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Nature is full of random networks of complex topology describing such
apparently disparate systems as biological, economical or informatical ones.
Their most characteristic feature is the apparent scale-free character of
interconnections between nodes. Using an information theory approach, we
show that maximalization of information entropy leads to a wide spectrum
of possible types of distributions including, in the case of nonextensive
information entropy, the power-like scale-free distributions characteristic
of complex systems.

PACS numbers: 89.75.–k, 89.70.+c, 24.60.–k

Random networks have recently found applications in the description of
complex systems in different, apparently very disparate branches of mod-
ern science such as, for example, molecular biology, sociology, economy and
computer science [1,2]. For example, living organisms form huge genetic net-
works the nodes of which are proteins and links represent the corresponding
chemical interactions [3]. A similarly big network is formed by the nervous
system the nodes of which are connected by axons [4]. Comparable com-
plexity show networks existing in the sociological systems in which nodes
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are countries, organizations or single persons whereas links characterize their
mutual interactions [5], in the world of finances and computer networks (with
World Wide Web being the most known example where nodes are HTML
documents connected via hiper-links URL [6]). For most recent reviews of
random networks see [7, 8].

Analysis of different random networks clearly indicate that the probabil-
ity P (k) of joining a given node with other nodes is described by the power
law P (k) ∝ k−γ [9]. For example, the most convincing analyses of computer
networks with over 800 million nodes [6, 10–12] lead to a power-like distri-
bution of P (k) with exponent equal γ ∼ 2.1 ÷ 2.45. This contradicts the
existing models of random networks [13, 14] predicting instead exponential
distributions: P (k) ∝ exp(−k). The most popular model (ER) dealing with
a fixed number of nodes N was proposed in [13], where the Poisson distribu-
tion was advocated to be used for probability that a given node has k links
(with the mean number of connections being λ0)

1,

P (k) =
λk

0 e−λ0

k!
. (1)

However, in order to get the observed power-like form of P (k) one has to
allow for growing N and replace the democratic law of attachment a new link
used in deriving (1) by a preferential one. This means that distribution P (k)
is determined by the dynamics of the growth of network [7, 11]. Starting
from a small number m0 of nodes, adding in each time step a new node
with m ≤ m0 possible connections and assuming that this new node joins
the already existing nodes with equal, ki-independent, probability Π (ki) =

1
m0+t−1 , the evolution (growth) of network is described by the following

equation [11]:
∂ki

∂t
= mΠ (ki) =

m

m0 + t − 1
(2)

leading for long times t to exponential stationary distribution:

P (k) =
1

m
exp

(

−
k

m

)

. (3)

On the other hand, assuming that probability Π (ki) is selective, for example

that Π (ki) = ki
∑m0+t−1

j=1
kj

= ki
2mt , one gets instead asymptotically a simple

power law for P (k):

P (k) =
2m2t

m0 + t
k−3 ∝ k−3 . (4)

1 Notice that in the limit of large k distribution (1) can be approximated by P (k) =

(2πk)−1/2 (λ0/k)k exp (k − λ0), whereas for large values of λ0 it becomes a gaussian

distribution, P (k) = (2πλ0)
−1/2 exp

[

− (k − λ0)
2 /2λ0

]

.
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Apparently such distribution with universal exponent γ = 3 shows up in
different situations (and under different names). As Pareto distribution [15]
it describes the growth of the wealth of persons living in stable economical
systems, as Zipf’s law [16] it is applied in linguistics and it also describes
the distribution of the citations of the scientific works [17, 18].

In the limit of large t, i.e., when stationary state is attained, this problem
can be also studied from the information theory point of view. In it one asks
the following question [19]: what is the informational content of data repre-
sented by distributions P (k)? In other words, what is the minimal number
of parameters needed to reproduce a given shape of P (k)? The question
asked in such approach is: suppose that we know only that a network we are
interested in, which we would like to describe by P (k), leads to some mean
value of k, i.e., we know that:

∞
∑

k=1

P (k) = 1 and 〈k〉 =
∞
∑

k=1

k P (k) = λ0 = const. , (5)

what would be then the most probable and least biased form of P (k) in
such a case (i.e., describing the existing data and given entirely in terms of
λ0)? To answer this question one maximalizes the corresponding information
entropy associated with probability distribution P (k) under constraints (5).
The usual form of such entropy is Shannon entropy [20],

S = −

∞
∑

k=1

P (k) ln P (k) . (6)

The conditions (5) representing our a priori knowledge of the problem lead
to the exponential probability distribution

P (k) =
1

λ0
exp

(

−
k

λ0

)

, (7)

closely resembling Eq. (3) 2.
There are, however, many systems with properties preventing the use

of Shannon type of information entropy and calling for its generalization.
For example, they posses some intrinsic fluctuations resulting in the whole
spectrum of parametr λ, P (λ), with λ0 = 〈λ〉 being only its mean value [21]
or they develop some correlations introducing memory effects, cf. [22] (in

2 It is interesting to mention that additional knowledge that all entities represented by
k are indistinguishable, which results in the necessity of introducing in the correspond-
ing summations the additional weight factor 1/k!, changes the above distribution to
Poisson distribution of the ER model mentioned above, cf., Eq. (1).
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statistical physics such situation leads to the necessity of departing from
the use of the usual Boltzmann–Gibbs statistics in favour of some sort of
generalized one [22]). Out of many possible generalizations we shall use in
this note the nonextensive Tsallis entropy defined as [22]:

Sq = −
1

1 − q

{

1 −
∞
∑

k=1

[P (k)]q

}

. (8)

It can be regarded as a minimal (i.e., one parameter) extension of Shannon
entropy (6), to which it reduces when q → 1. Parameter q describes there-
fore summarily all effects preventing the use of Shannon entropy mentioned
above.

Using Sq as a measure of information about our system, i.e., maximal-
izing Sq with constraints (equivalent to (5) above):

∞
∑

k=1

P (k) = 1 and 〈k〉q =

∑∞
k=1 k[P (k)]q

∑∞
k=1 [P (k)]q

= λ0 = const. , (9)

one obtains as result a power-like distribution of the form:

P (k) = Pq(k) = C

[

1 − (1 − q)
k

λ0

]
q

1−q

, (10)

where C = 1/
∑∞

k=1[1 − (1 − q)k/λ0]
q/(1−q) = 1/λ0 is normalization3. In

this case

〈k〉 =
λ0

(2 − q)
and Var(k) =

λ2
0

(3 − 2q)(2 − q)2
. (11)

Notice that for q → 1 this distribution becomes exponential, as in Eq. (7).
On the other hand, for large values of k, k >> λ0/(q − 1), it becomes a
power-like distribution of the form

Pq(k) ∝ k−γ with γ =
q

q − 1
, (12)

i.e., our distribution becomes in this limit a scale-free one. It is easy to
check that if we demand that 〈k〉 < ∞ then q < 2. It is interesting to note
at this point that γ = 3 in Eq. (4) corresponds precisely to q = 3/2 at which
variation Var(k) diverges.

3 It should be stressed that maximalization of entropy provides us in this case only with
the shape of distribution P (k), Eq. (10), and gives no information on the particular
values of parameters λ0 and q. Only knowledge of moments 〈k〉 and Var(k) of Pq(k),
as given by Eq. (11), allows for determining these two parameters.
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Fig. 1. The probability distribution of connections in the WWW network after [12]
(full squares). The full line shows results of our fit by using Eq. (10) with q = 1.65

and λ0 = 1.91. It reproduces the observed mean 〈k〉 = λ0/(2 − q) = 5.46 and lead
to the asymptotic power-like distribution ∝ k−γ with γ = q/(q−1) = 2.54 (showed
as dotted line).

In Fig. 1 we show (as an example) distribution of the number of con-
nections in the WWW network [12] with 325729 nodes and the mean values
of connections equal 〈k〉 = 5.46 fitted by Pq(k) as given by Eq. (10) with
parameters λ0 = 1.91 and q = 1.65 4. Notice that Eq. (10) describes the

whole range of k whereas the purely power-like distribution ∝ k−γ with
γ = q/(q − 1) = 2.54 occurs only for large values of k. In the spirit of infor-
mation theory this result can therefore be interpreted in the following way:
(a) the system forming network described in Fig. 1 possesses some features
(mentioned above) preventing the use of Shannon information entropy and
(b) data represented by P (k) can be quite adequately described in terms of
only two parameters: the Tsallis entropy parameter q and the mean number
of links 〈kq〉 = λ0, i.e., their informational capacity is rather limited.

The question now is: what is the physical meaning of the q parameter
in the context of stochastic networks? There is a long list of possibilities in
what concerns of the origin of q 6= 1 to be found in the literature dealing with
nonextensivity [21,22]. Out of these we shall only mention two: fluctuations
and correlations. In [21] it was demonstrated that q reflects fluctuations of
the parameter λ0 in exponential distribution (1) above. In fact, it turns out

4 Notice that although in fitting procedure both parameters were varied independently,
they are connected via distribution moments 〈k〉 and Var(k), cf. (11).
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that (q − 1)/q = ±Var(1/λ)/〈1/λ〉2 . As is known from other branches of
physics where Tsallis statistics is applied [22], the appearance of q can also be
caused by some correlations existing in the system under consideration. Such
correlations (resulting, for example, from preferential attachments and “rich-
get-richer” phenomenon [11]) seem to play a decisive role in the description of
stochastic networks. Therefore when choosing vertices with connectivity k,
to which a new vertex is going to be connected, we shall assume that it will
do so with probability that depends on the connectivity k. To illustrate this
point let us introduce in the evolution equation

dP (k)

dk
= −

1

λ(k)
P (k) , (13)

parameter λ = λ(k) given by a simple linear function of k:

λ(k) =
[λ0 + (q − 1)k]

q
. (14)

It is easy to see that in this case one gets immediately Pq(k) in the form
of Eq. (10). Notice that for q → 1 (i.e., for λ → λ0) one recovers the
exponential distribution (7) 5.

It must be stressed, however, that the information theory approach leads
in a natural way (via maximalization of the respective information entropy)
only to equilibrium (or stationary) distributions Pq(k), whereas in models
describing evolving complex networks [7, 11] the functional form of P (k) is
determined by the growth equation ∂k/∂t. Introducing more complicated
network evolution than the one presented above when deriving Eq. (4), for
example allowing for the occurence of local events in the form of internal
edges and rewirings, one gets (see Eq. (111) of [7])

P (k) ∼ [k + κ(p, r,m)]−γ(p,r,m) , (15)

where p is the probability that one is adding m new edges to the system, r
is probability that one is rewiring m edges and 1 − p − r is probability that

5 Eq. (13) can be derived by dividing master equation, ∂P (k)/∂t = −cP (k), by
the “growth of network” ∂k/∂t. One gets then evolution equation, ∂P (k)/∂k =
−cP (k)∂t/∂k, which for the linear dependence of the growth of network assumed
here, ∂k/∂t = a + bk, leads to Eq. (13) with λ(k) = (a + bk)/c. Our example consid-
ered here corresponds to the choice: c = 1/λ0, a = 1/q and b = (1− 1/q)/λ0. Notice
that 1/q plays role of weight with which we select the constant and linear terms in the
equation describing the growth of network. Notice also that this kind of the growth
of network, i.e., its dependence on k (cf. [11]) corresponds to selective probability
Π (k), which leads to power-like distribution (4).
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one is adding a new node to the system. The κ and γ in Eq. (15) are given
by [7]:

κ(p, r,m) = A(p, r,m) + 1 and γ(p, r,m) = B(p, r,m) + 1 , (16)

where, in turn,

A(p, r,m) = (p − r)

[

2m(1 − r)

1 − p − r
+ 1

]

,

B(p, r,m) =
2m(1 − r) + 1 − p − r

m
. (17)

One can now write formally Eq. (15) in the form resembling Eq. (10), i.e.,
as

P (k) ∼ [κ(p, r,m)]−γ(p,r,m)

[

1 − (1 − q)
k

(1 − q)κ(p, r,m)

]
q

1−q

(18)

and identify γ(p, r,m) = q/(q − 1) and λ0 = (1 − q)κ(p, r,m), or

q = 1 +
1

B
and λ0 =

A + 1

B
. (19)

However, it must be noticed that, at least in the example considered here, the
limit q = 1 cannot be achieved because the quantity B above is finite (for all
reasonable values of parameters [7]). It means then that formula (10) is more
general and captures (by means of parameters q and λ0) some additional
feature of complex networks, not present in its simple formulation (as, for
example, given by Eq. (15)).

To summarize: We have demonstrated that, in order to apply the infor-
mation theory approach to analysis of stochastic networks one has to use
the nonextensive Tsallis information entropy Sq [22] leading to distribution
Pq(k) as given by Eq. (10). As shown in Fig. 1, such distribution provides
satisfactory description of data on number of links in random networks in

the whole range of variable k by means of only two parameters: the mean
value of k and the parameter characterizing the type of information entropy
to be chosen, q. In this way one describes such disparate situations as the
exponential model ER [13] (for q = 1) and the scale-free, power-like mod-
els [7, 11] (with q = γ/(γ − 1)). For the value of nonextensivity parameter
q = 3/2, for which variance of our system is divergent, one obtains the expo-
nent γ = 3, which seems to be limited value observed in analyses of diverse
systems displaying complex topology. Although only one example has been
shown here in Fig. 1, it is obvious that one can just as easily also fit other,
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similar results discussed in the literature (cf., for example, [7, 8]) 6. The
other point is the possible systematics of the q parameter emerging from
such a search, but this problem is outside of the scope of our presentation.

We conclude by saying that from the information theory point of view
Eq. (10) could be used to fit different data providing a pair of numbers
(q, λ0) for each example. All competing models could be then checked for
their ability to correctly reproduce these (q, λ0) and all models reproducing
them correctly should be regarded as equally good from the point of view of
distribution P (k) because, according to the philosophy of infromation theory
approach, they apparently contain the same amount of information existing
in data which have been used. To distinguish between them further one
would have to use some additional information contained in other network
measures like, for example, clustering coefficient, distance between nodes,
cycles or graph spectra.
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