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A very accurate knowledge of the fission barrier shapes is necessary to
predict the spontaneous fission life times of nuclei. Using the Strutinsky
macroscopic–microscopic method we have performed calculations of the
potential energy for even–even transuranic nuclei. The shell and pairing
corrections are evaluated using the single-particle energies of the relativistic
Woods–Saxon potential [1]. The microscopic corrections are added to the
macroscopic energy obtained with the Lublin Strasburg Drop (LSD) model
[2] to obtain the total potential energy in the multidimensional space of
deformation parameters.

PACS numbers: 21.30.Fe, 21.60.–n, 71.10.Li

1. Introduction

The potential energy of a nucleus in the macroscopic–microscopic method
is given by the sum

Etot(Z,N ; def) = ELSD(Z,N ; def) + Emicr(Z,N ; def) , (1)

in our approach the macroscopic term is represented by the Lublin Stras-
bourg Drop (LSD) formula, Ref. [2], which reproduces the masses of 2766
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nuclei with the mean square deviation of 0.698 MeV when the deformation,
shell and pairing corrections of Ref. [3] are included. It is interesting to
examine the influence of the new liquid drop model and the single particle
level scheme, obtained by the diagonalisation of the new relativistic Woods
Saxon Hamiltonian, Ref. [1] and the exact treatment of the pairing force on
the potential energy surfaces necessary to calculate the spontaneous fission
half-lifes of nuclei. The LSD macroscopic energy is

ELSD = ZMH + NMn − 0.00001433Z2.39 − bvol(1 − κvolI
2)A

+bsurf(1 − κsurfI
2)A2/3Bsurf(def)

+bcurv(1 − κcurvI
2)A1/3Bcurv(def)

+
3

5
e2 Z2

rch
0

A1/3
BCoul(def) − C4

Z2

A
− 10 exp

(

−42
|I|
10

)

, (2)

where the parameters are

bvol = 15.4920 MeV , κvol = 1.8601,

bsurf = 16.9707 MeV , κsurf = 2.2938,

bcurv = 3.8602 MeV , κcurv = −2.3764,

r0 = 1.21725 fm , C4 = 0.91810 MeV .

The surface, curvature and Coulomb terms depend on the deformation.
We have chosen the standard description of the nuclear shapes

R(θ, φ) = R0c({αλ,µ})
(

1 +

λmax
∑

λ=2

λ
∑

µ=−λ

αλ,µYλ,µ(θ, φ)

)

, (3)

where Yλ,µ are the spherical harmonics and c({αλµ}) ensures the volume
conservation condition. The surface term contains the function

Bsurf(def) =
S(def)

S(0)
, (4)

where the surface of a deformed nucleus is

S(def) =

2π
∫

0

π
∫

0

dθdφ R(θ, φ)
√

[R2

θ(θ, φ) + R2(θ, φ)] sin2 θ + R2

φ(θ, φ) ; (5)

Rφ and Rθ are the partial derivatives of R. In the curvature term we have

Bcurv(def) =
C(def)

C(0)
, (6)
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where the average-curvature term is

C(def) =
1

2

2π
∫

0

π
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√

[R2
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×
( 1

R1(θ, φ)
+

1

R2(θ, φ)

)

, (7)

and where R1 and R2 are the principal curvature radii. Obviously the
Coulomb energy depends also on the nuclear shape; we write in a standard
way

BCoul(def) =
ECoul(def)

ECoul(0)
, (8)

where

ECoul(def) =
1

2

∫
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[(~r − ~r ′) · ~dS][(~r − ~r ′ ) · ~dS
′

]

|~r − ~r ′|
, (9)

ρ are the charge density distributions, ρ0 the uniform one.
The microscopic part of (1) consists of the shell and pairing energies.

The shell corrections are calculated within the Strutinsky method [4]. The
pairing energy consists of the BCS [5] energy, projection correction and the
average pairing terms. The parameters of these expressions are optimised
using the single particle levels scheme of Woods–Saxon Hamiltonian.

In order to see better the role of different multipolarities on the barrier
heights, we have performed the minimization of the potential energy with
respect to the three different sets of deformation parameters: {α20, α22, α40},
{α20, α22, α40, α42, α44} and {α20, α40, α60}. Here we focus on the compari-
son between the first two sets only. In Fig. 1, the 250Cf path to fission found
by minimization of the total energy with respect to {α20, α22, α40, α42, α44}
is drawn (solid line) and compared with the path to fission obtained in
{α20, α22, α40} space of deformation parameters (dashed line). In this par-
ticular nucleus the quadrupole non-axialities remain small (in comparison
with γ = 0 dotted line), but this is by far not a general rule; this effect
combined with the coupling to the hexadecapole non-axialities (α42) will be
discussed in detail elsewhere.

The (x, y)-coordinates are connected with {α20, α22} by the expressions

x = β cos(γ + 30◦) , y = β sin(γ + 30◦) , (10)
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Fig. 1. Path to fission found by minimization of the total energy with respect to
{α20, α22, α40, α42, α44} (solid line) and {α20, α22, α40} (dashed line) for 250Cf; for
reference also γ = 0 line (stright dotted line) is drawn.
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Fig. 2. Macroscopic energy obtained along the fission path with the sets of
deformation parameters {α20, α22, α40, α42, α44} (solid line) and {α20, α22, α40}
(dashed line), compared with the LSD model, minimal macroscopic energy Emin

LSD

{α20, α22, α40, α42, α44} (dotted line), crosses denote the x grid points.

where

α20 = β cos(γ) and α22 =
1√
2
β sin(γ) . (11)

In Fig. 2 the macroscopic LSD energy of 250Cf is drawn along the two non-
axial paths to fission. In Fig. 3 the microscopic energies of 250Cf along the
path to fission found with (solid line) and without (dashed line) nonaxial
degrees of freedom are drawn.

In Fig. 4 the total energy minus ELSD(0) of 250Cf along the both paths
to fission is shown.
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Fig. 3. Comparison of the microscopic energy obtained along fission path with
deformation parameters {α20, α22, α40, α42, α44} (solid line) and {α20, α22, α40}
(dashed line).
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Fig. 4. Total energy relative to the spherical LSD energy obtained along the fission
path in the space of the deformation parameters {α20, α22, α40, α42, α44} (solid line)
and {α20, α22, α40} (dashed line).

In conclusion: We have presented the multi-dimensional deformation-
space calculation results using a single nucleus as an example; the influence
of the higher order multipolarities is less visible in terms of comparison of
the energy or deformation curves but has a definite influence on the life-
times. On this level of comparisons also the choice of the more modern
mean-field parametrisations such as e.g. Dirac Woods–Saxon starts playing
a non-negligible role. More systematic results will be presented elsewhere.
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In particular, the LSD model which includes the effects of the mean-
curvature energy influences the final results as expected especially at the
highest elongations. For the heavy nuclei this influence is numerically small
but systematic and not at all negligible.

Our calculations represent a certain step towards a more precise way
to calculate the fission probabilities by taking into account the degrees of
freedom that have been usually neglected. Whether such an improvement
will be possible without a detailed extension of the formalism to include the
new degrees of freedom in the mass parameters is not quite clear at present.
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