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We develop the realistic continuum shell model which includes the cou-
pling between many-particle (quasi-)bound states and the continuum of
one- and two-particle scattering states. This microscopic approach is ap-
plied to the description of the two-proton radioactivity from the excited
state 1−2 in 18Ne.
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1. Introduction

Nuclear decays with three fragments in the final state are very exotic
processes. The diproton radioactivity, predicted by Goldansky [1] and called
by him the “true three-body decay”, can occur for even-Z nuclei beyond a
proton drip line. If the sequential decay is energetically forbidden due to
the pairing energy, a simultaneous two-proton (2p) decay becomes the only
possible decay branch. In spite of long lasting experimental efforts [2], no
fully convincing finding has been reported (see however recent data on 2p
radioactivity of 45Fe [3]). In light nuclei, it happens often that there are
broad intermediate states in the nucleus A−1(Z − 1) available to the one-
proton (1p) decay which yield a combination of sequential and direct modes
for the 2p decay. Recently, the 2p decay from 1−2 state at 6.15 MeV in 18Ne
to the ground state (g.s.) of 16O has been observed [4]. Since there are no

∗ Presented at the XXVIII Mazurian Lakes School of Physics, Krzyże, Poland,
August 31–September 7, 2003.

(1283)



1284 J. Rotureau, J. Okołowicz, M. Płoszajczak

intermediate states in 17F available for a one-proton decay, this case was
advocated as a candidate for the diproton decay. In the following, we shall
present an analysis of this decay using a new microscopic approach which
takes into account the configuration mixing and uses the S-matrix formalism
to calculate the asymptotic states [5].

2. Shell Model Embedded in the Continuum

Our approach extends the Shell Model Embedded in the Continuum
(SMEC) [5, 6] for the description of 2p decay. The Hilbert space is divided
in three subspaces: Q, P and T . In Q subspace, A nucleons are distributed
over (quasi-)bound single-particle (qbsp) orbits. In P , one nucleon is in the
non-resonant continuum and A − 1 nucleons occupy qbsp orbits. In T , two
nucleons are in the non-resonant continuum and (A− 2) are in qbsp orbits.
The coupling between Q, P and T subspaces changes the ‘unperturbed’
Hamiltonian in Q into the effective Hamiltonian:

H
(eff)
QQ = HQQ + HQTG+

T (E)HTQ

+
[

HQP +HQTG+
T (E)HTP

]

G̃
(+)
P (E)

[

HPQ+HPTG
(+)
T (E)HTQ

]

,

(1)

where

G̃
(+)
P (E) =

[

E − HPP − HPTG
(+)
T (E)HTP

]

−1

is the Green’s function in P modified by the coupling to T , and

G
(+)
T (E) = [E − HTT ]−1

is the Green’s function in T . In the above equations, HPP , HTT are the
unperturbed Hamiltonians in P , T subspaces, respectively, and HQP , HPQ,
HPT , HTP are the corresponding coupling terms between Q, P , and T sub-
spaces. The second term on the r.h.s of Eq. (1) describes a ‘pure’ diproton
emission, and the third term describes the modification due to the mixing of
sequential 2p, diproton and 1p decay modes. In the following, we shall dis-
cuss separately two limits of a general process (1): (i) HTQ = HQT = 0, and
(ii) HTP = HPT = 0, which correspond to pure sequential and pure dipro-
ton decays, respectively. In both limits, the interference with one-proton
emission is included through the mixing of SM wave functions in Q.
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Fig. 1. Two-proton decay pattern scheme from 1−2 state of 18Ne.

2.1. Sequential emission

We consider 2p decay mode from 1−2 state in 18Ne at the excitation
energy 6.15 MeV. Since there are no intermediates resonance states in 17F,
the only possible sequential process is through the ‘resonant halo’ of bound
states [5]: the g.s. 5/2+

1 and the weakly bound (Sp ∼ 105 keV) first excited
state 1/2+

1 of 17F. The effective Hamiltonian in Q for this process reads:

H
(eff)
QQ = HQQ + HQP G+

P (E)HPQ

+HQP G̃
(+)
P (E)HPT G

(+)
T (E)HTP G

(+)
P (E)HPQ , (2)

where
G

(+)
P (E) = [E − HPP ]−1

is the unperturbed Green’s function in P . To obtain (2), one neglects HQT

and HTQ in (1) and rewrites (1) in a form which explicitly exhibits a Q–P
coupling term: HQP G+

P HPQ.
First we calculate the contribution due to the coupling with one proton

in the continuum of 17F (Q–P coupling):

〈1−|HQQ + HQP G+
P (E)HPQ|1

−〉 ,

which yields a ‘mixed’ state
∣

∣

∣
1−(mix)

〉

. Then, we calculate the contribution

of the sequential 2p emission:
〈

1−(mix)

∣

∣

∣
HQP G̃

(+)
P (E)HPT G

(+)
T (E)HTP G

(+)
P (E)HPQ

∣

∣

∣
1−(mix)

〉

.

The first emitted proton is assumed to be a spectator of the second emission.
This implies a following identification:
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• HPP −→ HQ′Q′ + h0, i.e. HPP is splitted into HQ′Q′ which acts on
A − 1 nucleons in qbsp orbits after the first proton emission, and h0

which is a one-body potential describing an average effect of A − 1
particles on the emitted proton,

• HTT −→ HP ′P ′ + h0, i.e. HTT is splitted into HP ′P ′ which acts on
A−2 nucleons in qbsp orbits and 1 nucleon in the continuum after the
first proton emission, and h0,

• HQT −→ HQ′P ′ , i.e. HQT becomes a coupling between newly defined
Q′ and P ′ subspaces.

In solving SMEC problem with H
(eff)
QQ given in Eq. (2), the radial single-

particle (s.p.) wave functions in Q and the scattering wave functions in P
and T are generated by a self-consistent procedure starting with the average
potential of Woods–Saxon (WS) type with the spin–orbit and Coulomb parts
included, and taking into account the residual coupling between Q, P and
Q, T subspaces. (Details of the calculations will be published elsewhere [7].)
This procedure yields new orthonomalized wave functions in Q, P and T
and new self-consistent potentials for each many-body state in Q [6]. For
the effective interaction in HQQ and in HQ′Q′ , we take either WBT Hamil-
tonian [8] or USD Hamiltonian for the (sd)-shell [9] and the KB’ interaction
for the (pf)-shell [10]. The cross-shell interaction is the G matrix [11]. The
latter interaction will be called (psdfp)-Hamiltonian. The residual couplings
HQP , HPT between different subspaces are given by the contact force [6]:

V12 = −V
(0)
12 [α + βP σ

12]δ(r1 − r2), where α + β = 1 and P σ
12 is the spin

exchange operator.
The sequential 2p emission from 1−2 in 18Ne is passing through a resonant

continuum of weakly bound states 5/2+
1 and 1/2+

1 at energies above the 1p
emission threshold in 17F. Fig. 2 shows the dependence of the density of
width Γ (seq) on the energy ε ≡ εp1 taken away by the first emitted proton,
i.e., the sharing of the total energy available for the sequential 2p decay.
This curve resembles a resonance, even though no intermediate resonance
exists in 17F. The dominant contribution to the peak Γ (seq)(ε) comes from
the resonant continuum of 1/2+

1 state bound by ∼105 keV. For (psdfp)-Ha-
miltonian, the ratio of the sequential decay through the 1/2+

1 continuum to

the total decay width Γ
(seq)
tot is 85.2% or 74.1% depending on whether the

strength V
(0)
12 of the residual coupling equals 700 or 900 MeV×fm3. For these

two coupling strengths, the calculated Γ
(seq)
tot is 20.8 or 23.8 eV, respectively,

whereas the experimental estimate obtained assuming a pure sequential de-
cay is [4]: Γ (seq) = 57 ± 6 eV. WBT Hamiltonian gives much smaller values

for Γ
(seq)
tot . We have found a strong dependence of Γ

(seq)
tot on the SMEC
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Hamiltonian and, to a somewhat smaller extent, on the radial features of
s.p. resonances (0d3/2, 0f7/2, 0f5/2, 1p1/2, 1p3/2) included in Q (details of
the regularization procedure for resonances can be found in Ref. [5]). Inter-
estingly, the ratio of 1p partial decay width to 1/2+

1 state and the sequential
2p decay width is nearly constant in different calculations and equals ∼ 20.
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Fig. 2. Dependence of the density of width Γ (seq) on the energy ε taken by the

first emitted proton is shown for the (psdfp)- (solid line) and WBT- (dashed

line) Hamiltonians. The strength of the residual coupling is −900 MeV×fm3 and

−700 MeV×fm3 in the calculations using (psdfp)- and WBT-interactions, respec-

tively.

2.2. Diproton decay

In this case, the effective Hamiltonian in Eq. (1) reduces to:

H
(eff)
QQ = HQQ + HQP G+

P (E)HPQ + HQTG
(+)
T (E)HTQ . (3)

Intermediate couplings, i.e. HTP (HPT ), are neglected. As for the sequen-
tial decay process, first we calculate the contribution due to the coupling

of 1−2 state to 1p continuum in 17F: which yields a ‘mixed’ state
∣

∣

∣
1−(mix)

〉

.

Then, we calculate

〈

1−(mix)

∣

∣

∣
HQTG

(+)
T HTQ

∣

∣

∣
1−(mix)

〉

,

i.e., the contribution of the diproton emission. This can be rewritten for-
mally as 〈w | ω〉, where

|w〉 = HTQ

∣

∣

∣
1−(mix)

〉
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is the source term and ω, which represents the continuation in T of the
Q-space wave function, is given by the solution of an inhomogeneous coupled
channel equation:

(E − HTT )|ω〉 = |w〉 .

In the decay to the g.s. of 16O, only one channel is open:
∣

∣t(int), Θ;L = 1, l = 0, S = 0
〉

,

where |t(int)〉 denotes the internal state of 16O, L is the relative angular

momentum between a cluster and 16O, Θ represents the internal motion of
the cluster, and l its internal angular momentum. Protons in the cluster are
coupled to the spin S = 0.

The proton–proton interaction is taken fully into account in Q. On the
other hand, in T , the final state interaction between two protons is taken
into account phenomenologically in terms of the s-wave phase shift:

Γ (dip) =
Γ (Q2p)

γ̃2(Q2p)

Q2p
∫

0

γ̃2(E)ρ(Q2p − E)dE , (4)

where

Γ (Q2p) = −2Im





+∞
∫

0

ω(r,Q2p)w(r,Q2p)dr



 (5)

and Q2p equals 1.63 MeV. γ̃(E) in (4) is the partial width:

γ̃(E) =

+∞
∫

0

ξ(E, r)w(r)dr ,

where ξ is the solution of the homogeneous coupled channel equation:

(E − HTT )|ξ〉 = 0 .

ρ(Q2p − E) in (4) is the 2p density-of-states function [9], whereas w(r, U)
in (5):

w(r, U) =
〈

t(int), Θ;L = 1, l = 0, S = 0; r
∣

∣

∣
HTQ

∣

∣

∣
1−(mix)

〉

(6)

is the probability amplitude that two protons leave nucleus as a cluster.
Similarly, ω(r, U) in (5):

ω(r, U) =
〈

t(int), Θ;L = 1, l = 0, S = 0; r
∣

∣

∣
G+

T (U)HTQ

∣

∣

∣
1−(mix)

〉
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describes the extention of
∣

∣

∣
1−(mix)

〉

into T subspace. One should notice that

w(r, U) and ω(r, U) are calculated in the relative coordinates, i.e., r is the
distance between 16O and a diproton. ω(r, U) is calculated with a WS po-
tential acting on a particle (diproton) with Z = 2 and mass m = 2mp. Since
the source term w(r, U) is localized, we expand it in a harmonic oscillator
basis with the help of the Moshinsky transformation. In this basis, an ex-
plicit dependence of w(r, U) on U drops out. The U -dependence reappears
in Γ (dip) (see Eq. (4)) through a 2p density-of-states function ρ(U).

The residual interaction HQT (HTQ) in (3) is given by a contact force
described above. In the absence of an external mixing in Q (Q–P mixing),
the diproton source is real. In all studied cases, we found that an imaginary
part of the source w(r, U) is about two orders of magnitude smaller than
the real part. Fig. 3 shows a real part of the diproton source for different
Hamiltonians in Q and for different strengths of the external coupling. One
can see that the dependence on the strength of the coupling terms HQP ,
HQT , and on the chosen shell-model Hamiltonian HQQ is relatively weak
(cf. Fig. 3). The source function strongly oscillates in the interior region and
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Fig. 3. A real part of the diproton source function w(r, U) is shown for (psdfp)-

Hamiltonian and two different strengths of the residual coupling: V
(0)
12 =

−900 MeV×fm3 (solid line) and V
(0)
12 = −700 MeV×fm3 (dashed line). The

dotted line shows results for WBT Hamiltonian and a residual interaction with:

V
(0)
12 = −700 MeV×fm3. In this plot, U is equal to the total energy available for

2p decay: Q2p = 1.63 MeV.

the major part of the diproton width comes from a narrow region (∆R ≃
2 fm) in the outer part of the Coulomb barrier. The diproton emission
width is a convolution of the ω(r, U) function with the source function w(r).
As said before, w(r) depends weakly on the choice of HQQ, HQP or HQT .



1290 J. Rotureau, J. Okołowicz, M. Płoszajczak

On the contrary, function ω(r, U) depends strongly on the choice of the
effective interaction in HQQ. Consequently, the diproton emission width
depends strongly on the shell-model Hamiltonian in Q and weakly on the
strength of the coupling terms HQP and HQT . For the (psdfp)-Hamiltonian,

Γ (dip) equals 2.83 or 3.31 eV, depending on the value of the coupling strength

of the residual interaction V
(0)
12 = −700 or −900 MeV×fm3. For WBT

Hamiltonian, Γ (dip) is smaller and equals 1.99 eV for V
(0)
12 = −700 MeV×fm3.

These numbers are about one order of magnitude smaller than the value
deduced experimentally under an assumption of a pure diproton emission
mechanism [4].

3. Conclusions

Our analysis excludes a diproton emission from 1−2 state of 18Ne as a
dominant 2p emission mode. We have found, on the contrary, that the cal-
culated sequential emission through the resonant continuum of bound states
in 17F agrees qualitatively with the experimental data [4]. A strong correla-
tion between the rate of a sequential 2p decay and the rate of a one-proton
partial decay to the ‘halo state’ 1/2+

1 in 17F gives an access to the properties
of the ‘ghost’ of 1/2+

1 state in the continuum. The measurement of this
partial decay width would be helpful to reduce the uncertainty associated
with the choice of the effective interaction in Q.
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