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DETECTION OF SUPERNOVA NEUTRINOS
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Matter effects on neutrino oscillations in both, a supernova and the
Earth, change the observed supernova neutrino spectra. We calculate the
expected number of supernova neutrino interactions for ICARUS, SK and
SNO detectors as a function of the distance which they traveled in the
Earth. Calculations are performed for supernova type II at 10 kpc from
the Earth, using standard supernova neutrino fluxes described by thermal
Fermi–Dirac distributions and the PREM I Earth matter density profile.

PACS numbers: 13.15.+g, 14.60.Pq, 97.60.Bw

1. Introduction

Iron is the most strongly bound of all elements which means that fusion
and fission reactions result in the absorption, rather than the production, of
energy. The last stage of a massive star life (mass > 10M⊙) is the collapse
of its Fe core (the whole core material has already been transformed, via
the chain of nuclear reactions, into Fe). This happens when the mass of
the Fe core exceeds the Chandrasekhar limit (∼ 1.45M⊙ if one takes equal
numbers of neutrons and protons, [1]) — a supernova (SN) type II birth is
a fact. It starts to explode. All flavors of neutrinos are radiated away in the
form of two bursts of the duration of milliseconds and seconds. The emitted
neutrinos carry almost all (∼99%) of the SN binding energy (∼1053 erg).

The only observed, up to now, burst of SN neutrinos came from the
SN1987A which had exploded in the Large Magellanic Cloud, at the dis-
tance of about 52 kpc away from the Earth. Due to this distinct distance,
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the reconstruction of only 19 events of the neutrino interactions by the
Kamiokande [2] and IMB [3] water Cerenkov detectors had been possible.
But, it was enough to confirm the main features of the models of SN explo-
sion.

Neutrinos, on their way from the production point inside the SN high
dense Fe core to the terrestrial detector, interact with matter. Non-zero
neutrino masses, together with flavor mixing enhanced by matter effects,
result in considerable differences in neutrino fluxes between the production
and the detection points. Systematic studies of the number of SN neutrino
interactions in three detectors, ICARUS [4], SK [5] and SNO [6], as a function
of the distance passed by neutrinos in the Earth is the aim of this work.

2. Neutrino fluxes from a supernova

A supernova is a source of fluxes of neutrinos and antineutrinos of all
three flavors (e, µ, τ). The neutrino/antineutrino energy spectra at the
production point (i.e. inside the SN) of various flavors can be described by
the thermal Fermi–Dirac distributions (all chemical potentials set to zeros,
see [7]):

F 0
α(E,Tα, Lα) =

Lα

T 4
αF3

E2

eE/Tα + 1
,

where α = νe, νµ, ντ , ν̄e, ν̄µ, ν̄τ . Here, E represents energy of the neutrinos,
Lα is the total energy released in various flavors of neutrinos (Lα ≃ EB/6,
with EB ≃ 3 × 1053 ergs — binding energy emitted in the core collapse of
the star), F3 is a normalizing constant given by F3 = 7π4/120, Tα is the
temperature of the να gas in the neutrino sphere. We assume the following
hierarchy of temperatures: Tνe

= 3.5 MeV, Tν̄e
= 5 MeV, Tνx,ν̄x

= 8 MeV,
where νx and ν̄x mean νµ, ντ and ν̄µ, ν̄τ , respectively.

Neutrinos produced deep inside supernova, before escaping from the star,
interact with the matter of its mantle. Thus, transitions of neutrino species
can occur. These oscillations of neutrinos in supernova are considered here
according to [8]. The conversions take mainly place in two resonance layers
in the outer regions of a supernova mantle. There is a high density reso-
nance region (H resonance layer) — ρH ≈ 103–104 g/cm3, and low density
resonance region (L resonance layer) — ρL ≈ 10–30 g/cm3. Transitions
in the H resonance layer are governed by atmospheric neutrino oscillation
parameters: ∆m2

31
and Θ13, whereas transitions in the L resonance region

are governed by solar neutrino oscillation parameters: ∆m2
21

and Θ12. The
transition probabilities (between two neutrino mass eigenstates) in the reso-
nance layers are called the flip probabilities — PH, PL for neutrinos and P̄H,
P̄L for antineutrinos.
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The final total neutrino/antineutrino mass eigenstates fluxes on a super-
nova surface (Fi, Fī, i = 1, 2, 3) are given by the following sets of equations
(F 0

α , F 0
ᾱ are the initial total production fluxes defined above, respectively, e

— νe, ē — ν̄e, x — νµ or ντ , x̄ — ν̄µ or ν̄τ ).
For Direct (normal) mass hierarchy (m1 < m2 ≪ m3):

F1 = PHPLF 0

e + (1 − PHPL)F 0

x ,

F2 = (PH − PHPL)F 0
e + (1 − PH + PHPL)F 0

x ,

F3 = (1 − PH)F 0
e + PHF 0

x ,

F1̄ = (1 − P̄L)F 0
ē + P̄LF 0

x̄ ,

F2̄ = P̄LF 0
ē + (1 − P̄L)F 0

x̄ ,

F3̄ = F 0
x̄ .

For Inverted mass hierarchy (m3 ≪ m1 < m2):

F1 = PLF 0
e + (1 − PL)F 0

x ,

F2 = (1 − PL)F 0
e + PLF 0

x ,

F3 = F 0
x ,

F1̄ = (P̄H − P̄HP̄L)F 0
ē + (1 − P̄H + P̄HP̄L)F 0

x̄ ,

F2̄ = P̄HP̄LF 0
ē + (1 − P̄HP̄L)F 0

x̄ ,

F3̄ = (1 − P̄H)F 0
ē + P̄HF 0

x̄ .

A complete discussion of how to calculate flip probabilities can be found
in [8]. For the purpose of this paper we will only state here that, in case one
considers the LMA (Large Mixing Angle) neutrino oscillations parameters:
PL = P̄L = 0 and, in the so called Large Θ13 case (sin2

Θ13 > 3× 10−4, the
so called region I in [8]): PH = P̄H = 0, while in the so called Small Θ13

case (sin2
Θ13 < 2 × 10−6, the so called region III in [8]): PH = P̄H = 1 (it

is interesting to notice here that, in this case, the resulting fluxes are equal
for both, Direct and Inverted, mass hierarchies).

The finite spread of the neutrino wave packets, together with the small
value of their coherence length and the large distance from supernova to the
Earth, imply that neutrinos arrive to the surface of the Earth as fluxes of
incoherent mass eigenstates.
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Thus, the above equations describe also (except for a simple geometri-
cal factor related to the distance between a supernova and the Earth) the
neutrino/antineutrino mass eigenstates fluxes at the surface of the Earth
(because there is no matter on the way between a supernova and the Earth,
there can be no additional transitions between neutrino mass eigenstates).

3. Earth matter effect

In order to calculate oscillation probabilities we used the standard de-
scription of neutrino regeneration effect in the Earth [9]. The numerical
calculations were made with use of the CERN library function DEQBS. We
applied the realistic Earth matter density profile PREM I [10,11].

The following LMA I (Large Mixing Angle) neutrino oscillation param-
eters were used (note the two values of the sin2

Θ13):

∆m2
21 = 7.1 × 10−5 eV2 ,

∆m2
32 = 2.5 × 10−3 eV2 ,

sin2 2Θ12 = 0.84 ,

sin2 2Θ23 = 1.0 ,

sin2
Θ13 = 0.02 Large Θ13 ,

sin2
Θ13 = 10−7 Small Θ13 ,

δ = 0 Dirac′s phase .

In addition we also considered two cases of mass hierarchies, the Di-
rect (normal, m1 < m2 ≪ m3) and the Inverted (m3 ≪ m1 < m2) ones
(however, because the energies of SN neutrinos are relatively small and the
Dirac’s phase δ is set to zero, there are almost no differences in results of
the regeneration in the Earth between these two hierarchies).

4. Detection of supernova neutrinos

We consider three detectors: ICARUS [4], SK [5] and SNO [6]. The
positions of these detectors on the Earth are shown in Fig. 1. These detectors
have the following feature: in most of the time, when a possible neutrino
signal arrives to the Earth, at least one detector is shielded by the Earth
(assuming a supernova exploded in the center of our Galaxy), and therefore
we will see the regeneration effect in the Earth. All possible processes which
contribute to the total number of neutrino interaction in each detector are
taken into account. The cross sections for these processes which we use come
from [12] and [13].



Detection of Supernova Neutrinos 1219

Fig. 1. An example of a possible relative position of ICARUS, SK and SNO detec-

tors and a supernova which exploded in the center of our Galaxy.

5. Results and discussion

The expected total numbers of supernova neutrino interactions NSN,
integrated over neutrino energy in the range 0.1 MeV–100 MeV (the whole
supernova neutrino energy spectrum), for all possible neutrino processes
in ICARUS T600 (an “industrial” ICARUS module filled with 600 tons of
liquid argon), SK (32 ktons of light water) and SNO (1 kton of heavy water,
1.7 ktons of light water) detectors are calculated (neutrino oscillations in
supernova and the regeneration effect in the Earth have been taken into
account). It is assumed that a supernova explosion occurred in the center of
our Galaxy, that is 10kpc away from the Earth. The results are presented
in Fig. 2 as a function of the distance which neutrinos traveled in the Earth,
for four possible combinations of the mass hierarchy and the Θ13 value.

The main neutrino interactions with detector materials which contribute
to the NSN are the following (the minimum and maximum contributions of
a particular process, taken for the four considered cases altogether, into the
total number of interactions are also given):

ICARUS νe+
40Ar →

40K∗ + e− ∼ (87 ÷ 93)%

SK ν̄e + p → n + e+
∼ (76 ÷ 80)%

νe + O → F + e− ∼ (6 ÷ 10)%

SNO ν̄e + p → n + e+
∼ (31 ÷ 37)%

νe + d → p + p + e− ∼ (12 ÷ 16)%
νµ,τ + d → νµ,τ + p + n ∼ (10 ÷ 12)%
ν̄µ,τ + d → ν̄µ,τ + p + n ∼ (8 ÷ 12)%
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Fig. 2. The expected number of supernova neutrino interactions in ICARUS T600

(600 tons of liquid argon), SK (32 ktons of light water) and SNO (1 kton of heavy

water, 1.7 ktons of light water) detectors as a function of the distance, L, neutri-

nos traveled in the Earth, for different combinations of mass hierarchy and Θ13

(DL — Direct mass hierarchy and Large Θ13, IL — Inverted mass hierarchy and

Large Θ13, DS — Direct mass hierarchy and Small Θ13, IS — Inverted mass

hierarchy and Small Θ13). For details see the description in the text.
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It can be seen that, while νe interactions dominate in the ICARUS de-
tector, ν̄e interactions dominate in the SK and SNO detectors. Taking into
account that, in case of Large Θ13, neutrino oscillations in supernova make
the νe spectrum harder (hot) for the Direct mass hierarchy and the ν̄e spec-
trum harder (hot) for the Inverted mass hierarchy (and that all relevant
cross sections increase with energy), one gets the corresponding behavior of
NSN in Fig. 2 (compare the DL versus the IL curves).

Two conclusions are straightforward: the distance traveled by neutrinos
in the Earth has only little influence on the value of NSN and, in case of
Small Θ13, the value of NSN does not depend on the mass hierarchy at all.
Finally, the NSN from all three detectors should allow us to draw conclusions
about the value of the Θ13 and, in case the Θ13 is sufficiently large, it should
also be possible to say which mass hierarchy is in force.

Last, but not least, it should be noted that, in case of the ICARUS
detector, for the purpose of this paper we performed calculations for the
currently existing ICARUS T600 (600 tons of liquid argon) module. The
final total mass of the ICARUS detector (which will be installed in the
underground LNGS Laboratory in Gran Sasso/Italy, see [4]) will be of the
order of 3000 tons of liquid argon. That means that the expected total
number of supernova neutrino interactions NSN will be five times larger
than the one presented in this paper.
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