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The unified description of nuclear structure and nuclear reaction aspects
allows to calculate, in a consistent manner, the spectroscopic values of the
nucleus that is treated as an open quantum system. The Ek, Γk follow from
the energy dependent eigenvalues Ẽk − i/2 Γ̃k of the effective Hamiltonian
H describing the nucleus embedded in the continuum of decay channels.
The coupling matrix elements γ̃kc between the resonance states k and the
decay channels c are calculated by means of the eigenfunctions of H. They
are complex and energy dependent. The S matrix contains the Ẽk, Γ̃k

and γ̃kc. The R matrix can therefore be generalized in a natural manner
by replacing the standard spectroscopic parameters ER

k
, Γ R

k
and γR

kc
by

the energy dependent functions Ẽk, Γ̃k and γ̃kc. This new version of R
matrix allows the extraction of spectroscopic information also from nuclear
reactions near decay thresholds and in the regime of high level density
where narrow resonances appear together with broad ones. Surface effects
play a role similar as in the standard theory.

PACS numbers: 21.30.–x, 24.30.–v, 32.80.Bx, 66.35.+a

1. Introduction

In standard nuclear reaction calculations, the nuclear structure aspects
are implemented into the S matrix by using the R matrix formalism. Ac-
cording to the standard work [1] on R matrix theory of nuclear reactions, its
essential feature is the occurence of a complete set of many-particle states
defined in a volume of nuclear size by the imposition of some fixed bound-
ary condition on the surface of this volume. That means, the R matrix
theory specifies the form of the wave functions on the surface of the nucleus.
Since the S matrix specifies their form at infinity, a connection between the
two matrices has to be established by joining these regions. The process
of joining introduces into the R matrix theory reference to external wave
functions [1].
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The standard studies for decaying states are performed in the following
manner. First, the Hermitian Hamiltonian H = H0+V of the nucleus inside
a volume of nuclear size with appropriate shape of the surface is diagonalized
and its (real) eigenvalues and eigenfunctions are identified with the energies
E0

k and wave functions Φ0
k of the different discrete states k of the nucleus. In a

second step, the spectroscopic factors Sc
k are calculated which transform the

wave functions into their channel representation, ΦA
k = Φ

(A−a)
k ⊗ Φa

k, where
c ≡ (A− a)⊕ a is the channel. The link between the interior of the nucleus
and its environment (continuum of decay channels) is then established by the
penetration factor Pc that is calculated on the nuclear surface. It translates
(Φa

k)bound to (Φa
c )unbound. Using these values, the partial widths can be

calculated: |γR
kc|2 = Sc

k ⊗ Pc. Finally, by summing up these values for all
open decay channels c, the decay widths are obtained: Γ R

k = Σc|γR
kc|2.

The procedure, sketched here, is used very successfully in very many
calculations for nuclear reactions, especially on light nuclei where the level
density is small. The ingredients γR

kc, E0
k , ΓR

k from R matrix calculations
are installed into the S matrix for nuclear reactions the standard view of
which is

Scc′ = 1 − i
∑

k

γR
kc γR

kc′

E − E0
k + i

2ΓR
k

(1)

(up to a phase factor and the direct reaction part). The values γR
kc, E0

k , ΓR
k

are, by definition, energy independent parameters [2].
The shortcomings of this standard R matrix calculations are the follow-

ing: there is no feedback from the continuum onto the nuclear structure,
the influence of decay thresholds is taken into account only by some correc-
tion terms introduced in the S matrix, and the interaction of the resonance
states via the continuum is not considered. These shortcomings are impor-
tant, respectively, near decay thresholds and at high level density where the
resonance states overlap.

In the following, we sketch the formalism of the unified description of
nuclear structure and nuclear reaction aspects (see the recent review [3]). It
provides an extended version of the R matrix theory in which the energy
independent parameters γR

kc, E0
k , ΓR

k are replaced by the energy dependent

functions γ̃kc, Ẽk, Γ̃k that can be calculated in the framework of the theory.
By using these ingredients, the S matrix is able to overcome the shortcom-
ings mentioned above. It describes consistently the cross section near decay
thresholds as well as nuclear reactions in the regime of high level density
where narrow resonances appear together with broad ones. A model re-
cently developed for the description of resonance states in nuclei is the Shell
model embedded in the continuum [4].
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2. The effective Hamiltonian in the subspace of discrete states

In deriving the solution of the Schrödinger equation in the whole function
space, we follow Feshbach [5]. Let be H full the Hamiltonian defined in the
full function space with discrete as well as continuous wave functions. Then
the Schrödinger equation reads

(H full − E)Ψ c
E = 0 ; H full = HQQ + HQP + HPQ + HPP (2)

and H full is Hermitian. We define two projection operators:

Q =
∑

k

|Φ0
k〉〈Φ0

k| ; (HQQ − E0
k)Φ0

k = 0 (3)

projects onto the subspace of discrete states [interior of the nucleus: HQQ =
(H0 + V )QQ], and

P =
∑

c

ǫ′c∫

ǫc

dE |ξc(+)
E 〉〈ξc(+)

E | ; (HPP − E) ξ
c(+)
E = 0 (4)

projects onto the subspace of scattering states [continuum: HPP = (H0 +
V )PP ]. The coupling matrix elements between the two subspaces are

γ0
kc =

√
2π 〈Φ0

k|HQP |ξc(+)
E 〉 . (5)

The assumption Q + P = 1 means that the Ψ c
E contain everything.

After rewriting (2), one gets an effective Hamiltonian in the Q subspace,

H = HQQ + HQP G
(+)
P HPQ , (6)

that is non-Hermitian. Its eigenvalues and eigenfunctions are complex,
H Φ̃k = Ẽk Φ̃k ≡ (Ẽk − i

2 Γ̃k) Φ̃k, for details see the recent review [3]. The
matrix elements of H are

〈Φ0
k|H|Φ0

l 〉 = 〈Φ0
k|HQQ|Φ0

l 〉 + Wkl ,

Wkl ≡
Λ∑

c=1

P
∞∫

ǫc

dE′ γ0
kcγ

0
lc

E − E′
− i

2

Λ∑
c=1

γ0
kcγ

0
lc (7)

with the coupling matrix elements γ0
kc between discrete states and scattering

states. One may call W the external interaction appearing additionally to
the internal interaction V involved in HQQ = (H0 + V )QQ. The internal
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interaction is real while the external one is complex. Since γ0
kcγ

0
lc is real, we

have :

Re {〈Φ0
k|H|Φ0

l 〉} = 〈Φ0
k|HQQ|Φ0

l 〉 +

Λ∑
c=1

P
∞∫

ǫc

dE′ γ0
kcγ

0
lc

E − E′
, (8)

and

Im {〈Φ0
k|H|Φ0

l 〉} = Im (Wkl) = −1

2

Λ∑
c=1

γ0
kcγ

0
lc . (9)

The principal value integral in Re (Wkl) (second part of the rhs of Eq. (8))
does not vanish, in general. It creates energy shifts of the states, while
Im (Wkl) in Eq. (9) is related to the widths of the states.

The wave functions of the resonance states, Ω̃k = (1 + G
(+)
P HPQ) Φ̃k ,

are related to the eigenfunctions of H, while the energies Ẽk and widths Γ̃k

of the resonance states are given by the eigenvalues Ẽk, see Section 3. The
coupling matrix elements between resonance states and continuum are

γ̃kc =
√

2π 〈Φ̃∗
k|HQP |ξc

E〉 =
√

2π 〈Ω̃∗
k|HQP |χc

E〉 . (10)

The Φ̃k, Ẽk, Γ̃k and γ̃kc are energy dependent functions that differ from the
spectroscopic values (parameters): Φ̃k 6= Φ0

k ; Ẽk 6= E0
k ; γ̃kc 6= γ0

kc ; Γ̃k ≤∑
c |γ̃kc|2 . Using (6) to (10), the expression for the total wave function Ψ c

E,
that is solution of (2), as well as the S matrix can be derived,

Scc′ = 1 − i

N∑
k=1

γ̃kc′ γ̃kc

E − Ẽk + i
2 Γ̃k

(11)

(up to a phase factor and the direct reaction part) [3]. Equation (11) coin-
cides formally with (1). The spectroscopic ingredients are, however, different
from one another in the two cases.

The basic property of a non-Hermitian operator is that its left and right
eigenfunctions, Φ̃lt

k and Φ̃rt
k , are different from one another. Since the Hamil-

tonian H is symmetric, it is 〈Φ̃∗
k|H = 〈Φ̃∗

k| Ẽk and H |Φ̃k〉 = Ẽk |Φ̃k〉, and

therefore Φ̃lt
k = Φ̃rt ∗

k ≡ Φ̃∗
k . The eigenfunctions of H can be orthonormalized

according to

〈Φ̃lt
k |Φ̃rt

l 〉 = 〈Φ̃∗
k|Φ̃l〉 = δkl (12)

with the consequence that

Ak ≡ 〈Φ̃k|Φ̃k〉 ≥ 1 ; Bl 6=k
l ≡ |〈Φ̃k|Φ̃l 6=k〉| ≥ 0 , (13)
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where 〈Φ̃k|Φ̃k〉 = Re (〈Φ̃k|Φ̃k〉); 〈Φ̃k|Φ̃l 6=k〉 = i Im (〈Φ̃k|Φ̃l 6=k〉) = −〈Φ̃l 6=k|Φ̃k〉 .
The orthonormalization relations (12) hold true also at a branch point in the

complex plane where two eigenvalues Ẽk and Ẽl 6=k of the effective Hamiltonian

coalesce. Here, the bi-orthogonality relations (13) read |〈Φ̃k|Φ̃k〉| → ∞ and

|〈Φ̃k|Φ̃l 6=k〉| → ∞. Furthermore Φ̃k → ± i Φ̃l 6=k in approaching the branch
point [3, 6].

3. Spectroscopic information on resonance states

The non-Hermiticity of the Hamiltonian H, being effective in the Q sub-
space, has some consequences for spectroscopic studies of resonance states.
In any case, the energies Ek and widths Γk follow from the eigenvalues Ẽk of
H, and the coupling coefficients γ̃kc are calculated by means of its eigenfunc-
tions Φ̃k. Since the Ẽk are energy-dependent functions, the values Ek and
Γk are defined as the solutions of the fixed-point equations, see the following
equations (14) to (17).

For isolated resonance states, we have Ak → 1 and

Ek = Ẽk(E = Ek) ≈ E0
k . (14)

The widths and their relation to the partial widths are

Γk = Γ̃k (E = Ek) ,

Γ̃k =

∑
c |γ̃kc|2
Ai

≈
∑

c

|γ̃kc|2 ≈
∑

c

|γ0
kc|2 ≈

∑
c

|γR
kc|2 = ΓR

k . (15)

These relations agree with the standard ones.
For overlapping resonance states, it is Ak > 1 and

Ek = Ẽk (E = Ek) = E0
k + ∆Ek . (16)

The shifts ∆Ek are usually different from zero. The widths are

Γk = Γ̃k (E = Ek) , (17)

and the partial widths lose their physical meaning,

Γ̃k =

∑
c |γ̃kc|2
Ak

≤
∑

c

|γ̃kc|2 . (18)

The relations (16) to (18) show the differences to the standard relations at
high level density. They can be obtained quantitatively in numerical studies.

Let us now write the Hamiltonian (6) as

H = H′ − iπṼ †Ṽ ; H′ = HQQ + Re{HQP G
(+)
P HPQ} (19)

compare Eq. (8). Then, we have the following scenarios.
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(i) Small imaginary part of the coupling strength between system and
channels: most important part of H is H′ that is a matrix of rank N
(number of states). The interaction between every two states contains
the internal interaction V (contained in HQQ) and the real part of the
coupling via the continuum. It is considered mostly as an effective
residual interaction.

(ii) Large imaginary part of the coupling strength between system and
channels: the states of the system are strongly changed by the coupling
to the channels. They can no longer be described by an effective real
interaction strength in the Hamiltonian. Most important part of H is
Ṽ †Ṽ that is a matrix of rank K (number of open decay channels).

(iii) Intermediate coupling regime: with increasing coupling strength be-
tween system and channels, N–K resonance states decouple from the
channels while a few of them (K) align with the K decay channels.
The transition between the two limiting cases (i) and (ii) depends
strongly on the individual values of the coupling matrix elements γ̃kc

according to (19).

Thus in the S matrix formalism with use of the effective Hamiltonian H,
the resonance states are characterized by the energy dependent eigenval-
ues Ẽk and eigenfunctions Φ̃k of the effective Hamiltonian H. Furthermore,
the spectroscopic values Ek and Γk are clearly defined since the effective
Hamiltonian H describes the open quantum system in a unique manner.

In the S matrix theory, the spectroscopic values of a resonance state
are defined usually by means of the poles of the S matrix. This (standard)
definition of the spectroscopic values from reactions is not a direct one since
the poles of the S matrix give information on the resonances, but not on
the spectroscopic properties of the resonance states. The S matrix has a
pole only when the energy is continued into the complex plane. One should
remind however that the S matrix describing physical processes is defined
for real energies E, and |S|2 ≤ 1. It is not surprising therefore that the two
definitions (by using, respectively, the effective Hamiltonian and the poles
of the S matrix) do not coincide completely.

It may happen that Ek = El and Γk = Γl for two different states k
and l, i.e. that two eigenvalues coalesce at a certain point in the complex
plane. Such a point is a branch point in the complex plane [7,8]. It might be
considered as the analogue of a double pole of the S matrix. However, the
coalescence of two eigenvalues at E = Ek = El does not mean that also the
poles exactly coalesce. This shows once more that poles and double poles of
the S matrix characterize the spectroscopic values of resonance states only
approximately. Using the formalism of the effective Hamiltonian with its
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eigenvalues and eigenfunctions, redundantizes the search for the poles of the
S matrix.

This statement corresponds fully to the idea of the R matrix theory.
However, the corrections arising from the coupling of the states via the
continuum have to be taken into account in a straightforward manner. They
cannot be neglected in the neighbourhood of decay thresholds and at high
level density. In any case the S matrix is, at a certain energy E, determined
by Ẽk(E) and Γ̃k(E) as well as by the eigenfunctions Φ̃k(E) by means of
which the coupling matrix elements γ̃kc(E) are calculated according to (10).

The Ẽk(E), Γ̃k(E) and γ̃kc(E) at a certain energy E may be very different
from the values Ek, Γk and γ̃kc(Ek).

4. Level repulsion and level attraction: some examples

It is difficult (or impossible) to trace the eigenvalues of the effective
Hamiltonian H for the open nuclear system in present experiments as a
function of an external parameter. Moreover, the residual interaction be-
tween nucleons in nuclei cannot be derived from first principles for realistic
nuclei. In theory, one is therefore obliged to work with parameters. These
parameters are obtained by a fit to many different nuclear states. Prac-
tically, H′ in (19) is fitted but not H. The description received in such
a manner gives reliable spectroscopic information for stable nuclei and for
nuclear states at low level density.

The situation for other open quantum systems is better than for nuclei
in the sense that the interaction between the substituents of the system is
smaller so that the behaviour of the resonance states can be controlled by
means of external parameters. In the following, a few examples for physical
effects will be shown. They will illustrate the influence of the correction term
in H onto the spectroscopic information that can be obtained by analyzing
experimental reaction data. The results will give some hint for the analogue
situation in nuclei since most of the corrections are generic [3].

Level repulsion is a phenomenon well known in the spectroscopy of dis-
crete states. It appears also in the spectroscopy of resonance states [8]. Here,
it is caused by the real part of the interaction, Eq. (8), between every two
states. The imaginary part of the interaction via the continuum, Eq. (9),
causes level attraction that is seldom discussed in theoretical studies. The
interplay between level repulsion and level attraction is a characteristic fea-
ture of the spectroscopic properties of resonance states. It causes the phe-
nomenon of resonance trapping [9], i.e. the decoupling of some resonance
states from the continuum of decay channels at strong coupling strength.
This phenomenon appears in different quantum systems at high level den-
sity, e.g., in atoms [10], molecules [11], quantum dots [6, 12].
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For illustration, in Fig. 1 [13] the motion of the eigenvalues of a rectan-
gular quantum billiard is shown by varying the degree of coupling strength
to an attached lead. The picture shows the sensitivity of the position of the
eigenvalues and of the trapping process to a variation of the shape xr ×yd of
the billiard: the length yd is only slightly larger in the left part of the figure
than in the right one.

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

 
 
 

 
 

E
R

Γ R
/2

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

 
 
 

 
 

E
R

Γ R
/2

Fig. 1. Eigenvalue picture: motion of the eigenvalues of the effective Hamiltonian
(solutions of the fixed-point equations) of a rectangular xr × yd quantum billiard
with an attached lead in dependence on increasing opening (w = 0.4 : 0.01 : 0) for
xr = 1.5, yd = 3.34 (left) and yd = 3.28 (right). xr, yd and w are given in units of
maximum opening 1 − w = 1 [13].

Another example is the eigenvalue picture for two atomic states under
the influence of the coupling to a laser field (Fig. 2) [10]. Level repulsion
occurs when ΩR ≫ Ωc, and level attraction when ΩR ≪ Ωc (where ΩR and
Ωi are the real and imaginary parts of the Rabi frequency). The motion
of the eigenvalues reflects itself in the corresponding photoionozation cross
sections in the vicinity of the autoionozing state 2 as a function of the probe
field frequency: a narrow structure can be seen in the cross section when
ΩR ≪ Ωc while two separated structures appear due to level repulsion when
ΩR ≫ Ωc [10].

When Q = 0, laser induced degenerate states appear at a certain critical
value Icr of the laser intensity. At this laser intensity, two eigenvalues of
the effective Hamiltonian coalesce. The corresponding point in the complex
plane is a branch point. It separates the region with avoided level crossing
in the complex plane from that without any crossing [6, 8].

Moreover, due to the resonance trapping phenomenon, collective modes
can be generated in open quantum systems. An example are the whispering
gallery modes that emerge in, e.g., quantum billiards with convex shape
when the leads are attached in a suitable manner [14]. The trapped states
are well described by random matrix theory while the collective ones are
regular modes [15].
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Fig. 2. The trajectories of the complex energies E± = E± − i

2
Γ± of the states 1

and 2, obtained by varying the strong field intensity. Full line: Q = 0, broken:
Q = 0.5, dashed: Q = 1, dotted: Q = 5, and chain: Q = 25. Strong field frequency
detuning ∆ = Γ2. Every value of E± corresponding to a variation of the intensity
in steps of γ1∆I = 0.5Γ2 (for Q = 0, 0.5, 1), in steps of γ1∆I = 0.25Γ2 for Q = 5,
and in steps of γ1∆I = 0.01Γ2 for Q = 25 is marked by a symbol. The density of
the symbols indicates the velocity with which E± moves as a function of I [10].

Resonance trapping has been proven directly by analyzing experimental
data obtained from a quantum billiard to which a lead has been attached.
The eigenvalue pictures as a function of the degree of opening to the lead
show clearly the resonance trapping phenomenon [16]. In nuclear physics,
resonance trapping cannot be proven directly since a control of the nucleus by
means of an external parameter is, at least today, impossible. Nevertheless,
hints exist. An example is the careful analysis of different reaction data on
nuclei of the 2s − 1d shell. The experimentalists drew the conclusion from
this analysis that the interplay of various reaction time scales cannot be
neglected [17].

Another interesting effect that can be seen in Fig. 2, is the appearance of
population trapping defined by Γ− = 0 since it occurs at a finite value of the
intensity I of the laser field. Population trapping can be seen as a zero in the
cross section at the energy of the state 2: although the level is populated,
it does not decay due to Γ− = 0. Fig. 2 nicely illustrates that population
trapping is caused by the interplay between direct (internal) mixing of the
two states and their mixing via the continuum (external mixing). Resonance
states with vanishing decay width appear also in quantum dots [6].

Thus, zeros in the cross section may appear not only due to interfer-
ences between resonance states and background, but also as a consequence
of the resonance trapping phenomenon. The first case is the well-known
interference zero of Fano resonances, while the second case follows from the
interplay between internal and external mixing of resonance states as shown
above. For further details see [10, 18].
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The results discussed above remain true also when the quantum system
is embedded in more than one continuum. An example is the transmission
through quantum dots with, at least, two different continua. Also in such
a case, resonance trapping is observed [12]. Even resonance states with
vanishing decay width appear [6]. Surface effects can be seen best in double
quantum dots that consist of two single dots coupled by an internal wire
of length L [6]. The coupling matrix elements between double dot and
leads contain the wave functions at the surface of the double quantum dot
system [12]. Transmission zeros appear at energies that are determined by
the spectrocopic properties of the single quantum dots. An example is shown
in Fig. 3. The transmission zero at E = 5/12 is a sharp dip in a region with
maximum transmission. This surface effect is a third source for zeros in the
cross section. For details see [6].
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Fig. 3. Transmission through a double quantum dot. The coupling strengths of
the single dots to the internal wire are t = 0.25 and those to the external leads
are v = 0.5. The energies of the right and left single dots are Er

1
= 1/3, Er

2
=

1, El
1

= 1/3, El
2

= 1/2. The length of the internal wire is L. The positions of
the eigenvalues of the double quantum dot depend on L while the transmission
zeros are at Er

0
= 2/3 and El

0
= 5/12 for all L. The mode inside the wire moves

according to E = 1 − L/8.
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In the calculations for quantum dots the P subspace consists of two or
even more parts with VPkPl6=k

= 0. This is, maybe, an important anologue
to the problems arising in calculations for nuclei with low-lying α decay
thresholds. It means that there can be, e.g., a subspace for nucleon channels
and another one for α particle channels which are coupled only via the Q
subspace [19]. Furthermore, the coupling matrix elements VQP and VPQ

embody surface effects. This property, characteristic of the R matrix theory,
is important especially for systems without spherical symmetry, as has been
shown by means of numerical results for double quantum dots.

These (and other) examples show that the resonance trapping phenome-
non is a generic property of resonance states at high level density. It can be
seen in all open quantum systems. In contrast to this result, it is assumed
usually in the standard R matrix theory, that the levels broaden uniformly
when the coupling strength of the system to the continuum is enlarged. Un-
der such an assumption, different time scales will not be formed by opening
the quantum system.

Level broadening is determined by the non-diagonal coupling matrix el-
ements Wkl of the effective Hmiltonian H, Eqs. (7) to (9). Since they
are different from one another for the different states k, l, uniform level
broadening can happen under special conditions only. The general sce-
nario is resonance trapping corresponding to non-uniform level broadening,∑N

k=1 Γ̃k(a) ≈ ∑M
k=1 Γ̃k(a) ;

∑N
k=M+1 Γ̃k(a) ≈ 0 . In the cross section, level

repulsion as well as level attraction occur. Level repulsion is considered usu-
ally in the standard R matrix theory by means of the effective Hamiltonian
H′, Eq. (19), while level attraction is not involved in it.

5. Summary

Summarizing, it can be stated the following.

(i) The effective Hamiltonian H reflects the spectral properties of the
closed system as well as the coupling to the environment. In the over-
lapping regime, complex non-diagonal matrix elements of H arise from
the interaction of the different resonance states via the continuum.

(ii) The eigenvalues of H determine, to a great deal, the resonance features
of reactions. They are complex and energy dependent. The positions
of the resonance states are shifted, generally, relative to those of the
(discrete) states of the closed system. The widths of all states increase
with increasing coupling strength to the continuum only at small cou-
pling strength. At large coupling strength, however, the level broad-
ening takes place non-uniformly: the widths of most states decrease
with increasing coupling strength to the continuum while only a few
ones increase.
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(iii) The coupling matrix elements γ̃kc in the pole representation (11) of
the S matrix are calculated by means of the eigenfunctions of H and
those of the environment, see Eqs. (10) and (11). They are, as a rule,
energy dependent and differ from the γ0

kc, Eq. (5), calculated in the
standard R matrix theory by means of the eigenfunctions of HQQ. The

sum
∑

c γ̃kc is, generally, different from Γ̃k due to the biorthogonality

of the eigenfunctions of H: Γ̃k ≤ ∑
c γ̃kc.

The results show that an extended version of the R matrix theory can be
obtained by replacing the Hermitian Hamiltonian HQQ = (H0 + V )QQ (or
the effective Hermitian Hamiltonian H′) by the non-Hermitian Hamiltonian

H = (H0 + V )QQ + VQP G
(+)
P VPQ = H′ + Im{VQP G

(+)
P VPQ} ,

see Eqs. (7) up to (9) and (19). The part VQP G
(+)
P VPQ of H (above all

its non-Hermitian part Im{VQP G
(+)
P VPQ}) contains the feedback from the

continuum of decay channels onto the nuclear structure. With a small imag-
inary part of the coupling strength to the continuum, H ≈ H′, one gets the
standard R matrix theory with the effective Hermitian Hamiltonian H′ (or
sometines even the original Hermitian Hamiltonian HQQ). This means: the
extended version of the R matrix theory is a natural further development of
the standard R matrix theory. The imaginary part of the coupling to the
continuum causes, however, physically new results such as resonance trap-
ping. This phenomenon occurs in atoms, molecules, quantum dots, nuclei
and other open quantum systems.
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