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In a previous paper, the convergence of a new effective field theory and
density functional theory (EFT/DFT) approach to the description of the
nuclear many-body system was studied. The most sophisticated parameter
set (here G1) determined by Furnstahl, Serot and Tang from a fit along the
valley of stability was found to provide quantitative predictions for total
binding energies and single-particle and single-hole binding energies, spins,
and parities for selected doubly-magic nuclei far from stability. Binding
energies of all the even Sn isotopes (Z = 50) were also well described. Here
the calculations are extended to all isotones with magic numbers N = 28,
50, 82, 126, and isotopes with Z = 28, 50, 82 with similar predictive results.

PACS numbers: 21.10.–k, 21.10.Dr, 21.10.Pc

1. Introduction

In a previous paper [1] the convergence of a new approach to the descrip-
tion of the nuclear many-body system, based on principles of effective field
theory (EFT) and density functional theory (DFT) [2], was studied by ap-
plying it to selected nuclei far from stability. The results of the calculations
showed an overall agreement with experiment below 1% for the total bind-
ing energy of the doubly magic nuclei 132

50Sn82,
100
50Sn50,

48
28Ni20 and 78

28Ni50 as
well as for the entire range of known even–even Sn isotopes. In addition,
calculations for the chemical potential of nuclei differing by one particle or
one hole from these doubly-magic ones, produced results with an overall
agreement with experimental values below the 10% level, and also correctly
predicted the spin and parity of these nuclei. It was also shown in [1] that
the calculations converged to the experimental values as the level of approx-
imation of the effective Lagrangian was increased. From the various levels
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of approximation used, it was found that the ones with the highest levels
reproduced better the properties of nuclei far from stability. In addition to
this, it was also observed that when this approach was tested to the whole
range of even–even Sn isotopes the results obtained agreed equally well with
the experimental values.

Based on the agreement of these results, a calculation of β-transition
rates was performed for nuclei close to 132

50Sn82 [3]. Here the objective was
to test, through a semi-leptonic process, the accuracy of the single-particle
Dirac wave functions obtained in [1] describing a particle or a hole outside the
filled core. The calculations where done using a current-current interaction
Hamiltonian in which the lepton current is treated in first-order perturbation
theory while the nuclear currents are expanded in multipoles and treated to
all orders. The nuclear electroweak currents used in these calculations are
those derived directly from the same effective Lagrangian describing the
nuclear many-body system. In this way the calculations are done based on a
self-consistent approach. Two different cases where explored in [3]: particle-
particle transitions 133

50Sn83 → 133
51Sb82 + e− + νe and hole-hole transitions

131
49In82→

131
50Sn81 +e− +νe. The results obtained indicated that the particle-

particle transitions proceeding between ground states were well reproduced
(within the 5% level) while transitions to or from excited states deviate
systematically from the experimental values. This behavior was expected
based on the fact that ground-state observables (in this case the ground-state
density and therefore presumably the wave functions) are best reproduced
on the basis of DFT. Results obtained in the hole-hole case, in which all
transitions start or end on an excited state, are less reliable in reproducing
the β-transition rates. In any case, more studies are underway to understand
this behavior.

Both papers showed that this EFT/DFT approach can be used success-
fully to describe some ground-state properties of the selected nuclei far from
stability; this extends the applicability of the approach beyond the valley
of stability. To further explore the range of validity of this approach, the
calculations done in [1] are extended here to all isotones with magic numbers
N = 28, 50, 82, 126 and isotopes with Z = 28, 82, 126. Extensions of the
calculations made in [3] are considered in another paper.

The calculations done in [1], which are extended here, are based on an en-
ergy functional of the ground-state density E[ρg.s.]. By minimization of this
energy functional with respect to the density one obtains the ground-state
energy and density of the nuclear system. The existence of a unique func-
tional of the density is guaranteed by the Hohenberg–Kohn theorem [4, 5].
This minimization process can be computed using a procedure developed by
Kohn and Sham in which the ground-state density of an interacting fermion
system is computed using the single-particle wave functions obtained from
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the equivalent systems of non-interacting fermions subject to an appropri-

ate external potential, known as the Kohn–Sham potential [4, 5]. The basis
for this procedure is contained in the Hohenberg–Kohn theorem which can
be stated by saying that there is a one-to-one correspondence between the
ground-state density of a system of interacting fermions subject to an exter-
nal potential and the external potential1.

Although the formulation based on DFT is straightforward, the exact
energy functional is unknown, particularly in the nuclear system where the
exact form of the nuclear interaction is still a subject of intense research.
To overcome this, an energy functional is constructed based on the princi-
ples of effective field theory (EFT) [2]. The starting point is an effective
Lagrangian density that satisfies the symmetries imposed by QCD, which is
considered the underlying theory of the nuclear dynamics. This Lagrangian
is built using the lowest lying hadronic degrees of freedom (as well as the
electromagnetic field). The result is the most general Lagrangian contain-
ing (in principle an infinite number of) interaction terms constructed using
these fields and subject to the imposed symmetries. The various interac-
tion terms in this Lagrangian are ordered in powers of the fields and their
derivatives. This expansion is equivalent to an expansion in the ratios of the
fields to the nucleon mass and the Fermi momentum to the nucleon mass.
These expansion parameters are small: ≈1/3 and ≈1/4 respectively. Naive
Dimensional Analysis (NDA), which is a prescription by which the various
interaction terms are suppressed by powers of a relevant mass scale Λ (the
nucleon mass M in this case), indicates that the remaining coupling con-
stants should be of order unity, a characteristic called “naturalness.” This
natural size of the constants can only be verified after fitting the theory to
experimental data. This procedure was done in [2] where it is shown that
the remaining constants are indeed “natural.” There the constants were fit
to ground-state properties of selected spherical nuclei along the valley of
stability. The effective Lagrangian, as well as the corresponding equations
of motion obtained from it, are shown in the next section.

As has been mentioned before, this paper explores the extent of appli-
cability of this EFT/DFT approach. To understand the objectives of this
work, one has to keep in mind that the coupling constants of the effective
Lagrangian have been fit to properties of selected stable nuclei lying in the
β-stability region. Therefore the results of [1], and the ones presented here,
test how well this theory reproduces ground-state properties outside the
stability region. As indicated in [1] the relevant observables which can be
reproduced, based on DFT, are the ground-state binding energy and chemical

potential of the nuclear system, so this paper concentrates on these quanti-

1 In relativistic theories the energy functional is written in terms of more than one
density: e.g. scalar densities ψ̄ψ, vector densities ψ̄γµψ, etc.
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ties. The calculations focus on nuclei with semi-magic number of neutrons,
i.e. N = 28, 50, 82 and 126 or protons, i.e. Z = 28, 50 and 82. In general
it is seen that the predictions of the total ground-state binding energy, for
both isotones and isotopes, lie below the 1% level as was found in [1], and
that as the size of the nucleus increases, the error is reduced. The agreement
between the results of the chemical potential with experimental data is also
consistent with the conclusions reached in [1]. In the case of the prediction
of the ground-state Jπ values of odd nuclei neighboring even–even ones, the
agreement with experimental values varies between isotones and isotopes.
When the number of neutrons gets very large in the regime N > Z, the
level density gets very high and the detailed ordering of the levels between
mayor shells depends sensitively on the details of the various densities. This
small energy shifts (≈ tens keV) make the predictions of the ground-state
quantum numbers less accurate, though the chemical potentials are still rel-
atively well-described.

All nuclei selected for this study are essentially spherical [6], therefore
the approximation of spherically symmetric nuclei, made here, is assumed
to be an accurate one. The calculations are done using the most convergent
parameter set obtained in [2], called G1, which corresponds to the most
sophisticated effective Lagrangian.

To summarize, this paper extends the calculations made in [1] to known
semi-magic isotones and isotopes using the G1 parameter set. In the follow-
ing section the formulation of the Kohn–Sham equations and potentials is
described, and this is followed by a section on results. The paper ends with
the conclusions and proposes new directions of investigation to further test
this approach.

2. Formalism

In this section an overview of the formalism of EFT/DFT is presented.
A more thorough presentation can be found in [2].

The energy functional that describes the dynamics of the nuclear system
is obtained from an effective Lagrangian. This is constructed using the
relevant lowest lying hadronic degrees of freedom [2], which are the pion
and the rho fields (isovectors) and the nucleon field (isospinor). In addition
to these, a scalar field is included to reproduced the known short-range
attraction of the nuclear force, and a vector field (associated to the ω meson)
that reproduces the mid-range repulsion of the nuclear interaction is also
included.

The pion field is introduced as the phase of a chiral rotation of the
identity matrix in isospin space. A field ξ(x) is defined in the following way:
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ξ(x) = exp

(

iπ(x)

fπ

)

.

where the pion field π(x) is defined here by π(x) = 1
2
~τ · ~π.

Nucleons are included as a two-component isospinor field N(x). The
upper and lower components correspond to the proton and neutron fields,
respectively.

N =

(

p(x)
n(x)

)

. (1)

The ρµ-field has been added to the Lagrangian to include contributions
coming from the asymmetry between the number of protons and neutrons.
In addition to the above fields, an electromagnetic field Aµ is included and
the electromagnetic structure of the nucleons is also taken into account.
Their anomalous magnetic moments, labeled as λp and λn for proton and
neutron respectively, then enter.

The effective Lagrangian contains, in principle, an infinite number of
terms. In order to make the theory predictive, these terms have to be ar-
ranged according to some ordering scheme that takes into account all equally
contributing terms. Here the various interaction terms in the effective La-
grangian are arranged following the prescriptions of NDA [7]. As mentioned
before, all calculations performed here will be done using the parameter set
G1 which corresponds to the most sophisticated Lagrangian density of [2],
and is reproduced in Table I. The pion fields are omitted from the follow-
ing Lagrangian since they do not develop a mean field in the class of nuclei
considered here.

TABLE I

Numerical values of constants for the G1 parameter set [2].

Constant G1 Constant G1

ms 506.7 ζ0 3.5249

g2

s 97.39 ηρ −0.2722

g2
v 147.09 α1 1.8549

g2

ρ
77.033 α2 1.788

η1 0.0706 fv 0.4316

η2 −0.96161 fρ 4.1572

κ3 2.2067 βs 0.02844

κ4 −10.090 βv −0.24992
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The nucleonic part of the Lagrangian density is2:

LN (x) = N̄(iγµDµ −M + gsφ)N −
fρgρ

4M
N̄ρµνσ

µνN −
fV gV

4M
N̄ρµνσ

µνN

−
e

4M
FµνN̄λσµνN −

e

2M2
N̄γµ(βs + βV τ3)N∂νF

µν , (2)

where Dµ = ∂µ + igρρµ + igV Vµ + i
2
eAµ(1 + τ3).

The mesonic part is the following:

LM(x) =
1

2

(

1 + α1

gsφ

M

)

∂µφ∂
µφ−

1

2
tr (ρµνρ

µν)

−
1

4

(

1 + α2

gsφ

M

)

VµνV
µν

−
e

2gγ

Fµν

[

tr(τ3ρ
µν) +

1

3
V µν

]

+
1

2

(

1 + η1

gsφ

M
+
η2g

2
sφ

2

2M2

)

m2
V VµV

µ

+
1

4!
ζ0g

2
V (VµV

µ)2 +

(

1 + ηρ
gsφ

M

)

m2
ρtr (ρµρ

µ)

−m2
sφ

2

(

1

2
+
κ3gsφ

3!M
+
κ4g

2
sφ

2

4!M2

)

−
1

4
FµνFµν . (3)

In the above Lagrangian, φ is the scalar field, Vµ the vector field, ρµ the
isovector field rho defined by ρµ = 1

2
~τ · ~ρµ and Aµ is the electromagnetic

field.

From the above effective Lagrangian density one obtains the Kohn–Sham
equations and the auxiliary equations for the potentials. To do so, the
various mesonic and electromagnetic fields as considered as local classical
fields. Then the necessary equations are obtained by calculating the Euler–
Lagrange equations. Since the nuclei considered here are (essentially) spher-
ical [6], the various vector fields: Vµ, ρµ and Aµ, develop only their time-
components V0, ρ0 and A0 respectively. In addition, the isovector ρ0(x)-field
develops only its zero-charged component denoted here as b0.

The Dirac Hamiltonian for the nucleon fields as derived from the effective
Lagrangian takes the form:

2 The metric and conventions used are those of [2,8], and differ from [10].
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h(x) = −i~α · ~∇ +W (x) +
1

2
τ3R(x) + β(M − Φ(x)) +

1

2
(1 + τ3)A(x)

−
i

2M
β~α · (fρ

1

2
τ3~∇R+ fv

~∇W ) +
1

2M2
(βs + βvτ3)∇

2A

−
i

2M
λβ~α · ~∇A . (4)

Here λ = 1
2
λp(1 + τ3) + 1

2
λn(1 − τ3) and the numerical values used for the

anomalous magnetic moments are λp = 1.793, λn = −1.913.
The mean meson and electromagnetic fields are denoted by W = gvV0,

Φ = gsφ0, R = gρb0, and A = eA0 respectively. The quantities fρ, fv, βs, βv

are parameters fit to experiment.
The equations describing the various meson and electromagnetic fields

are the following:

−∇2
Φ +m2

sΦ = g2
sρs(x) −

m2
s

M
Φ

2

(

κ3

2
+
κ4

3!

Φ

M

)

+
g2
s

2M

(

η1 + η2

Φ

M

)

m2
v

g2
v

W 2

+
g2
sηρ

2M

m2
ρ

g2
ρ

R2+
α1

2M

[

(~∇Φ)2+2Φ∇2
Φ

]

+
α2g

2
s

2Mg2
v

(~∇W )2 .

(5)

Here ρs is the baryon Lorenz scalar density and gs, ms, κ3, κ4, η1, η2, gv,
gρ, α1, α2 are again parameters fit to experiment. Furthermore,

−∇2W +m2
vW = g2

v

[

ρB(x) +
fV

2M
~∇·

(

ρT
B(x)r̂

)

]

−

(

η1 +
η2

2

Φ

M

)

Φ

M
m2

vW

−
1

3!
ζ0W

3 +
α2

M

(

~∇Φ · ~∇W + Φ∇2W
)

−
e2gv

3gγ

ρchg(x) .

(6)

Here ρB is the baryon density, ρT
B is the baryon tensor density, ρchg is the

charge density and fv, ζ0 are parameters. In addition,

−∇2R+m2
ρR =

1

2
g2
ρ

[

ρ3(x) +
fρ

2M
~∇·

(

ρT
3 (x)r̂

)

]

−ηρ

Φ

M
m2

ρR−
e2gρ

gγ

ρchg(x) . (7)
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Here ρ3 and ρT
3 are the isovector densities, fρ, ηρ, gρ are parameters and

gγ=5.01, is the coupling of the photon to the ω-meson. Finally,

−∇2A = e2ρchg(x) , (8)

where ρchg is the charge density. All parameters used in these equations are
tabulated in Table I.

From the above Dirac Hamiltonian one can write down the energy eigen-
value equation which will give the single-particle wave functions that are
used to construct the ground-state densities. The various mesons and elec-
tromagnetic fields play the role of the Kohn–Sham potentials. The whole
set of equations (5)–(8) and (9), below, form the Kohn–Sham equations.

hψα(x) = Eαψα(x) . (9)

To obtain the single-particle wave functions from (9), they are expressed
in terms of Dirac spherical wave functions:

ψα(x) =

(

i
r
Ga(r)Φκm

−1
r
Fa(r)Φ−κm

)

ζt , (10)

where the Φκm is a spin spherical harmonic. ζt is a two-component spinor
and the index t is equal to 1/2 for protons and −1/2 for neutrons. By
inserting this form of the solution into Eq. (9) and using Eq. (4) a set of
two coupled first-order differential equations for the G and F functions is
obtained:

(

d

dr
+
κ

r

)

Ga(r) − [Ea − U1(r) + U2(r)]Fa(r) − U3Ga(r) = 0 , (11)

(

d

dr
−
κ

r

)

Fa(r) + [Ea − U1(r) − U2(r)]Ga(r) + U3Fa(r) = 0 , (12)

where the single-particle potentials are given by

U1(r) ≡ W (r) + taR(r) +

(

ta +
1

2

)

A(r)

+
1

2M2
(βs + 2taβV )∇2A(r) , (13)

U2(r) ≡ M − Φ(r) , (14)

U3(r) ≡
1

2M

{

fVW
′(r) + tafρR

′(r)

+A′(r)

[

(λp + λn)

2
+ ta(λp − λn)

]}

. (15)
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Here the prime indicates a radial derivative; e.g. W ′(r) = dW (r)/dr. Once
the single-particle wave functions are calculated, the various densities that
appear on the r.h.s. of the meson equations can be obtained. They are
defined as follows:

ρs(x) =
occ
∑

α

2ja + 1

4πr2
(

G2
a(r) − F 2

a (r)
)

, (16)

ρB(x) =

occ
∑

α

2ja + 1

4πr2
(

G2
a(r) + F 2

a (r)
)

, (17)

ρT
B(x) =

occ
∑

α

2ja + 1

4πr2
2Ga(r)Fa(r) , (18)

ρ3(x) =

occ
∑

α

2ja + 1

4πr2
(2ta)

(

G2
a(r) + F 2

a (r)
)

, (19)

ρT
3 (x) =

occ
∑

α

2ja + 1

4πr2
(2ta)2Ga(r)Fa(r) , (20)

where the sum goes over the occupied orbitals. In addition to these, the
charge density is defined as the sum of two pieces: a direct nucleon charge
density ρd(x) and the vector meson contribution ρm(x)

ρchg ≡ ρd(x) + ρm(x) . (21)

The direct part is given by

ρd(x) = ρp(x) +
1

2M
~∇·

(

ρT
a (x)r̂

)

+
1

2M2

[

βs∇
2ρB(x) + βv∇

2ρ3(x)
]

(22)

and the vector meson contribution arising from the coupling of the neutral
vector mesons to the photon takes the form

ρm(x) =
1

gγgρ

∇2R+
1

3gγgv

∇2W . (23)

Here the point proton density ρp and nucleon tensor density ρT
a are given

by

ρp =
1

2
(ρB + ρ3) ,

ρT
a =

occ
∑

σ

ψ†
σ(x)iλβ~α · r̂ψσ(x) . (24)
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All the above equations were derived from the effective Lagrangian given
in Eqs. (2) and (3), and are the same as those used in [1] and reproduce
those shown in [2]. To solve them an independently developed program
was written to solve these local, coupled, non-linear equations (5)–(8) and
Eqs. (11) and (12), where the appropriate densities are defined in Eqs. (16)–
(20). This program was used to obtain the results in [1] and reproduces the
results shown in [2].

The meson equations are solved iteratively using a Greens function
method. Because NDA guarantees that each additional term on the r.h.s. of
Eqs. (5)–(8) is smaller than the previous one, convergence is both expected
and obtained.

The whole system of Eqs. (11), (12) and (5)–(8) is solved self-consistently
until a global convergence is reached.

3. Results

The procedure described above to solve the Kohn–Sham equations to
find the eigenvalues and wave functions is performed using the parameter
set G1 given in [1, 2], and which is reproduced in Table I for completeness.
These equations are solved and used to calculate the ground-state total
binding energy of the selected nuclei3. Before starting the discussion of the
results, it is important to keep in mind that the effective Lagrangian on
which these calculations are based, was fitted to ground-state properties of

selected spherical nuclei in the stability region [2] and that there has been
no refitting of these parameters.
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Fig. 1. Calculated and experimental values of the total binding energy for even

N = 28 isotones. Energies are positive and measured in MeV.

3 The total binding energy of the system follows directly from the effective Lagrangian
and Hamiltonian, see [2]
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Fig. 2. Calculated and experimental values of the total binding energy for even

N = 50 isotones. Energies are positive and measured in MeV.
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Fig. 3. Calculated and experimental values of the total binding energy for even

N = 82 isotones. Energies are positive and measured in MeV.

The first set of results shown correspond to the total binding energy of
even–even isotones with total neutron number, N , equal to 28, 50, 82 and
126. These are shown in Figs. 1–4. As can noted from these figures, there
is a very good agreement between the calculated and experimental values,
which are taken from [9]. In Fig. 5, the percentage deviation, or error, of the
results is shown. The overall agreement can be seen to improve as one goes
to larger nuclei and, except for the N = 28 isotones, the percentage error is
in general less than 0.5%.

The following set of figures, Figs. 6–9, show the predictions for the
ground-state energies of nuclei neighboring even–even isotones of given N .
The energy differences are taken between the odd nucleus and the closest
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Fig. 4. Calculated and experimental values of the total binding energy for even

N = 126 isotones. Energies are positive and measured in MeV.
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Fig. 5. Percentage difference between calculated and experimental values for all

even isotones.

even nucleus. These differences in energy, i.e. the magnitude of the chem-
ical potential, are calculated using the binding energies obtained in this
EFT/DFT approach and are compared with available experimental data.
The even–even isotones shown in these plots, and which are located at the
zero point of energy, correspond to nuclei with (calculated) closed j-shells.
A filled j-shell has an even number of particles, and Jπ equal to 0+, here
only particles or holes relative to filled j-shells contribute to the total an-
gular momentum and parity of the nucleus. This is precisely the argument
given in the shell model [10]. Since these calculations are effectively mean-
field calculations, there is no explicit inclusion of pairing [1]. Thus states
corresponding to partially filled j-shells are not included in these plots.
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From these plots one can appreciate the excellent agreement between
the calculated and experimental values of this energy difference, or chemical
potential. In addition to this, the predicted ground-state quantum numbers
of the odd nuclei agree with the experimental values. The only disagreement
in all the isotone cases considered occurs for 147

65Tb82, Fig. 8. Here the
experimental ground-state corresponds to a (1/2+) state while the predicted
ground-state is 11/2−. The result is not far from the metastable state
(11/2−) which lies 50 keV above the true ground-state [11]. This is indicated
in Fig. 8, where the metastable state has been shifted in order to be seen on
this energy scale.

The next set of plots, Figs. 10–12, show the ground-state total binding
energy of even–even isotopes with Z = 28, 50 and 82. They are equivalent
to the plots shown for the isotones. Here again the predicted values agree
overall with experiment below the 1% level as can be seen in Fig. 13. The
agreement between predicted and experimental data improves as one moves
to larger nuclei.

The final set of plots, Figs. 14–16, correspond to predictions of the rel-
ative binding energy of odd nuclei neighboring even–even isotopes of given
Z, with respect to the binding energy of these even–even nuclei. As in the
equivalent plots for isotones, the even–even nuclei correspond to the calcu-
lated filled j-shells and locate the zero-energy level.
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Figure 14 shows the results for isotopes of Ni (Z = 28). Here one
can observe that overall, there is a very good agreement with experiment,
similar to that of the N = 28 isotones. In the case of 61

28Ni33, there is a
disagreement in the predicted quantum numbers of the ground-state. The
experimental value corresponds to a 3/2− state, while the predicted one
is a 5/2−. There is an excited state with Jπ value in agreement with the
calculated ground-state that lies only 70 keV above it [12]. In this figure, this
separation in energy has been exaggerated to show it in the scale of the plot.
The disagreement in the location of the ground-state shows the sensitivity
of the actual ordering of states to the form of the central potential. One can
understand this by looking at the effects of putting additional neutrons into
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Fig. 10. Calculated and experimental values of the total binding energy for even

Z = 28 isotopes. Energies are positive and measured in MeV.

the system. There is a major shell closure at N = 28. If one more neutron
is added to the system it will go into the next j-shell which is j = 3/2
corresponding to a 2p3/2 level, as expected from the naive shell model4.
This level becomes completely filled at N = 32, since 2j + 1 = 4, which
is correctly predicted as can be seen in the plot. Adding one more particle
to this nucleus, should start filling the next j-shell, the 1f5/2 level, giving
the ground state the quantum numbers 5/2− as predicted. Instead, it seems
that it is energetically more favorable to promote one particle from the 2p3/2
level to the 1f5/2 leaving a hole. The two particles in the 1f5/2 level do not
contribute to the angular momentum, which is solely determined by this hole

4 The level ordering is sensitive to the actual form of the central potential, and here
we use the one presented in [10], Chapter 6.
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in the 2p3/2. Adding more neutrons fills the 1f5/2 until it is completely full
at N = 38, since 2j + 1 = 6, which again is correctly predicted. After this,
more neutrons just start filling the next level, 2p1/2, following the ordering
given by the naive shell model. Therefore the predictions follow very closely
the way the neutron levels are being filled and the fact that the disagreement
at N = 33 is small only shows how sensitive the ordering is to the form of
the central potential.

The exact ordering of energy levels has a larger effect when the level
density is high and the levels are very close together. This is precisely what
happens in the case of isotopes with large values of Z. For any given Z the
density level of neutrons close to the Fermi surface is larger since in general



Extension of Effective Lagrangian Approach to Structure of . . . 853

20 40 60 80 100 120
N

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10
0*

(B
E

ca
lc

-B
E

ex
p)/

B
E

ex
p Percentage deviation 

Isotopes Z=28 isotopes
Z=50 isotopes
Z=82 isotopes

Fig. 13. Percentage difference between calculated and experimental values for all

even isotopes considered.

24 26 28 30 32 34 36 38 40 42 44 46
N

-30

-20

-10

0

10

20

30

R
el

at
iv

e 
B

in
di

ng
 E

ne
rg

y 
(M

eV
)

Particle states (N+1)

Hole states (N-1)

3/2-

1/2-

(1/2-)

1/2-

(1/2-)

5/2-

3/2-

7/2-

Calculated

5/2-

3/2-

5/2-

Experimental

Fig. 14. Particle and hole states neighboring even–even Z = 28 isotopes. Binding

energies are considered positive. Only nuclei with particle and hole states with

respect to calculated filled j-shells have been plotted. The value ofN corresponds to

the even–even isotopes in the middle of row. Calculated Jπ values are included and,

unless indicated otherwise, are in agreement with the experimental ground states.

Where there is disagreement with the experimental Jπ value, or it is uncertain, the

experimental ground-state Jπ value is also indicated in the plot. In addition, in

this case, the lowest-lying excited state with the calculated Jπ is also included.

N ≥ Z making the energy levels very close to each other. This can be ap-
preciated in Fig. 15 where, if there is a disagreement between the calculated
and experimental ground-state value of Jπ, the lowest-lying excited state
with the calculated quantum numbers has also been plotted [13]. Note in
particular the small (≈ tens of keV) energy differences between these states
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and each case and the fact that there is always a partner with quantum num-
bers that agree with the ones predicted for the ground-state. As for similar
cases before, the energy difference has been exaggerated to be appreciated
at this scale.

A similar effect occurs in the case of the isotopes of Pb (Z = 82). Fig-
ure 16 shows the filled j-shell states closest to 208

82Pb126 which is a mayor
shell closure. Adding an extra neutron to this nucleus will start filling the
next j-shell, which according to the naive shell model is a 2g9/2 state. This
is precisely what is predicted here as can be seen in this figure for the par-
ticle state at N = 126 (i.e. N = 127). Removing a neutron from 208

82Pb126

corresponds to depleting the 3p1/2 state, as can be seen in the figure, and
again it is also correctly predicted. Since 208

82Pb126 formed part of the nuclei
used to fit the parameters of the theory, it is expected that there will be an
accurate description of the neighboring nuclei, and in fact there is.
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Removing one additional neutron completely depletes the j = 1/2 shell
bringing the total number of neutrons to N = 124, which is also observed
occurring in this plot. According to [10] (see footnote above) the next hole
level would be a 1i13/2 level, i.e. 13/2+, but the experimental evidence
indicates that this level is in fact a 5/2−. The reordering of the levels,
with respect to the naive shell model, can be understood as either a large
splitting between the 3p1/2 and 3p3/2 levels, which brings the 3p1/2 level
above the 1i13/2, or a considerable lowering of the 1i13/2 which brings the
1i13/2 below the 3p1/2. In either case removing one more neutron from
this nucleus will start depleting the next j-shell which could be a 3p3/2 or a
2f5/2. In Fig. 16 it is shown that this level is a 5/2− in disagreement with
the calculated one, 3/2−. The closest excited state having this predicted
quantum numbers lies only 262 keV above the ground-state. This state is
also plotted [14]. The energy difference has been exaggerated in the figure,
as in the previous plots. The reordering between the 2f5/2 and 3p3/2, shift
the position of the real j-shell closures with respect to the calculated ones,
as happened for the Z = 50 isotopes shown in Fig. 15; therefore they have
not been included in this plot. Despite this disagreement, the magnitude of
the chemical potentials of these nuclei are relatively well described.

In summary, these results show that the binding energy of all even–even
nuclei with semi-magic numbers of neutrons and protons, N = 28, 50, 82,
126 and Z = 28, 50, 82 are reproduced to 1% or better in this EFT/DFT
approach with parameters G1 fit along the valley of stability. With all the
isotones, the chemical potential of nuclei with a single proton particle or
hole outside of filled j-shells is well reproduced and the predicted value of
Jπ for the ground-state of these nuclei agrees with experiment.

When the number of neutrons gets very large in the regime where N > Z,
the level density is very high and the detailed ordering of the levels be-
tween major shells depends sensitively on the details of the various densi-
ties. Thus, while the chemical potential (binding energies) are still relatively
well-described, the theory begins to lose its predictive power for the spin and
parity of the ground states of single neutron particle and hole nuclei neigh-
boring those with filled j-shells.

4. Conclusions

This work investigates the applicability of the EFT/DFT approach to
reproduce total binding energies and chemical potentials of semi-magic nu-
clei (N = 28, 50, 82, 126 and Z = 28, 50, 82) far from the valley of stability.
It extends the work done in [1], where the convergence of this EFT/DFT
approach was studied for doubly-magic nuclei. All calculations were per-
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formed using an independently developed program to solve the Kohn–Sham
equations derived from the most sophisticated effective Lagrangian given
in [2] with parameter set G1.

From the figures given in the previous section, several conclusions are
drawn:

1. The EFT/DFT approach can reproduce the total binding energies of
even–even isotones and isotopes with semi-magic numbers of neutrons
and protons, respectively. The agreement is in general better than 1%
where the best results are obtained for larger nuclei. This conclusion
is in agreement with the previous results obtained in [1].

2. The predictions for the magnitude of the chemical potentials for odd
nuclei corresponding to particle or holes neighboring filled j-shells
agree overall with the experimental evidence. This agreement varies
for different nuclei and on average lies between 10% and 20%.

3. Regarding the predictions of the ground-state quantum numbers of
odd nuclei neighboring even–even nuclei with filled j-shells, the results
indicate that in the case of isotones these are accurately reproduced;
for heavy isotopes with N > Z, although the predictions of chemical
potentials are in essential agreement with experiment, the EFT/DFT
approach begins to lose its predictive power.

Overall, the use of this effective field theory approach for QCD and the
interpretation of the resulting relativistic Hartree equations through Kohn–
Sham potentials and density functional theory [2] provides an excellent de-
scription of the ground-state properties of semi-magic nuclei when extrapo-
lated away from the valley of stability.

The author would like to thank Dr. J.D. Walecka for his support and
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