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The matrix elements of the zero-range δ-force and the finite range
Gogny-type pairing force are compared. The strengths of the δ-interaction
for rare-earth nuclei are adjusted. Pairing gaps resulting from different
pairing interactions are compared to experimental ones.
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The pairing interaction plays a crucial role in the nuclear mean-field
model calculations. The most frequently used pairing type is the so-called
monopole pairing interaction (g = const model). More realistic residual
interactions are those with state-dependent matrix elements, e.g. δ- and
Gogny-forces. Previously the Gogny-type pairing force were studied within
conventional Hartree–Fock–Bogoliubov (HFB) method [1] and in fully self-
consistent Relativistic Hartree–Fock–Bogoliubov theory (RHB) [2]. Here
we investigate different kinds of pairing forces using the Nilsson mean-field
model and BCS approximation.

Contrary to the finite-range Gogny force, the δ-interaction is the zero-
range force. The zero-range nature of the pairing interaction tends to overes-
timate the coupling to continuum states [3]. This defect does not occur when
using the Gogny force which is, however, cumbersome to handle; it involves
sophisticated numerical techniques while the δ-force is relatively simple for
numerical calculations. The effect of the finite range for the δ-force can be
easily simulated by introducing an energy cutoff which plays the role of an
additional parameter similarly like in the case of the monopole pairing model
except that the δ-interaction is less sensitive to the cutoff.

These seemingly different pairing interactions should produce in fact sim-
ilar results- the coherence length of nucleonic Cooper pair is of the order of
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size of a nucleus, therefore its structure should be insensitive to the details
of the interaction in the particle–particle channel [4]. The aim of this paper
is to show strong correlations and similarity between matrix elements of the
pairing part of the Gogny force and of the δ-pairing interaction. The pairing
strengths of the δ force for rare-earth nuclei are determined from empirical
odd–even mass differences. Additionally it is shown that the diagonal matrix
elements of the δ-pairing interaction fulfill some dependences known from
the monopole pairing strength analysis, therefore an alternative way of ad-
justing δ-pairing strengths is given. In order to simplify the calculations we
assume the Nilsson single particle potential as a generator of single particle
states and wave functions.

The finite range part of the Gogny force has the form [5]

V̂G(~r12) =
∑

i=1,2

(Wi + BiPσ − HiPτ − MiPσPτ )e−~r2

12
/µ2

i , (1)

where Pσ and Pτ are the spin and isospin exchange operators respectively.
In all calculations the D1S parameters [7] have been used and it is assumed
that only the isovector part of the interaction is active, i.e., Pτ = 1 (proton–
proton and neutron–neutron channel). The zero-range δ interaction reads [3]

V̂δ(~r12) = V0
1 − ~σ1 · ~σ2

4
δ(~r12) . (2)

Both interactions can be written in a similar form

V̂ (~r12) = V (|~r1 − ~r2|)(A + BPσ) , (3)

where the radial part is given by (see e.g. [6])

V (|~r1 − ~r2|) =

∞
∑

λ=0

Vλ(r1 − r2)
4π

2λ + 1

∑

µ

Y ∗
λµ(r1)Yλµ(r2) . (4)

It is convenient to calculate the matrix elements of the interaction (3) in
J basis [2]:

VJMJ ′M ′ = 〈(ab)JM |V̂ (~r12)|(a
′b′)J ′M ′〉 , (5)

where a = (laja). In the case of the same kind of nucleons and for the pairing
channel one obtains

VG = 〈(ab)00|V̂G(~r12)|(a
′b′)00〉 = δjajb

δj
a′

j
b′
δlalbδl

a′
l
b′

∑

S=0,1;λ

(−1)S(2S + 1)

×(2la + 1)(2lb + 1)
√

2ja′ + 1
√

2jb′ + 1 Vλ(r, r′)(A + B(2S − 1))

×

(

la λ la′

0 0 0

)2 {

la la′ λ
la′ la S

} {

la la S
1
2

1
2 ja

} {

la′ la′ S
1
2

1
2 ja′

}

.

(6)
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Vδ = 〈(ab)00|V̂G(~r12)|(a
′b′)00〉 = δjajb

δj
a′

j
b′
δlalbδl

a′
l
b′
δ(r − r′)

V0

r2

×
√

2ja′ + 1
√

2jb′ + 1
∑

λ

(−1)λ+ja−j
a′

2λ + 1

8π

(

la λ la′

0 0 0

)2

.(7)

The allowed integer values for λ in the sums are |la − la′ | ≤ λ ≤ la + la′ .
The simplest pairing model, i.e., the monopole pairing model, assumes

that all of the matrix elements (5) in the pairing Hamiltonian are equal and
state independent.

In order to simplify our studies the calculations were performed in Nilsson
model [8]. Formula (6) consists of two spin terms (S = 0 and S = 1).
Numerical calculations have shown that the S = 1 term contributes less
than 0.1% of the total value and can be neglected in further calculations.
Figure 1 shows diagonal matrix elements (gaa = (aā|V̂G|δāa)) of the Gogny

force and of the δ interaction for protons in 138Nd, in cases of equilibrium
and zero deformations. In figure 2 non-diagonal matrix elements are shown
for neutrons in 130Nd. We can obtain approximately the same values of
matrix elements for both interactions considered here by a proper choice of
the δ force strength (V0) which was not done in case of results shown in
figures 1 and 2 for the transparency. Strong correlations between diagonal
and non-diagonal matrix elements of both interactions are common for all
considered nuclei, either for protons or for neutrons.
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Fig. 1. Diagonal matrix elements gaa = (aā|V̂G|δ|āa) versus single particle energies
for protons in 138Nd. Vertical lines represent the single particle spectrum. The (a)
part of the figure corresponds to the equilibrium deformation while the part (b) to
the spherical case.
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Fig. 2. Same as in Fig. 1 but for non-diagonal matrix elements which couple to the
Fermi level F in the case of neutrons in 130Nd.

Usually the pairing strength is determined from odd–even mass differ-
ences for separate nuclei. In Ref. [10] an explicit formula expressing the
monopole pairing interaction strength g by the average gap parameter is
derived and a simple dependence of g on the neutron and proton numbers is
found. In the case of state-dependent pairing interactions the diagonal ma-
trix elements follow the same particle number dependence as the monopole
pairing strength.

Figure 3 shows the dependence of diagonal matrix elements gaa of the
δ-force on the particle number 2n equal to the doubled number of levels n
(the possible number of particles occupying all of the levels up to the level n)
for the spectrum 148Ce. The dependence is of the type

gaa(2n) = const
(~ω0ℓ)

(2n)2/3
, (8)

where ~ω0ℓ = 41.0[1 ± (N − Z)/A]/A1/3 MeV. The plus sign holds here
for neutrons (ℓ = N) and the minus for protons (l = Z). The constant
values found after the numerical fit of the δ-pairing strength to the mass
differences are 0.310 ~ω0N for neutrons and 0.300 ~ω0Z for protons. This
behavior resembles the results of Ref. [10] where it was shown that the
monopole constants are gN = 0.284~ω0N and gZ = 0.290~ω0Z . This leads
to 5% differences in the matrix elements and may serve as an alternative way
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of adjusting an approximate δ-pairing strength which is especially useful in
case of nuclei far from the beta stability line, where no experimental masses
are known.
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Fig. 3. Diagonal matrix elements gaa of the δ interaction as a function of the level
number a for protons (a) and neutrons (b) in 148Ce. The solid lines represent the
fit of the matrix elements according to Eq. (8).

Pairing gaps measure the lowest excitation energies of even–even nuclear
systems and determine the binding energy of the coupled pair of nucleons.
There are a few different ways of evaluating the pairing indicators from
experimental nuclear masses. The three-point ∆

(3) indicator was proved to
be a proper estimate of the pairing gap parameter [11]. It is defined as
follows

∆
(3)(N ) =

πN

2
[B(N − 1) + B(N + 1) − 2B(N )] , (9)

where πN = (−1)N is the parity number and B(N ) is the binding energy of
a system consisting of N particles. Theoretical pairing gaps are calculated
in BCS model. State dependent BCS equations for the pairing gaps and the
occupation probabilities are
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∆i =
1

2

∑

j

gij
∆j

√

(ej − λ)2 + ∆2
j

,

v2
i =

1

2



1 −
ei − λ

√

(ei − λ)2 + ∆2
i



 . (10)

The set of BCS equations is solved numerically using a suitable iteration
procedure. The strengths V0 of the δ force for protons and neutrons were
adjusted for the pairing window containing 2

√

15Z(N) levels, respectively.
The values of V0 were determined from the condition of the equality of the
experimental pairing indicator ∆

(3) and the lowest quasiparticle energy for
each nucleus and then the values of V0 were averaged for the whole region.
The strengths of the δ-pairing force for rare-earth nuclei obtained this way
are [9]: V protons

0 = 240 MeV fm3, V neutrons
0 = 230 MeV fm3.
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Fig. 4. Neutron pairing gaps calculated with the δ-pairing interaction (opened
circles) and in the monopole pairing model (filled circles) in comparison to ∆

(3)

pairing indicators (squares).

Figure 4 shows the pairing gaps for the δ interaction (opened circles)
and the monopole pairing interaction (filled circles) in comparison to exper-
imental pairing gaps (Eq. (9)) for Cerium isotopes. The monopole pairing
strengths used in the calculations are those of Ref. [10]. The state dependent
pairing results in theoretical pairing gaps which differ from ∆

(3) indicators
on 10% while the monopole pairing gaps differ on 20%.
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In conclusion, both the zero range δ force and the finite range part of
the Gogny force have been investigated. It was shown that after proper
renormalization both forces give the same matrix elements therefore they
produce the same results. Thus the use of the δ force is justified and will
reduce numerical efforts in various studies.

The 2n−2/3 dependence of the diagonal matrix elements of the δ-pairing
force can be used in adjusting approximate δ-pairing strengths.
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