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We review the mechanism of weak decay of hypernuclei, with emphasis
on the non-mesonic decay channels. Various theoretical approaches are
discussed and the results are compared with the available experimental
data.
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1. Introduction

The main decay modes of Λ-hypernuclei are the so-called mesonic and
non-mesonic decays(for a recent review on the argument see Ref. [1]): the
former also occurs for free Λ-hyperons:

Λ→

{

π−p (Γ free
π−

/Γ free
Λ = 0.639)

π0n (Γ free
π0 /Γ free

Λ = 0.358),
(1.1)

The experimental ratio of the relevant widths, Γ free
π−

/Γ free
π0 ≃ 1.78, to-

gether with the measurements of Λ polarization observables lead to the
formulation of the ∆I = 1/2 rule on the isospin change of the system
[from simple Clebsch–Gordon coefficient analysis, the latter would predict
Γ free

π−
/Γ free

π0 = 2]. This rule is based on experimental observations, but its
dynamical origin is not yet understood on theoretical grounds. The Stan-
dard Model does not support it and many non-perturbative effects could
be responsible for the measured enhancement of the ∆I = 1/2 transition
amplitude.

The mesonic decay can also take place in Λ-hypernuclei, however the
Pauli principle tends to disfavour the produced final state, with an emitted
nucleon of momentum pN ≃ 100 MeV/c (from a Λ at rest), well below the
maximum level of occupied states in the nucleus. Of course, this argument
is only a qualitative one: indeed the mesonic decay is an important fraction
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of the total decay rate in light-medium Λ-hypernuclei. This outcome stems
from several facts: (i) the hyperon momentum distribution in the nucleus,
(ii) the medium attraction on the emitted pion, which lowers its mass at fixed
momentum and distorts the pionic outgoing wave, (iii) the strong reduction
of the local Fermi momentum at the nuclear surface. [2]

Notably the mesonic decay can be used to extract information on the
pion–nucleus optical potential (in a complementary way with respect to
pionic atoms and low energy π-nucleus scattering experiments).

The Λ-hypernuclei non-mesonic decay occurs via the weak interaction of
the Λ with one nucleon:

ΛN → NN (one-body induced decay)

or with a pair of correlated nucleons:

ΛNN → NNN (two-body induced decay).

These processes are mediated by the exchange of a meson (including the
K, K∗ strange mesons), as illustrated in Fig. 1

N

π, ρ, ω, η, Κ, Κ

N N NN

NNNΛ Λ

*
π, ρ, ω, η, Κ, Κ*

Fig. 1. One-nucleon and two-nucleon induced Λ decay in nuclei.

The decay width associated to the various non-mesonic processes can be
denoted as follows (n indicates a neutron, p a proton):

Γn : Λn → nn , (1.2)

Γp : Λp → np , (1.3)

Γ2 : ΛNN → NNN , (1.4)

whence the total non-mesonic width is ΓNM = Γ1 +Γ2 ≡ Γn +Γp +Γ2. The
total hypernuclear decay width is then:

ΓT = ΓM + ΓNM , (1.5)

where ΓM = Γπ− + Γπ0 is the mesonic width.
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The non-mesonic mode can occur only in nuclei, and therefore it is the
only source of information on the ΛN → NN weak interaction.

Concerning the kinematics of the process, it is worth noticing that if
one assumes the Λ at rest (Q-value of about 176 MeV≃ mΛ − mN ) and
an equal share of the available energy between the two (respectively, three)
final nucleons, the momenta of the emitted nucleons are expected of the
order of pN ≃ 420 MeV/c for the one-body induced decay (respectively,
pN ≃ 340 MeV/c for the two-body induced decay). Hence we do not expect
a significative influence of the Pauli principle on these decay channels.

An interesting feature of the experimental decay widths of Λ-hypernuclei
is the approximate stability of this quantity in passing from medium-light
to very heavy systems: the mesonic (ΓM) and non-mesonic (ΓNM) partial
widths depend upon the mass number in such a way as to compensate each
other. This saturation property is clearly related to the short range of the
ΛN weak interaction [3, 4].

2. Theoretical models for Λ-hypernuclear decay

The starting point for all methods described below is the weak effective
hamiltonian for Λ→ πN decay:

HW
ΛπN = iGm2

πψN (A+Bγ5)~τ · ~φπψΛ , (2.1)

the parameters of which are fixed on the free Λ decay: G = 2.211×10−7/m2
π,

A = 1.06 (PV amplitude) and B = −7.10 (PC amplitude). To enforce the
∆I = 1/2 rule the hyperon is assumed to be an isospin spurion with I = 1/2,
Iz = −1/2.

In the non-relativistic limit, one can then express the free Λ decay width
as follows:

Γ free
α = cα(Gm2

π)2
∫

d~q

(2π)3 2ω(~q)
2π

×δ[EΛ − ω(~q) − EN ]

(

S2 +
P 2

m2
π

~q2
)

, (2.2)

where cα = 1(2) for Γπ0 (Γπ− , respectively) and the decay occurs both
through parity violating (the s-wave amplitude, S = A) and parity conserv-
ing (the p-wave amplitude, P = mπB/(2mN )) terms.

2.1. The wave function method

An expression similar to (2.2) for the mesonic width of hypernuclei can
be obtained by explicitly taking into account the hyperon (φΛ), pion (φπ)
and nucleon (φN ) wave functions inside the nucleus [2, 5, 6]:
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Γα = cα(Gm2
π)2

∑

N 6=F

∫

d~q

(2π)3 2ω(~q)
2π δ[EΛ − ω(~q) − EN ]

×

{

S2

∣

∣

∣

∣

∫

d~rφΛ(~r)φπ(~q,~r)φ∗N (~r)

∣

∣

∣

∣

2

+
P 2

m2
π

∣

∣

∣

∣

∫

d~rφΛ(~r)~∇φπ(~q,~r)φ∗N (~r)

∣

∣

∣

∣

2
}

.

(2.3)

The pion wave function corresponds to an outgoing wave solution of the
Klein–Gordon equation in the presence of a suitable π-nucleus optical po-
tential, Vopt, while the Λ wave function can be derived within a variety of
hypernuclear shell models, whose parameters are typically determined by
comparison with the available spectroscopic data.

Turning now to the evaluation of the non-mesonic width, one needs
an explitic model for the ΛN → NN weak transition: the latter is usu-
ally described in terms of the exchange of virtual mesons belonging to the
pseudoscalar (π, η and K) or to the vector (ρ, ω and K∗) octets. The most
important (from an heuristic point of view) component of the ΛN → NN
transition potential is associated to the exchange of a pion:

Vπ(~q) = −Gm2
π

gNNπ

2mN

(

A+
B

2m̄
~σ1 · ~q

)

~σ2 · ~q

~q2 +m2
π

~τ1 · ~τ2 (2.4)

with m̄ = (mΛ +mN )/2.
This is the only component of the ΛN → NN meson exchange poten-

tial, for which the couplings of both the weak and strong vertices are well
constrained by the existing phenomenology and experimental data. The
exchange of heavier mesons, which cannot be produced in the free-Λ weak
decay, is subject to theoretical uncertainties and to a somewhat large indeter-
mination of the model parameters (typically couplings and masses), in spite
of the existence of various theoretical schemes which, in principle, should
allow to fix them on a firm basis. Nevertheless the influence of ΛN → NN
processes mediated by heavier mesons on the calculated non-mesonic decay
widths appears to be important in order to reproduce the available experi-
mental data.

A sort of “minimal model”, which has been often employed in the liter-
ature [7], accounts for the exchange of pions and ρ-mesons, together with
phenomenological, q-dependent short range correlations, usually parameter-
ized in the Landau–Migdal form (see, for details, Ref. [1]).

In the framework of the wavefunction method, the one-body induced
non-mesonic decay width takes the form:

Γ1 =

∫

d~p1

(2π)3

∫

d~p2

(2π)3
2π δ(EC)

∑

|M(~p1, ~p2)|
2 , (2.5)
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where
M(~p1, ~p2) ≡ 〈ΨR;N(~p1)N(~p2)|T̂ΛN→NN |ΨH〉 (2.6)

is the transition matrix element between the initial hypernuclear state |ΨH〉
and the final state with two outgoing nucleons, while δ(EC) guarantees en-
ergy conservation. Besides the above mentioned uncertainties in the OME
(One-Meson-Exchange) transition potential, one faces here also the compli-
cations associated with a strongly interacting many-body system.

We will not consider here further details of this method, however it is
worth recalling that the wave function approach is considered to be the most
appropriate one for the calculation of light Λ-hypernuclei mesonic widths;
it is, instead, less accurate for the non-mesonic widths and certainly less
practical for the heavier systems.

2.2. The polarization propagator method

This method obtains the hypernuclear decay width through the evalua-
tion of the Λ self-energy inside the nuclear medium [7–11]:

ΓΛ = −2 ImΣΛ . (2.7)

The starting point is again the weak effective Hamiltonian (2.1), which
provides the relevant vertices already in the simplest process illustrated in
diagram (a) of Fig. 2, which corresponds to the free Λ decay. More generally,
a few contributions to the Λ self-energy in the medium are illustrated in
diagrams (b)–(h) of Fig. 2, where the pion propagator is typically dressed by
the strong interaction with particle-hole (ph), ∆-hole (∆h) and two particles-
two holes (2p2h) intermediate states. Further contributions arise from the
medium modifications on the nucleon propagator, which has origin in the
ΛπN weak vertex.

Formally the Λ self-energy can be written as:

ΣΛ(k) = 3i(Gm2
π)2

∫

d4q

(2π)4

(

S2 +
P 2

m2
π

~q 2

)

F 2
π (q)GN (k − q)Gπ(q) , (2.8)

where k is the Λ momentum inside the nucleus, GN (p) and Gπ(q) are the
nucleon and pion propagators (in nuclear matter):

GN (p) =
θ(| ~p | −kF)

p0 −EN (~p) − VN + iǫ
+

θ(kF− | ~p |)

p0 − EN (~p) − VN − iǫ
, (2.9)

and

Gπ(q) =
1

q20 − ~q 2 −m2
π −Σ∗

π(q)
. (2.10)
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Fig. 2. Lowest order terms for the Λ self-energy in nuclear matter.

In equation (2.9) the medium effects on the nucleon propagation are phe-
nomenologically embodied in the nuclear binding potential VN , while in
(2.10) the analogous effects on the pion appear in the pion self-energy, illus-
trated above.

More explicitly, by inserting (2.8) into (2.7), one can express the
Λ-hypernuclear decay width as:

ΓΛ(~k, ρ) = −6(Gm2
π)2

∫

d~q

(2π)3
θ(| ~k − ~q | −kF)

×θ(k0 − EN (~k − ~q) − VN )Im [α(q)]q0=k0−EN (~k−~q)−VN

(2.11)

where

α(q) =

(

S2 +
P 2

m2
π

~q 2

)

F 2
π (q)G0

π(q) +
S̃2(q)UL(q)

1 − VL(q)UL(q)

+
P̃ 2

L(q)UL(q)

1 − VL(q)UL(q)
+ 2

P̃ 2
T(q)UT(q)

1 − VT(q)UT(q)
. (2.12)

In the above, to perform a realistic calculation, the effective interactions
S̃, P̃L, P̃T,VL, VT include π- and ρ-exchange plus short range repulsive cor-
relations. Specifically: VL, VT are the (strong) p–h interaction and include a
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Landau parameter g′(q), which embodies the NN short range repulsion. S̃,

P̃L and P̃T correspond to the lines connecting the weak and strong hadronic
vertices and contain another Landau parameter, g′Λ(q) [a priori different
from g′], which is intended to parameterize the strong ΛN short range cor-
relations.

Besides the interaction lines, the other key-ingredient of (2.12) are the
longitudinal and transverse (with respect to the pion momentum ~q) polar-
ization propagators, UL and UT. They contain the Lindhard functions for
p–h and ∆-h excitations and the irreducible 2p-2h polarization propagator:

UL,T(q) = Uph(q) + U∆h(q) + U2p2h
L,T (q) (2.13)

The imaginary part of α(q), needed to evaluate ΓΛ, develops various
contributions, namely:

Im
UL,T(q)

1 − VL,T(q)UL,T(q)
=

ImUph(q) + ImU∆h(q) + ImU2p2h
L,T (q)

| 1 − VL,T(q)UL,T(q) |2
. (2.14)

Indeed the three terms represent different decay mechanisms of the hyper-
nucleus:

ΓM ∝ ImU∆h (part of mesonic width)

Γ1 ∝ ImUph (non-mesonic, one-body induced decay width)

Γ2 ∝ ImU2p2h (non-mesonic, two-body induced decay width

and additional part of mesonic width)

While the p–h and ∆-h polarization propagators are well known and can
be analytically evaluated [12], the 2p–2h polarization propagator, even in
the non-relativistic limit considered here, demands quite a computing effort
to be fully determined. On the other hand, according to the above relations,
it is needed for estimating the two-body induced decay width.

In this context two approaches have been utilized till now for the evalu-

ation of U2p2h
L,T (q):

A. Phenomenological model

In this case one takes into account mainly the phase space available
to 2p–2h excitations in nuclear matter and determines the relevant
entity of the 2p–2h propagator through its connection with the phe-
nomenological π-nucleus optical potential. The relation with specific
hypernuclei is then obtained by implementing the local density ap-
proximation.
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B. Microscopic calculation

This approach proceeds through the path-integral formulation and
provides the 2p–2h propagator within the so-called One Boson Loop
(OBL) approximation, which embodies a rich variety of perturbative

contributions to U2p2h
L,T (q).

In the following we will consider only the phenomenological approach and
we refer the reader to Refs. [1, 11] for the details and the results of the
microscopic approach.

2.3. The phenomenological 2p2h propagator

In the (q0, ~q) region where the p–h and ∆-h excitations are off-shell,

the following relation between U2p2h
L and the p-wave pion–nucleus optical

potential Vopt holds:

~q 2 f
2
π

m2
π

F 2
π (q)U2p2h

L (q)

1 −
f2

π

m2
π

gL(q)UL(q)

= 2q0Vopt(q) . (2.15)

At pion threshold the latter can be parameterized as:

2q0Vopt(q0 ≃ mπ, ~q ≃ ~0; ρ) = −4π~q 2ρ2C0 , (2.16)

where C0 is a complex number extracted from the experimental data on
pionic atoms [13]; its “proper part” (using g′ ≡ gL(0) = 0.615) turns out to
be:

C∗
0 = (0.105 + i0.096)/m6

π .

Hence one obtains the following parameterization of the proper 2p–2h po-
larization propagator in the spin–longitudinal channel at pion threshold:

~q 2 f
2
π

m2
π

F 2
πU

2p2h
L (q0 ≃ mπ, ~q ≃ ~0; ρ) = −4π~q 2ρ2C∗

0 . (2.17)

Further, to obtain the general dependence of U2p2h
L,T upon (q0, ~q), one consid-

ers the phase space available for the real 2p–2h excitations:

P (q0, ~q; ρ) ∝

∫

d4k

(2π)4
ImUph

(q

2
+ k; ρ

)

×ImUph
(q

2
− k; ρ

)

θ
(q0

2
+ k0

)

θ
(q0

2
− k0

)

, (2.18)
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which amounts to neglect the energy and momentum dependence of the p–h

interaction. Finally the imaginary part of U2p2h
L,T will be written as:

ImU2p2h
L,T (q0, ~q; ρ) =

P (q0, ~q; ρ)

P (mπ,~0; ρeff )
ImU2p2h

L,T (mπ,~0; ρeff) (2.19)

with ρeff = 0.75ρ.
The above formulas refer to homogeneous nuclear matter and provide,

through equations (2.11) and (2.12), the hypernuclear decay width for a Λ
with momenum k embedded in a constant nuclear density ρ. The corre-
sponding decay width in finite hypernuclei can be obtained by applying the
local density approximation (LDA).

The latter amounts to consider a local Fermi momentum

kF(~r) =

{

3

2
π2ρ(~r)

}1/3

, (2.20)

which is defined in the Thomas–Fermi approximation, as follows:

ǫF(~r) + VN (~r) ≡
k2
F(~r)

2mN
+ VN (~r) = 0. (2.21)

The decay width in finite nuclei is then obtained by

ΓΛ =

∫

d~k |ψ̃Λ(~k)|2ΓΛ(~k) , (2.22)

where

ΓΛ(~k) =

∫

d~r |ψΛ(~r)|2ΓΛ

[

~k, ρ(~r)
]

(2.23)

and |ψ̃Λ(~k)|2 is the Λ momentum distribution.

3. Theory versus experiment

In the phenomenological approach for the polarization propagator we
have employed the customary Fermi distribution of the nuclear density:

ρA(r) =
ρ0

{

1 + exp

[

r −R(A)

a

]} (3.1)

with R(A) = 1.12A1/3 − 0.86A−1/3 fm and a = 0.52 fm.
The Λ wave function is obtained from a Woods–Saxon Λ–nucleus poten-

tial, which exactly reproduces the first two single particle eigenvalues (s and
p Λ levels) of the hypernucleus under analysis [10].
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Fig. 3. Partial Λ decay widths in finite nuclei as a function of the nuclear mass

number A. The experimental data are taken from Refs. [14–16]

Short range correlations (g′, g′Λ) are fixed to get agreement with exper-
imental data: indeed the Landau parameter g′ has been widely used in the
literature, in connection with spin–isospin nuclear responses as measured in
charge exchange reactions and inelastic electron scattering. In this context
the customary value, used within the RPA framework and appropriate to fit
the data is g′ = 0.6 ÷ 0.7.

The available data from Λ-hypernuclei decay seem to require a somewhat
larger value of g′ (0.8), together with g′Λ ≃ 0.4. This is not necessarily in
contrast with previous phenomenology, since the RPA-type correlations are
now applied to a richer polarization propagator, which also includes the
2p–2h excitations.

In Fig. 3 we illustrate the results obtained [10] with the polarization
propagator method (together with LDA) for the decay widths of various
Λ-hypernuclei. In addition to the total decay rates, the mesonic and non-
mesonic partial rates are shown, the latter being separated into the one-body
induced (Γ1) and two-body induced (Γ2) decay rates. The total decay rate
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appears to be rather constant with the mass number, at least for A > 10
(saturation property), as a result of a compensation between the mesonic
decay and the non-mesonic one.

Altogether the results of the theoretical calculation appear to be in good
agreement with the available experimental data, both on the total rates
and, when available, with the non-mesonic rates. Similar outcomes, though
not reported here, were obtained with the microscopic calculation of the
2p–2h polarization propagator, a fact which demonstrates how the theoret-
ical description of these processes is well founded.

4. The Γn/Γp puzzle

The main problem concerning the weak decay rates is to reproduce the
experimental value for the ratio Γn/Γp between the neutron- and the proton-
induced widths:

Λn→ nn and Λp→ np . (4.1)

Theoretical calculations underestimate the central data for all considered
hypernuclei:

{

Γn

Γp

}Th

≪

{

Γn

Γp

}Exp

, 0.5 <∼

{

Γn

Γp

}Exp

<∼ 2 . (4.2)

One should keep in mind that, up to now, the data on the separate
rates are limited and not precise enough, due to the difficulty in detecting
the products of the non-mesonic decays, especially neutrons. The present
experimental energy resolution does not allow to identify the final state of
the residual nuclei in A

ΛZ → A−2Z + nn and A
ΛZ → A−2(Z − 1) + np.

In the OPE approximation, by assuming the ∆I = 1/2 rule in the Λ →
π−p and Λ → π0n free couplings, many different calculations give small
ratios, in the range 0.05 ÷ 0.20.

[

Γn

Γp

]OPE

≃ 0.05 ÷ 0.20 (4.3)

for all the considered systems.
For pure ∆I = 3/2 transitions the OPE ratio can increase up to about

0.5. However, this assuption would be inconsistent with the fact that the
OPE model with ∆I = 1/2 couplings well reproduces the one-body stimu-
lated non-mesonic rates Γ1 = Γn + Γp for light and medium hypernuclei.

Other ingredients beyond the OPE might be responsible for the large
experimental ratios:
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1. Calculations with ΛN → NN transition potentials including heavy-
meson-exchange (e.g. K) or direct quark contributions have improved
the situation. [6, 17]

2. The analysis of the ratio Γn/Γp is influenced by the two-nucleon in-
duced process ΛNN → NNN : by assuming the quasi-deuteron ap-
proximation for the absorption of the meson emitted in the Λ decay,
the three-body process are mainly Λnp→ nnp and a considerable frac-
tion of neutrons could come from this channel in addition to Λn→ nn
and Λp → np. However the inclusion of the new channel would bring
to extract from the experiment even larger values for the Γn/Γp ra-
tios. [7, 9]

3. The effect of the final state interaction (FSI) on the spectra of the
emitted nucleons: the nucleon energy/momentum distributions have
been calculated [18] by using a Monte Carlo simulation to describe the
nucleon rescattering inside the nucleus. The main effects thus obtained
indicate that the nuclear collisions remove nucleons from the high to
the low energy part of the spectrum, moreover the numbers of emitted
protons and neutrons tend to become similar (due to charge exchange
processes.

A recent upgrading of the calculations quoted above shows that the experi-
mental proton spectra are compatible with values of the Γn/Γp ratio between
0.5 and 1.0, still leaving some discrepancy with the direct theoretical esti-
mates.

5. Conclusions

It is by now well understood that beyond the mesonic channel, hypernu-
clear decay proceeds through non-mesonic processes, induced by one nucleon
or by a pair of correlated nucleons. This channel is dominant in medium-
heavy hypernuclei, where the Pauli principle strongly suppresses the mesonic
decay.

The mesonic rates have been reproduced quite well by calculations per-
formed in different frameworks. The non-mesonic rates have been consid-
ered within several phenomenological and microscopic models, most of them
based on the pion exchange. More complex meson exchange potentials and
direct quark models have also been used for the evaluation of non-mesonic
decay rates. The obtained rates appear to be in agreement with the experi-
mental data.

Although several calculations reproduce the total non-mesonic width,
ΓNM = Γn + Γp(+Γ2), the obtained Γn/Γp are often in strong disagreement
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with the measured central data. Hence further efforts (especially on the
experimental side) must be invested in order to understand the detailed
dynamics of the non-mesonic decay.

Recent experiments at KEK [19] have considerably reduced the error
bars on Γn/Γp, by means of single nucleon spectra measurements. Good
statistics coincidence measurements of nn and np emitted pairs are required.
The angular correlation measurements, as expected from the forthcoming
FINUDA [20] experiment, will also allow for the identification of nucleons
coming out from the one- and two-nucleon induced processes.
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