive sign in
(10) has been chosen and the correlation coefficient set to ρ = 0.85 (see text for
details). Right panel: R obtained from Φ as measured by NA49 [9] (for the same
value of ρ).

We are now prepared to translate, by using Eq. (10), the experimental
knowledge of FT and Φ as a function of number of participants provided
in [8, 9] into similar dependence of R. The results are presented in Fig. 1.
The only unknown feature there is the choice of parameter ρ. In fact for
ρ = const. different values result in essentially the same shape of R, only
shifted accordingly paralelly up or down. The case of ρ = ρ(NW) would lead
to some changes, however. Unfortunately at the moment there are no data
available to estimate the functional form of ρ(NW). We expect, however,
that our choice of ρ used here corresponds to a lower limit for a possible effect
observed in Fig. 1. To substantiate this we present in Fig. 2 parameter R
as function of NW calculated directly from definition (6), i.e., using directly
measured information on Var(N)/〈N〉 and Var(pT)/〈pT〉2 obtained by [9]9.

So far we have not yet used connection of R with EoS variables p and ε as
given by Eq. (2). According to it we can interpret the peculiar shape of curve
obtained in Fig. 1 in terms of the type of EoS admitting it, in particular as
due to a specific behaviour of p/ǫ. Following therefore discussion in [2] we

9 This could be regarded as a possible suggestions for experimentalists that everything
needed for such discussion as presented here is measurable directly, without resorting
to quantities like FT or Φ, see also [17] for similar conclusions obtained at different
circumstances. However, care must be exercised when following such approach be-
cause usually bins in centrality are large and one can expect therefore contributions
to fluctuations coming from fluctuations in read-offs of the ZDC calorimeter, which
for a time being are not known.
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Fig. 2. The expected shape of R as function of NW this time given directly by
Eq. (6) and data [9]; no parameter ρ enters here.

argue that this shape could be regarded as a signal of the existence of either
the softest point of the corresponding EoS [10] or its critical point [11]. This
time it would show up as function of the number of participants (which can
be translated into a volume of the reaction) rather than energy, as discussed
in [2].

Actually, because of relation between FT and measure Φ of fluctua-
tions [14] (see (B.9) in Appendix B), measurements of variable Φ is equally
good for the kind of analysis performed here. This is clearly seen in Fig. 1(b)
and 2 using NA49 data [9] and in Fig. 3 where recent data on Φ (cf., [13])
were used as our input10. In Fig. 4 we show that data from [13] clearly
indicate that, as was already mentioned before, fluctuations of transverse
momentum defined by variable ω introduced in Eq. (7) depend very weakly
both on the energy and on the centrality of the collision (i.e., on the num-
ber of struck nucleons NW). Therefore fluctuations of transverse momenta
are practically irrelevant for the problem considered here, i.e., for the ap-
parent structure seen in the EoS. Main effect is provided by fluctuations of
multiplicity N , as presented by Eq. (6).

Let us close this Section with the following remark. Because fluctuations
in
∑

pT are tightly connected with fluctuation of temperature T , therefore
one can write that δE

E
= δT

T
and express parameter R in yet another form:

R =

Var(N)
〈N〉2

Var(T )
T 2

. (15)

10 Notice that in both cases the lack of fluctuations in N , i.e., Var(N) = 0 would
immediately result in Φ = FT = 0. Lack of fluctuations means that also ρ = 0 what
(together with y = 0, cf. (11)) results in R = 0 as well.
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Fig. 3. The same as in Fig. 1(b) but this time using recent data on Φ parameter
obtained by CERES Collaboration [13]. The results are presented both as function
of participants (a) and as function of energy (b).

As shown in [20]11 relative fluctuations of temperature T are connected
with the heath capacity and can be parameterized by the nonextensivity
parameter q,

Var(T )

T 2
=

NW

CV

= q − 1 , (16)

which in our case is given by

q − 1 =
1

〈N〉

[

ω +
Var(N)

〈N〉

]

. (17)

Notice that results shown in Fig. 4, i.e., that essentially ω = const.,
means that q depends only on the multiplicity (or on the number of struck
nucleons), in fact q − 1 diminishes as 1/〈N〉. Parameter q allows us then
(by using Eq. (7)) to express parameter R in the form stressing its vital
dependence on fluctuations of multiplicity, i.e., on Var(N)/〈N〉:

R =
1

q − 1

Var(N)

〈N〉2 . (18)

As is well known these fluctuations lead to deviations from the poissonian
form of multiplicity distributions in multiparticle production processes and
result in broader distributions usually expressed by the so called Negative
Binomial (NB) form and characterized by the parameter k 12, which in our

11 For other hints on nonextensivity in hadronic production processes and references to
nonextensive statistics, see [21].

12 Cf. [19] for details. Connection between NB and nonextensivity in hadronic collisions
represented by q > 1 has been discussed in [22].
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Fig. 4. Fluctuations of the transverse momentum as defined in Eq. (7) as function
of centrality and for different energies (data are from [13], they are presented before
removal of short range correlations).
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Fig. 5. Dependence of the NB [19] multiplicity distribution parameter 1/k on the
number of participants NW for PHENIX [8] and CERES [13] data.

case is given by:

1

k
=

Var(N)

〈N〉2 − 1

〈N〉 = R(q − 1) − 1

〈N〉 . (19)

Its dependence on NW for PHENIX data (at
√

s = 200 GeV) and for
CERES data (at

√
s = 17 GeV) is shown in Fig. 5. As seen there pa-

rameter 1/k decreases with increasing number of participants. It means
that (cf. [19]) with increasing centrality fluctuations of the multiplicity be-
come weaker and the respective multiplicity distributions approach poisso-
nian form. Notice that because R < 1 the following condition,

1

k
+

1

〈N〉 < q − 1 , (20)

must be satisfied.
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3. Nonmonotonicity and phase transition

Let us now continue discussion of the parameter R from the point of
view of its possible connection with the phase transition. Using known
thermodynamical identities [23] one can rewrite R (see Appendix C, all
derivatives are for T = const. and p = αε) as

R =

(

∂ lnV
∂ ln E

)2

1 − CV T α
E

∂ ln V
∂ lnE

. (21)

Notice that because in the vicinity of critical point (∂p/∂V )T → 0 the
parameter R reaches its maximum there:

R → ε2

(

∂E
∂V

)2

T

=

(

∂ ln V

∂ ln E

)2

T

. (22)

Let us discuss Eq. (21) in more detail concentrating on two cases important
for us. First of all notice that for fixed energy

√
s we have ξdE/E = dV/V =

dNW/NW and with increasing NW the value of R decreases for ξ = 1 and
increases for ξ = −1. It means then that for fixed NW parameter R goes
through its maximum when ∂ ln V/∂ ln E changes sign. Actually exactly
such change of sign is observed in compilation of heavy ion data on central
collisions (for which NW remains approximately fixed) [15], see Fig. 6(a),
from which one can deduce that

∂ ln V

∂ lnE
=

{

c1 = −0.73 for s < sc

c2 = +0.15 for s > sc
. (23)
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Fig. 6. (a) Our fits to data on volume of the interaction region V for different
energies [15]; (b) the corresponding R(

√
s) dependence.
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Using now these values together with Eq. (21) we have obtained depen-
dence of R on energy

√
s, cf. Fig. 6(b). The parameters used were such

that
NWαT

q − 1

2

NW
=

2αT

q − 1
= 30

what corresponds to the reasonable values of α = 1/3, T = 0.14 GeV and
q− 1 ≈ 1/k = 0.003 13. Notice that R shown there reaches its maximum for
energy

√
sc ≃ 6 GeV. This “critical” value of energy is given by

√
sc =

αT

q − 1

2

NW

c1c2

c1 + c2
, (24)

where ci denote the corresponding values of derivatives ∂ ln V/∂ ln E as given
in (23). Actually, although the shape of R in Fig. 6(b) resembles that
expected in [2], the height of its maximum is much smaller than expected
there (to get the value observed in [2] one would have to shift it upward
by ∼ 0.7). The only possible explanation we could offer at the moment is
the observation that R displayed in Fig. 6(b) does not contain contribution
from statistical fluctuations of multiplicity (which would give precisely the
seek for value of 0.69 for the poissonian fluctuations). It would then mean
that what we are calculating here are only changes in V . For V = const. we
are therefore getting R = 0. On top of that one has poissonian fluctuations,
which for V = const. provide, as mentioned above, the lacking ∼ 0.7 on
top of what is observed. In obtaining it we have increased fluctuations of
multiplicity N by poissonian component (adding to Var(N) the value of 〈N〉
for constant volume V ), i.e., we have used here R′ instead of R as our input
information, where 1/(1−R′) = 1/ω + 1/(1−R). It is worth to notice that
recent lattice calculations show behaviour of R similar to obtained by us
here [11].

4. Summary and conclusions

We have shown that the recently proposed method of (almost) direct
investigations of the EoS, especially finding a possible traces of phase tran-
sitions to QGP phase of matter [2] by analyzing energy dependence of some
specific fluctuations observed in the multiparticle production data obtained
in heavy ion collisions, can be further extended to include also fluctuations
of different types than those proposed in [2]. Three examples were discussed
here: (i) recent PHENIX Collaboration data [8] on FT, (ii) recent NA49
Collaboration data [9] on Φ, and (iii) CERES Collaboration data [13, 15]
on Φ. In particular, we have derived formula (our Eq. (10)) expressing pa-
rameter R introduced in [2] by the measured quantity FT (defined in (4)

13 One should notice that in Eq. (21) we have total energy: E =
√

sNW/2. This is the
origin of appearance of NW in presenting R as function of

√
s.
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and measured in [8]). Our results (see Fig. 1(a)) show that one observes
similar characteristic structure in R as that expected in [2] but now being
present at given fixed energy and for different centralities (expressed by the
number of participants NW). As is seen in Fig. 3 and Fig. 1(b), the same
type of analysis can be performed using as input the so called Φ measure
of fluctuations as provided by recent NA49 [9] and CERES data [13]. We
would like to stress here that because, as is witnessed by results shown in
Fig. 4, fluctuations in pT are rather irrelevant here, our results are almost
entirely due to the fluctuations in multiplicity. It means therefore that they
are not sensitive to flow phenomena.

We have also established connection of R with fluctuations of tempera-
ture T described by nonextensivity parameter q [20]. The fact that data [15]
clearly indicate that in the measured centrality range fluctuations in trans-
verse momentum are essentially constant, see Fig. 4, allows us to express
parameter R by combination of fluctuations of T (i.e., by parameter q) and
fluctuations of multiplicity as given by the parameter 1/k of NB distribu-
tion [19], see Eq. (19) and Fig. 5.
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Fig. 7. EoS corresponding to results obtained in Fig. 6(b)(solid line) and to those
obtained from Fig. 1 (points). Open points correspond to data from NA49 [9] and
full points to data from PHENIX [8]. See text for details.

Finally, using some thermodynamical identities, we have expressed R
in terms of parameter α = p/ε defining form of EoS used and energy de-
pendence of the reaction volume, cf. Eq. (21). Using recent data on the
later [15] (see Fig. 6(a)) we have obtained the characteristic “shark fin”
structure of the energy dependence of the parameter R shown in Fig. 6(b).
It corresponds to the shape of EoS as given in Fig. 7. Such structure of R
was predicted at [2] (albeit for

√
s replaced by the so called Fermi collision

energy measure) as reaching value of R ∼ 0.8 at its maximum. In our case
the maximum is much lower. Actually, what is shown in Fig. 7 are two sit-
uations, which can emerge from definition of R as given in Eq. (1). Namely,
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as one can notice variation of R can originate either in variations of p/ε or
in variations dV/dT (in extremal cases). For dV/dT = 0 we are then getting
from data p/ε, and this is the case of Fig. 7(a). On the other hand, for
p/ε = 1/3, we are getting dV/dT , as in the Fig. 7(b).

We would like to close with the following remark. Our result presented
in Fig. 7 shows not one but two “soft points” or “critical points” of EoS (so
far we cannot distinguish here between these two possibilities), located at
different energies: one at

√
s ∼ 6 GeV (obtained from data on V at different

energies [15] and from data on Φ for different centralities [9]) and another
one at

√
s ∼ 100 GeV (obtained from data on fluctuations measured by

quantity FT for different centralities [8]). We cannot so far offer explanation
of this result. Interpreting it, however, in the original spirit of looking for the
possible signals of QGP (but keeping in mind our reservation concerning this
point expressed above) we could say that it looks like, with increasing energy,
first occurs a kind of QGP composed mostly of dressed quarks, which at
higher energies is followed by a true QGP containing also liberated gluons14.
What we see here most probably indicates some additional change in energy
dependence of V presented in Fig. 6(a), which would take place at

√
s ∼

100 GeV. If true it would indicate that V is not increasing with energy since
that point, on the contrary, it probably decreases a little (what seems to be
confirmed by the first data from RHIC at 200 GeV [25]). One should also
keep in mind, before further speculations, that the assumed here access to
the EoS by use of fluctuations in hadronic production neglects altogether the
possible evolution processes between the QGP and state of freely streaming
hadrons observed experimentally. This remark applies also to all works of
this kind, like [2]. It means therefore that final conclusions could only be
drawn when other approaches, as for example that discussed in [7], are also
confronted with all available data, as has been done here.

Partial support of the Polish State Committee for Scientific Research
(KBN) (grant 2P03B04123 (MR and ZW) and grants 621/E-78/SPUB/
CERN/P-03/DZ4/99 and 3P03B05724 (GW)) is acknowledged.

Appendix A

We shall, for completeness, derive here formula (1). We shall consider
in what follows our hadronizing system as statistical system in equilibrium
without specifying its details. Thermodynamical potential of such system is

Ω = E + pV − TS = µN . (A.1)

14 Notice that data from [15] indicate that volume of interaction grow much slower than
linearly with energy, i.e., the energy densities obtained at different energies increase
substantially: ε ∼ 0.1s0.41.
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It is then connected with chemical potential µ with N denoting number of
particles in the system under consideration. For system in equilibrium but
with varying number of particles N is given by condition dΩ/dN = 0 or,
equivalently, µ = 0. For conditions of statistical equilibrium we have then
(here ε and s are the corresponding densities of energy and entropy)

ε + p − Ts = 0 . (A.2)

Using (A.2) together with thermodynamic identity

dE = −pdV + TS (A.3)

we get
dε + dp = Tds + sdT . (A.4)

Denoting α = c2
0 = dp/dε = p/ε we obtain from (A.2) and (A.4)

ds

s
=

1

α

dT

T
and dε =

s

α
dT . (A.5)

Because from (A.2) we get ε = Ts − p = Tα(dε/dT ) − αε, then

dε

ε
=

1 + α

α

dT

T
. (A.6)

From equations (A.5) and (A.6) one gets that ratio of fluctuations of densities
is given by

R =
(ds/s)2

dε/ε)2
=

1

(1 + α)2
. (A.7)

Because S = sV and E = εV and, respectively, dS = dsV + sdV and
dE = V dε + εdV , then

dS

s
=

1

α

dT

T

(

1 + α
T

V

dV

dT

)

and
dE

E
=

1 + α

α

dT

T

(

1 +
α

1 + α

T

V

dV

dT

)

,

(A.8)
and the corresponding ratio of fluctuations of entropy and energy is equal

R =
(dS/S)2

(dE/E)2
=

(

1 +
α

1 + αφ

)−2

, where φ =
T

V

dV

dT
=

d ln V

d ln T
.

(A.9)
For dV = 0 one gets result obtained already in [2]. However, in general φ 6= 0
and fluctuations of the interaction volume are also important. Eq. (A.9) can
be also rewritten as

1

α
= −φ +

√
R

1 −
√

R
, (A.10)

which connects EoS (represented by α) with changes in the reaction volume
and with fluctuations described by the parameter R.
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Appendix B

We shall derive here Eq. (8). Let us first notice that FT defined in (4) is
related to other measure of fluctuations, the so called Φ-measure introduced
in [14] and used in [9, 13],

Φ =

√

〈Z2〉
〈N〉 −

√

〈z2〉 . (B.1)

For a measured quantity x (here identified with transverse momentum of
produced particles, xi = pTi) one has:

z = x − 〈x〉 ,
〈

z2
〉

= Var(x) =
〈

x2
〉

− 〈x〉2 ,

Z =

N
∑

i=1

zi =

N
∑

i=1

xi − N〈x〉 ,

〈

Z2
〉

=

〈(

N
∑

i=1

xi

)2〉

− 2〈x〉
〈

N

N
∑

i=1

xi

〉

+
〈

N2
〉

〈x〉2 . (B.2)

To get this result one uses following reasoning. If variables x and N are de-
scribed by distributions characterized by the respective generating functions
f(t) and h(t) then and variable N by generating function h(t) then variable

ξ =
∑N

i=1 xi is described by generating function G(t) = h[f(t)]. It means
therefore that

〈ξ〉 = G′(1) = 〈N〉〈x〉 (B.3)

and
〈ξ2〉 = G′′(1) + G′(1) = 〈N2〉〈x〉2 + 〈N〉Var(x) (B.4)

leading to
Var(ξ) = 〈N〉Var(x) + 〈x〉2Var(N) . (B.5)

To characterize correlations between variables N and ξ one has to introduce
a correlation coefficient ρ ∈ [−1, 1], which will be, in what follows, our free
parameter (our minimal input). One can therefore write:

〈

N

N
∑

i=1

xi

〉

= 〈N〉
〈

N
∑

i=1

xi

〉

+ ρ

√

√

√

√Var(N)Var

(

N
∑

i=1

xi

)

. (B.6)

The last term in (B.6) can be written as
√

√

√

√Var(N)Var

(

N
∑

i=1

xi

)

=

√

〈N〉Var(N)Var(x) + 〈x〉2Var2(N) . (B.7)
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Substituting now (B.6) to (B.2) and making use of Eq. (B.3)–(B.5) one gets

〈Z2〉 = 〈N〉Var(x) + 2〈x〉2Var(N)

[

1 − ρ

√

〈N〉
Var(N)

Var(x)

〈x〉2 + 1

]

. (B.8)

Substituting this to Eq. (B.1) and making use of the relation between FT

and Φ derived in [16], namely that

FT =
Φ

√

〈z2〉
, (B.9)

one gets

FT = −1 +

√

√

√

√1 + 2
〈x〉2

Var(x)

Var(N)

〈N〉

[

1 − ρ

√

〈N〉
Var(N)

Var(x)

〈x〉2 + 1

]

, (B.10)

which is Eq.(8) we were looking for.

Appendix C

Let us start with change in the energy E of the system, which can be
written as (CV is corresponding heat capacity)

∆E =

(

∂E

∂V

)

T

∆V +

(

∂E

∂T

)

V

∆T =

[

T

(

∂p

∂T

)

V

− p

]

∆V + CV ∆T .

(C.1)
Squaring it and averaging while remembering that [24] fluctuations of the
volume and temperature are given by, respectively,

(∆V )2 = −T

(

∂V

∂p

)

T

and (∆T )2 =
T 2

CV

(C.2)

and are statistically independent, i.e., ∆TδV = 0, one gets

Var(E) = (∆E2) = −
[

T

(

∂p

∂T

)

V

− p

]2

T

(

∂V

∂p

)

T

+ CV T 2 . (C.3)

Similarly, fluctuations of number of particles can be described by formula

Var(N) = −T 〈N〉2
V 2

(

∂V

∂p

)

T

. (C.4)
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From (C.3) and (C.4) one gets

R =

Var(N)
〈N〉2

Var(E)
〈E〉2

=
1

[

T
ε

(

∂p
∂T

)

V
− p

ε

]2
− CV T

ε2

(

∂p
∂V

)

T

. (C.5)

Because

T

(

∂p

∂T

)

V

=

(

∂E

∂V

)

T

+ p (C.6)

then (from now on all derivatives are for T = const.)

R =
ε2

[

(

∂E
∂V

)2 − CV T
(

∂p
∂V

)] =
ε2
(

∂V
∂E

)2

1 − CV T ∂p
∂V

∂V
∂E

∂V
∂E

=
ε2
(

∂V
∂E

)2

1 − CV T ∂p
∂E

∂V
∂E

. (C.7)

Because of EoS one has that

p = αε and
∂p

∂E
=

∂p

∂V

∂V

∂E
=

α

V
> 0 , (C.8)

what immediately leads to Eq. (21):

R =
ε2
(

∂V
∂E

)2

1 − CV T α
V

∂V
∂E

. (C.9)
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