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We shall discuss most recent advances in the description of weakly
bound and unbound nuclear states using either a real ensemble representing
(quasi-) bound single-particle states and scattering states (Shell Model Em-
bedded in the Continuum) or a complex Berggren ensemble representing
bound single-particle states, single-particle resonances, and non-resonant
continuum states (the so-called Gamow Shell Model).

PACS numbers: 21.60.Cs, 24.10.Eq, 25.40.Lw, 27.20.+n

1. Introduction

Low-energy nuclear science is undergoing a revival with a technological
revolution in the radioactive nuclear beam experimentation. New facilities
have been built or are under construction, and new ambitious future projects
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will shape the research in this field for decades to come. From a theoretical
point of view, the major problem is to achieve a consistent picture of weakly
bound and unbound nuclei, which requires a synergy between nuclear struc-
ture and nuclear reactions. This ambitious quest for a unified description is
necessary because the spectroscopic information of nuclei that are close to
the drip lines is dramatically affected by open channels.

The rigorous treatment of both the many-body correlations and the con-
tinuum of positive-energy states and decay channels is a challenging prob-
lem. Weakly bound states or resonances cannot be described within the
closed quantum system formalism. For bound states, there appears a virtual
scattering into the continuum phase space involving intermediate scattering
states. Continuum coupling of this kind affects also the effective nucleon-
nucleon interaction. For unbound states, the continuum structure appears
explicitly in the properties of those states. The consistent treatment of
continuum in multi-configuration mixing calculations is the domain of the
continuum shell model (CSM) [1].

The impact of the particle continuum was discussed already in the early
days of the multiconfigurational shell model (SM). For instance, the Thomas-
Ehrman shift [2], which is a salient effect of a coupling to the continuum
depending on the position of the respective particle emission thresholds,
was well known in those days. However, the success of the ‘standard’ SM
description in terms of interacting nucleons, assumed to be perfectly isolated
from an external environment of scattering states, delayed the progress in
the CSM for many decades. Below we shall discuss two recent developments
in this area.

2. Shell Model Embedded in the Continuum

The mathematical formulation of the problem of nuclear states embedded
in the continuum of decay channels goes back to Feshbach [3], who intro-
duced the two subspaces containing the discrete (Q subspace) and scattering
(P subspace) states. A unified description of nuclear structure and nuclear
reaction aspects is much more involved and became possible in realistic sit-
uations much later (see Ref. [1] and references quoted therein). The Shell
Model Embedded in the Continuum (SMEC) [4] offers a unified descrip-
tion of energy spectra, including nucleon emission widths, as well as the
reactions involving one nucleon in the continuum, such as the (in)elastic
proton scattering, radiative capture processes, Coulomb dissociation, first-
forbidden beta decay, etc. (see Ref. [1] for a review). The first attempt
to extend SMEC for two nucleons in the continuum can be found in this
volume [5]. The SMEC formalism, in conjunction with the Feshbach projec-
tion technique, yields a precise description of radial wave functions at large
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distances which is a must for the description of nuclear reactions. All the
coupling matrix elements between different discrete states, different scatter-
ing states, as well as between discrete and scattering states, are calculated
in SMEC using the realistic effective SM interaction. Below, we shall discuss
certain features of the coupling to the particle continuum on the example of
binding energy systematics.

Fig. 1. Schematic representation of various Hilbert subspaces in SMEC: (i) uncou-

pled subspaces (left diagram) with different number of particles in the scattering

continuum; (ii) coupled subspaces (right diagram).

The localized many-body states forming a Q-subspace are obtained by
solving a standard SM problem for the Hamiltonian HQQ. Asymptotic chan-
nels made of (A − 1)-particle localized states and one nucleon in scattering
states are contained in P -subspace. In T -subspace, two nucleons are in the
scattering states and (A − 2)-occupy discrete orbits, and the division can
go on (see Fig. 1). In the following, we shall discuss the case of coupled
Q, P subspaces. The residual coupling (HPQ) between these two subspaces
is given by the zero-range interaction including the spin-exchange term [4].
An effective Hamiltonian in Q (see Fig. 2) including the coupling to the
one-nucleon continuum is energy-dependent:

H
(eff)
QQ (E) = HQQ + HQP G

(+)
P (E)HPQ , (1)

where G
(+)
P (E) is the Green’s function for the motion of a single nucleon

in P . The second term on the r.h.s. of Eq. (1) generates effective three-
body correlations in Q.
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Fig. 2. Schematic representation of the transformation from coupled Hamiltonians

in Q + P + T to the effective Hamiltonian H
(eff)
QQ in Q which contains the virtual

coupling to remaining subspaces. G̃+
P , G+

T are the Green’s functions in P and T ,

respectively. (For more details see Ref. [5].)

The energy scale is defined by the one-nucleon emission threshold E(thr)

[4]. For E > E(thr), H
(eff)
QQ is a complex-symmetric matrix, while for E <

E(thr) the matrix is hermitian, like in the ordinary SM. The ground state
(g.s.) continuum coupling correction to the binding energy is given by [6]:

Ecorr = 〈Φg.s.|H
(eff)
QQ − HQQ|Φg.s.〉 . (2)

The g.s. wave function in the parent nucleus (N,Z) is coupled to different
channel wave functions, which are determined by the motion of an unbound
neutron relative to the daughter nucleus (N − 1, Z) in a certain SM state

Φ
(N−1)
i .

Figure 3 shows the neutron number dependence of Ecorr in oxygen iso-

topes for (i) E
(thr)
n of SMEC (solid line), and (ii) E

(thr)
n fixed arbitrarily at 0

or 4 MeV. In the present study, we take the full sd valence space for N < 20
and the full pf space for N > 20. For HQQ, we employ the USD interaction

in the sd shell [7] and the KB
′

interaction in the pf shell [8]. The cross-shell
interaction is given by the G-matrix of Ref. [9]. In our model space, the
continuum coupling contains the neutron–neutron (T=1) part only.
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Fig. 3. Neutron number dependence of Ecorr (2) to the SM g.s. energy for the

neutron-rich oxygen isotopes. The solid line is obtained for the one-neutron emis-

sion threshold E
(thr)
n calculated in SMEC for each nucleus individually. The dotted

lines with squares and triangles are obtained for E
(thr)
n fixed at 0 and 4 MeV, re-

spectively.

A non-linear tendency in Ecorr as a function of N (cf. Fig. 3) has two

origins. Firstly, for a fixed value of E
(thr)
n (see the curve for E

(thr)
n = 4 MeV),

the continuum coupling induces an effective change δV T=1
j1j2

∼ (V (nn))2/V T=1
j1j2

of the T=1 matrix elements of the two-body interaction V T=1
j1j2

. This depen-
dence, which is well seen in the matrix elements involving the 0d3/2 orbit,
can be taken into account by a phenomenological adjustment of the T=1
two-body monopole terms of the effective two-body interaction. More im-
portant, however, is the change in an average behavior of Ecorr due to the

strong dependence on E
(thr)
n . Close to the neutron drip line, this dependence

leads to an effective enhancement of the strength of nn-continuum coupling
which cannot be corrected by an N -independent correction of the two-body
monopoles. A particle-number dependence of the two-body monopole terms
may arise as a result of an approximation of the monopoles of the realistic
interactions including a three-body force in the framework of the standard
SM [10]. Here we demonstrate that the N -dependence arises naturally from
the coupling between Q and P subspaces.
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On top of the average behavior, one can see an odd-even staggering
(OES) of Ecorr(N). The OES near the one-neutron drip line (see the curve

for E
(thr)
n = 0) is a characteristic feature of the T=1 continuum coupling. If

E
(thr)
n is calculated in SMEC for each nucleus separately, the OES is inverted

because E
(thr)
n in the odd-N nucleus is smaller than in even-N neighbors.
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Fig. 4. Similar as in Fig. 3 except for the neutron-rich fluorine isotopes. The

strength of the residual np-continuum coupling is V
(np)
0 = (1/2)V

(nn)
0 .

Figure 4 displays the neutron number dependence of Ecorr for the flu-
orine isotopes. Here, both nn- (T=1) and np- (T=0,1) couplings between
states in Q and P are active. The nn-coupling has been adjusted to the
oxygen isotope chain. The np-contribution to Ecorr dominates and, con-

trary to the nn-contribution, is independent of E
(thr)
n . This implies that the

change δV T=0
j1j2

∼ (V (np))2/V T=0
j1j2

of the T=0 matrix elements induced by np-
continuum coupling can be accounted for by a phenomenological adjustment
of the T=0 monopole terms in the SM interaction. Different N -dependence
of nn- and np-contributions to Ecorr has, however, an important implication

for the ratio V
(np)
0 /V

(nn)
0 , which gradually decreases when departing from

the valley of stability towards the neutron drip line.
The three curves shown in Fig. 4 can be directly compared with those

of Fig. 3. For E
(thr)
n = 4 MeV, one can see a strong OES which is absent

in the oxygen chain. Ecorr in odd-odd isotopes is increased as compared
to odd-even neighbors. Qualitatively, a similar effect can also be seen at
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the neutron drip line (E
(thr)
n = 0), but the np-coupling-induced OES is

now attenuated by the nn-coupling. For the values of E
(thr)
n calculated for

each nucleus, the OES is enhanced due to the combined effects of the np-

continuum coupling which weakly depends on E
(thr)
n , and the nn-continuum

coupling which closely follows the OES of E
(thr)
n . These two effects act ‘in

phase’, enhancing the binding of odd-N nuclei and strongly attenuating the
OES indicator:

∆(3)(N) =
(−1)N

2
[E(N + 1) − 2E(N) + E(N − 1)] . (3)

Fig. 5. The OES of binding energies (3) in fluorine isotopes calculated in SM

(dashed line) and SMEC with different ratios of np- and nn-continum-coupling

strengths: V
(np)
0 = (1/2)V

(nn)
0 (solid line) and V

(np)
0 = 2V

(nn)
0 (dotted line). The

dashed-dotted line with open diamonds shows SM results for the USD+KB
′

inter-

action without the modification of T=0,1 monopole terms. The filled dots with

error bars show experimental data [11].

Interestingly, ∆(3)(N) is very sensitive to the ratio V
(np)
0 /V

(nn)
0 . Figure 5

compares experimental values of ∆(3)(N) in the fluorine isotopes with those
calculated in SMEC and SM. It is seen that SM calculations systematically
overestimate the OES effect, in particular in nuclei close to the neutron
drip line. On the contrary, the agreement of SMEC calculations assuming

V
(np)
0 = (1/2)V

(nn)
0 with experimental data is excellent for neutron-rich

nuclei. A standard choice for nuclei close to the valley of stability, V
(np)
0 =

2V
(nn)
0 , is clearly excluded. Hence, the experimental data give an indication

of the reduction in the ratio V
(np)
0 /V

(nn)
0 in neutron-rich nuclei.
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3. Gamow Shell-Model

Recently, the multiconfigurational continuum shell model in the com-
plete Berggren basis, the so-called Gamow Shell Model (GSM), has been
formulated [12, 13]. The single-particle (s.p.) basis of GSM is given by the
Berggren ensemble [14] which contains Gamow (or resonant) states and the
(complex) non-resonant continuum. The resonant states are the generalized
eigenstates of the time-independent Schrödinger equation which are regular
at the origin and satisfy purely outgoing boundary conditions. They corre-
spond to the poles of the S-matrix in the complex energy plane lying on or
below the positive real axis. One may see here a two-subspace concept of
Feshbach reappearing, with the subspace QB consisting of resonant states
in the complex energy plane, and the subspace PB containing non-resonant
scattering states.

GSM is a natural generalization of the SM concept in the complex k-
plane for the description of open quantum systems: the number of particles
in the scattering continuum is not predetermined, but it results from a vari-
ational calculation in the Hilbert space spanned by all Slater determinants
in QB + PB . As such, it can be even applied to ‘super-Borromean’ sys-
tems, such as the chain of helium isotopes 4−8He, for which A-, (A−2)- and
(A−4)-nucleon systems are particle-stable but the intermediate (A−1)- and
(A−3)-systems are not. One should stress that GSM is a tool par excellence
for nuclear structure studies. The great advantage of GSM is its algorith-
mic simplicity and a similarity to the SM approach, which allows for fast
progress in numerical techniques of solving the many-body problem in the
continuum. Moreover, a formulation of the effective interaction theory in the
Berggren basis will allow us in the future to understand the modification of
the effective nucleon-nucleon interaction in weakly bound/unbound nuclear
systems. On the other hand, a description of many-body wave functions at
large distances, as needed in nuclear reaction studies, even though feasible
within GSM formalism, may be rather cumbersome. For that purpose, the
coupled-channel formalism used in SMEC to describe asymptotic channels
is far more accurate.

3.1. Completeness relation involving Gamow states

There exist several completeness relations involving resonant states [15].
The cornerstone of GSM is the Berggren completeness relation [14] :

∑
n

|un〉〈ũn| +

∫

L+

|uk〉〈ũk|dk = 1 , (4)

where |un〉 are the Gamow states (both bound states and the decaying reso-
nant states lying between the real k-axis and the complex contour L+) and
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|uk〉 are the scattering states on L+. For neutrons, l = 0 resonances do not
exist and, sometimes, one has to include the anti-bound l = 0 state in the
Berggren completeness relation [16, 17]. This implies a modification of the
complex contour L+, which has to enclose this pole. In the neighborhood
of a real-k axis, an l = 0 anti-bound state is strongly localized in the nu-
clear interior and plays an essential role in producing pairing correlations in
weakly bound systems [18].

Resonant states are normalized according to the squared radial wave
function and not to the modulus of the squared radial wave function. This
is a consequence of the analytical continuation which is used to introduce
the normalization of Gamow states. In practical applications, one has to
discretize the integral in (4). Such a discretized Berggren relation is formally
analogous to the standard completeness relation in a discrete basis of L2-
functions and, in the same way, leads to the eigenvalue problem H|Ψ〉 =
E|Ψ〉. However, as the formalism of Gamow states is non-hermitian, the
matrix H is complex symmetric. The discretized Berggren basis can be a
starting point for establishing the completeness relation in the many-body
case in full analogy with the standard SM in a complete (discrete) basis of
L2-functions. One obtains :

∑
n

|Ψn〉〈Ψ̃n| ≃ 1 , (5)

where |Ψn〉 ≡ |φ1 · · ·φN 〉 are the N -body Slater determinants, and |φm〉 are
the resonant (bound and decaying) and scattering (contour) s.p. states.
The approximate equality in Eq. (5) is a consequence of the continuum
discretization. As in the case of s.p. Gamow states, the normalization
of Gamow–Slater determinants is given by the squares of SM amplitudes:∑

n c2
n = 1 and not by the squares of their absolute values.

3.2. Determination of many-body bound and resonance states

In a standard SM, one often uses the Lanczos method to find the low-
energy eigenstates (bound states) in very large configuration spaces. A
straightforward application of this method for the determination of many-
body resonances is useless because of a continuum of surrounding many-body
scattering states, many of them having lower energy than the resonances. A
practical solution to this problem has been proposed in Ref. [12]:

• In the first step, one performs calculations in the pole approximation,
i.e., the Hamiltonian is diagonalized in a smaller basis consisting of s.p.
resonant states only. Here, some variant of the Lanczos method can
be applied. The diagonalization yields the first-order approximation to
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many-body resonances |Ψi〉
(0), where index i (i = 1, . . . , N) enumerates

all eigenvectors in the restricted space. These eigenvectors serve as
starting vectors (pivots) for the second step of the procedure.

• In the second step, one includes couplings to non-resonant continuum
states in the Lanczos subspace generated by |Ψj〉

(0) (j ∈ [1, . . . , N ]).

• Finally, one searches among the M solutions |Ψj;k〉, (k = 1, . . . ,M),

for the eigenvector which has the largest overlap with |Ψj〉
(0).

3.3. GSM study of helium isotopes

A description of neutron-rich helium isotopes, including Borromean nu-
clei 6,8He, is an exciting theoretical problem. The nucleus 4He is a well-
bound system with the one-neutron emission threshold at 20.58 MeV. On
the contrary, the nucleus 5He is a broad resonance. The nucleus 6He, which
consists of two neutrons outside 4He, is bound with the two-neutron emis-
sion threshold at 1.87 MeV. Again, 7He is a broad resonance (cf. Fig. 7) and
8He is bound even stronger than 6He.

In the GSM calculations, the s.p. configuration space includes both
resonances 0p3/2, 0p1/2 and the two associated complex continua p3/2 and
p1/2 which are discretized with 5 points each. At present, the main limita-
tion of GSM is the explosion of the number of s.p. configuration space, as
compared to the traditional SM. For each partial wave (l, j), one needs to in-
clude all the relevant Gamow states (bound, resonant or l = 0 anti-bound)
as well as the corresponding discretized continua represented by a set of
shells [(l, j)(c1), (l, j)(c2), · · · , (l, j)(cn)], where n is the number of points along
the discretized contour. To deal with this problem in GSM, one may de-
velop techniques borrowed from the Density Matrix Renormalization Group
method [19]. Obviously, these techniques have to be generalized for the
genuinely non-hermitian formalism of the GSM. The first attempts in this
direction have been made recently by Rotureau et al. [20] in the j-scheme
GSM.

Figure 6 shows the lowest energy states of helium isotopes calculated
with the surface delta interaction with the strength VSDI = 1670 MeV·fm3.
The 0p3/2, 0p1/2 s.p. resonances are generated by a Woods–Saxon (WS)
potential with the parameters chosen to reproduce experimental energies
and widths of the 3/2−1 and 1/2−1 resonances of 5He.

It is found that the non-resonant continuum contributions are always
essential and, in some cases (e.g., 8,9He), they dominate the structure of
the g.s. wave function. Moreover, the wave function components having
many neutrons in the non-resonant continuum give a large contribution to
the binding energy. While without the non-resonant (contour) states, the
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Fig. 6. Experimental (EXP) and calculated (GSM) binding energies of 6−9He as

well as energies of Jπ = 2+ states in 6He and 8He. The resonance widths are

indicated by shading. The energies are given with respect to the core of 4He.

predicted g.s. energy of 8He is predicted to be +2.08 MeV; the inclusion of
scattering states lowers the binding energy to −1.6 MeV. GSM calculations
reproduce the most important feature of 6,8He: the ground state is particle
bound despite the fact that all the basis states lie in the continuum. The
neutron separation energy anomaly, i.e., the increase of one-neutron sepa-
ration energy when going from 6He to 8He, is reproduced. This anomaly
is explained in GSM by a large contribution from non-resonant continuum
states.

The odd-N isotopes of 5,7,9He are calculated to be wide neutron res-
onances. In 5,7He, both g.s. (Iπ = 3/2−) and first-excited (Iπ = 1/2−)
resonance states have been studied experimentally. It is then interesting to
compare the experimental splitting of Iπ = 3/2− and 1/2− resonances in
5,7He with GSM results. Usually, the Iπ = 1/2− state in 7He was identified
with the structure found at the excitation energy E∗ ∼ 3 MeV [21]. All pre-
vious theoretical studies, including quantum Monte Carlo calculations [22],
conventional shell model [23,24], or resonating group model calculations [25],
predict at around this excitation energy the 1/2− state and agree qualita-
tively with these data. Recently, however, Meister et al. [26] have reported
in the relative energy spectrum in the 6He + n system a new resonance
(Iπ = 1/2−) at the excitation energy E∗ ∼ 0.6 MeV above the g.s. of
7He, in striking disagreement with all earlier theoretical studies. This new
data implies that the energy splitting of 3/2−1 and 1/2−1 resonances in 7He
is smaller than in 5He. Fig. 7 compares this energy splitting calculated in
GSM with the experimental data. The calculations are performed for dif-
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Fig. 7. Left: spectrum of 7He (from Ref. [26]). Right: The energy splitting of

Iπ = 3/2− (ground state) and Iπ = 1/2− (first-excited) resonance states in 5He

(dashed line) and 7He (solid line) calculated for different strength Vls of the WS

potential. The dotted line for 7He has been calculated in the pole approximation,

neglecting the contribution from the (contour) non-resonant continuum states.

ferent strengths Vls of the spin-orbit term in the WS potential generating
3/2−1 and 1/2−1 s.p. resonances in 5He. The strength of the surface delta
interaction is adjusted for each Vls to reproduce the binding energy of 6He
relative to 4He. With this input, the Iπ = 3/2−1 , 1/2−1 energy splitting in
7He is calculated in two ways : (i) in the pole approximation (the dotted
line), i.e., neglecting (contour) states of the non-resonant continuum, and
(ii) in the full GSM (solid line). The energy splitting is strongly diminished
by couplings to the non-resonant (p3/2, p1/2) continuum and the Iπ = 3/2−1 ,

1/2−1 splitting in 7He is reduced. Currently, we are carrying calculations with
finite-range residual interactions to check the robustness of this conclusion.

The few selected examples of CSM calculations presented in this work il-
lustrate new phenomena in discrete/continuum spectroscopy of exotic nuclei.
These phenomena appear due to the configuration mixing and couplings in
the space of discrete (bound, anti-bound, decaying) and non-resonant contin-
uum states. They also mark the emergence of a new paradigm of theoretical
nuclear physics near drip lines: the open quantum many-body system.
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