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Fits of pion–nucleus potentials to large sets of pionic atom data reveal
departures of parameter values from the corresponding free πN parame-
ters. These medium effects can be quantitatively reproduced by a chiral-
motivated model where the pion decay constant is modified in the medium
or by including the empirical on-shell energy dependence of the amplitudes.
No consistency is obtained between pionic atoms and the free πN interac-
tion when an extreme off-shell chiral model is used. The role of the size of
data sets is briefly discussed.

PACS numbers: 12.39.Fe, 13.75.Gx, 21.30.Fe, 36.10.Gv

1. Introduction

Renewed interest in pionic atoms in general, and in the s-wave part of the
pion–nucleus potential in particular, stems from three recent developments.
The first is the experimental observation of ‘deeply bound’ pionic atom states
in the (d,3He) reaction [1–4], the existence of which was predicted a decade
earlier [5–7]. The second is the very accurate measurements of the shift
and width of the 1s level in pionic hydrogen [8] and in pionic deuterium
[9, 10] which leads to precise values for the s-wave πN scattering lengths
(see also Ref. [11]). The third development is the attempt to explain the
‘anomalous’ s-wave repulsion [12] in terms of a density dependence of the
pion decay constant [13], or very recently by constructing the πN amplitude
near threshold within a systematic chiral perturbation expansion [14] and in
particular imposing on it gauge invariance [15, 16].

The so-called anomalous repulsion of the s-wave pionic atom potential
is the empirical finding, from fits of optical potentials to pionic atom data,
that the strength of the repulsive s-wave potential inside nuclei is typically
twice as large as is expected on the basis of the free πN interaction. This
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enhancement is, to a large extent, due to the value of the potential parameter
b1, the in-medium isovector s-wave πN amplitude. The possible modification
in the medium of this amplitude is the topic of the present work. One may
define medium effects in this context as unexpected results obtained from
analyses of experimental data, usually with rather simple models, based in
the present case on the free pion–nucleon interaction.

Section 2 presents briefly the standard pion–nucleus potential [17] where
the various parameters are defined. Section 3 shows results of fits of the
standard potential to a large-scale (‘global’) set of data where medium effects
are presented in a quantitative way. Section 4 shows similar results for the
model due to Weise [13] where the pion decay constant is assumed to be
modified in the medium. An alternative approach where the medium effects
are essentially due to the energy dependence of the amplitudes is discussed
in Section 5 both for a chiral (off shell) approach and for an empirical (on-
shell) approach. In Section 6 the statistical significance of the results and
their relation to the extent of the data base are discussed together with
consequences of constraining parameter values. Section 7 is a summary.

2. The pion–nucleus potential

The optical potential Vopt used in the Klein–Gordon equation is of the
standard form due to Ericson and Ericson [17],

2µVopt(r) = q(r) + ~∇ · α(r)~∇ (1)

with

q(r) = −4π
(

1 +
µ

M

)

{

b̄0(r)[ρn(r) + ρp(r)] + b1[ρn(r) − ρp(r)]
}

−4π
(

1 +
µ

2M

)

4B0ρn(r)ρp(r) , (2)

α(r) =
α1(r)

1 + 1
3
ξα1(r)

+ α2(r) , (3)

where

α1(r) = 4π
(

1 +
µ

M

)

−1

{c0[ρn(r) + ρp(r)] + c1[ρn(r) − ρp(r)]} , (4)

α2(r) = 4π
(

1 +
µ

2M

)

−1

4C0ρn(r)ρp(r) . (5)

In these expressions ρn and ρp are the neutron and proton density distribu-
tions normalized to the number of neutrons N and number of protons Z,
respectively, µ is the pion–nucleus reduced mass and M is the mass of the
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nucleon, q(r) is referred to as the s-wave potential term and α(r) is referred
to as the p-wave potential term. The latter will not be discussed here fur-
ther as there are essentially no non-trivial medium effects with this term.
The function b̄0(r) in Eq. (2) is given in terms of the local Fermi momentum
kF(r) corresponding to the isoscalar nucleon density distribution:

b̄0(r) = b0 −
3

2π
(b2

0 + 2b2
1)kF(r) , (6)

where b0 and b1 are minus the pion–nucleon isoscalar and isovector effective
scattering lengths, respectively. The quadratic terms in b0 and b1 represent
double-scattering modifications of b0. In particular, the b2

1 term represents
a sizable correction to the nearly vanishing linear b0 term.

The nuclear density distributions ρp and ρn are an essential part of the
pion–nucleus potential. Density distributions for protons can be obtained by
unfolding the finite size of the charge of the proton from charge distributions
obtained from experiments with electrons or muons. This leads to reliable
proton densities, particularly in the surface region, which is the relevant re-
gion for producing strong-interaction effects in pionic atoms. The neutron
distributions are, however, generally not known to sufficient accuracy and
we have therefore adopted a semi-phenomenological approach that covers a
broad range of possible neutron density distributions. The feature of neu-
tron density distributions which is most effective in determining parameter
values of the potential is the radial extent, as represented, for example, by
rn, the rms radius of the neutron density. Other features such as the de-
tailed shape of the distribution have only minor effect on values of potential
parameters, although they do affect the quality of fits. For that reason we
chose the rms radius as the prime parameter in the present study, and fo-
cus attention on values of rn − rp, the difference between the rms radii. A
simple parameterization adopted here that is easy to relate to the results of
relativistic mean field (RMF) calculations [18, 19] is

rn − rp = α
N − Z

A
+ η . (7)

In order to allow for possible differences in the shape of the neutron distri-
bution, the ‘skin’ and the ‘halo’ forms of Ref. [19] have been used. Note
that the results of RMF calculations are described very well [19] by using
α = 1.5 fm and η = −0.03 fm. This value of α is probably an upper limit
as other sources of information suggest values close to 1–1.2 fm.
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3. Results for the standard potential

Results obtained from the use of the standard potential of the previous
section, here marked as ‘conventional’, with 100 data points along the peri-
odic table, from 20Ne to 238U, are shown in Fig. 1. These data include also
the deeply bound 1s states in 205Pb [3] and in 115,119,123Sn [4]. The figure
shows that for α = 1.5 and for the ‘skin’ type of density a very good fit to
the data is obtained (χ2 per point of 1.7) but the resulting value of b1 is
more repulsive than the free πN value by at least two error bars, or three
error bars if the more reasonable value of α = 1.25 is adopted as representing
the average behaviour of rms radii of neutron distributions. This enhanced
repulsion is a clear indication of medium effects. Other medium effects in
the potential are likely to be present in the phenomenological two-nucleon
absorption terms B0 and C0 which also have real dispersive parts. These are
more difficult to handle and we will not discuss these here except for noting
that the real parts of B0 and C0 are expected not to exceed in absolute val-
ues the corresponding imaginary parts, respectively. The anomalous s-wave
repulsion observed with the conventional potential is due to the combined
action of the too repulsive b1 (which enters also quadratically, see Eq. (6))
and of ReB0 which is also found to be too repulsive compared to the above
expectations (see also Section 6 below).
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Fig. 1. Values of χ2 for 100 data points (lower) and best-fit values of b1 (upper) as

function of the neutron density parameter α. ‘exp’ marks the experimental value

for the free πN interaction.
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4. Medium-modified pion decay constant

The in-medium s-wave interaction of pions have been discussed recently
by Weise [13] in terms of partial restoration of chiral symmetry in dense
matter. Since b1 in free-space is well approximated in lowest chiral-expansion
order by the Tomozawa–Weinberg expression [20]

b1 = −
µπN

8πf2
π

= −0.08 m−1
π , (8)

then it can be argued that b1 will be modified in pionic atoms if the pion
decay constant fπ is modified in the medium. The square of this decay
constant is given, in leading order, as a linear function of the nuclear density,

f∗2
π = f2

π −
σ

m2
π

ρ (9)

with σ the pion–nucleon sigma term. This leads to a density-dependent
isovector amplitude such that b1 becomes

b1(ρ) =
b1(0)

1 − 2.3ρ
(10)

for σ = 50 MeV [21] and with ρ in units of fm−3. This model was
found [22,23] to be very successful when tested against large data sets.
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Fig. 2. Values of χ2 for 100 data points (lower) and best-fit values of b1 (upper) as

function of the neutron density parameter α. ‘exp’ marks the experimental value

for the free πN interaction.
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Figure 2 shows results similar to those of Fig. 1 but with b1 as given
by Eq. (10). Only the results for the ‘skin’ shape of the neutron densities
are plotted as the ‘halo’ shape always produces poorer fits to the data. It
is seen from the figure that the quality of fits to the data is the same as
for the conventional model, but the values of b1 have shifted now such that
for α ∼ 1.25 they agree with the free πN value, thus indicating that the
density dependence of the decay constant could account for the medium
modification of b1. Using the present model the parameter ReB0 is found
to be considerably less repulsive than in the conventional model, and within
errors in agreement with expectations [22].

5. Energy-dependent amplitudes

Recently, Kolomeitsev, Kaiser and Weise [15] have suggested that pionic
atom data could be reproduced using a pion optical potential underlain by
chirally expanded πN amplitudes, retaining the energy dependence of the
amplitudes b0(E) and b1(E) for zero-momentum (q = 0) pions in nuclear
matter in order to impose the minimal substitution requirement E → E−Vc,
where Vc is the Coulomb potential. This has the advantage of enabling one
to use a systematic chiral expansion as an input [14], rather than singling
out the leading order term Eq. (8) for b1.

The chiral expansion of the πN amplitudes for q = 0 at the two-loop
level is well approximated by the following expressions [14, 15]:

4π
(

1 +
mπ

M

)

b0(E) ≈

(

σ − βE2

f2
π

+
3g2

Am3
π

16πf4
π

)

, (11)

4π
(

1 +
mπ

M

)

b1(E) ≈ −
E

2f2
π

(

1 +
γE2

(2πfπ)2

)

, (12)

gA is the nucleon axial-vector coupling constant, gA = 1.27, β and γ are
tuned to reproduce the threshold values b0(mπ) ≈ 0 and b1(mπ) =
−0.0885+0.0010

−0.0021 m−1
π [8], respectively. For b0, in view of the accidental

cancellations that lead to its near vanishing we limit our discussion to the
f−2

π term in Eq. (11), therefore choosing β = σm−2
π .

Implementing the minimal substitution requirement in the calculation
of pionic atom observables, the constant parameters b0,1 of the convention-
ally energy independent optical potential have been replaced in our calcula-
tion [24] by

b0,1(r) = b0,1 − δ0,1(ReB + Vc(r)) , (13)

where δ0,1 = ∂b0,1(E)/∂E is the appropriate slope parameter at threshold,
ReB is the (real) binding energy of the corresponding pionic atom state and
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Vc(r) is the Coulomb potential. The constant fit parameters b0,1 are then
expected to agree with the corresponding free πN threshold amplitudes if the
energy dependence is indeed responsible for the renormalized values found
in conventional analyses.

In addition to the above ‘chiral’ energy dependence for off-shell q = 0
pions we also present results for the empirically known on-shell πN am-
plitudes, when the pion energy E and its three-momentum q are related
by E2 = m2

π + q
2. This choice corresponds to the original suggestion by

Ericson and Tauscher [25] to consider the effect of energy dependence in
pionic atoms. Ericson subsequently [26] pointed out that, for strongly re-
pulsive short-range NN correlations, the on-shell requirement follows nat-
urally from the Agassi–Gal theorem [27] for scattering off non-overlapping
nucleons. The corresponding πN amplitudes are denoted as ‘empirical’ and
are taken from the SAID data base [28].
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Fig. 3. Values of χ2 for 100 data points (lower) and best-fit values of b1 (upper) as

function of the neutron density parameter α. ‘exp’ marks the experimental value
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Figure 3 shows results for the two kinds of energy-dependence mentioned
above. The left panels show that implementing the chiral off-shell energy
dependence leads to very significant deterioration in the fit to the data both
for pionic atoms (lower part) and for the free πN interaction (upper part).
Note also that the minimum in the χ2 curve occurs at unacceptably large
value of the parameter α. In contrast, the right hand side of the figure shows
good agreement both for pionic atoms and for the free πN interaction, in
accordance with the original suggestion made by Ericson and Tauscher [25].
Perhaps it is not too surprising that the off-shell q = 0 nuclear matter ap-
proach is inadequate when the pion-nuclear optical potential that generates
pionic-atom wavefunctions is being considered.

6. Statistical considerations and data sets

The results discussed so far have all been based on the ‘global 3’ data
set of Ref. [19] which consists of 100 data points. Any conclusion regarding
medium effects must obviously be linked to the uncertainties in the extracted
parameter values, and these invariably depend on the size of the data sets
used. In addition the uncertainties may depend critically on assumptions
made in the analysis such as assigning fixed values to some parameters.
These points are demonstrated in Table I.

The different columns of the table refer to various data sets, ranging
from 120 points for nuclei between 12C and 238U to just 20 points where the
deeply bound states provide half of the data. The top half of the Table is for
unrestricted χ2 fits whereas the lower part is for corresponding fits with the
parameter ReB0 set to zero. All the results in this table are for a conventional
potential, i.e. without explicit medium effects such as density-dependence or
energy-dependence of the amplitudes, and for neutron densities calculated
for α = 1.5 (Eq. (7)). From the top half of the table it is seen that the values
of b0 are essentially in agreement with the free πN value, within their rather
large uncertainties and that the values of b1 disagree with the corresponding
free πN value only for the two large data sets since the uncertainties become
too large for the two smaller data sets to reach such a conclusion. This
distinction becomes even sharper when the uncertainty due to the neutron
distributions is also included [19]. Another feature of the top half of the
table is that the parameter ReB0 is distinctly different from zero, although
its uncertainty is not small, only when the large data bases are being used.
For the two smaller data sets its value is consistent with zero.

Some recent papers insist on using the value of ReB0 = 0 [2–4] and the
lower part of the table addresses the consequences of such a constraint. The
first consequence is that the uncertainty of the parameter b0 becomes much
smaller than before and its values, in all cases, deviate sharply from the free
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TABLE I

Dependence of parameter values and uncertainties on the extent of data base and on
assumptions made regarding ReB0. Deterioration in the quality of fits is measured

by ∆χ2

χ2/F
, the increase of χ2 in units of χ2 per degree of freedom. Values of rn are

for α = 1.5.

Data ‘global 2’ ‘global 3’ light N = Z light N = Z
12C to 238U 20Ne to 238U + light N > Z +‘deep’

1s only 1s only
Points 120 100 22 20

χ2 237 171 54 35
χ2/F 2.1 1.8 3.0 2.2
b0(m

−1
π ) 0.000(6) −0.001(7) −0.009(17) −0.016(13)

b1(m
−1
π ) −0.101(3) −0.098(3) −0.095(13) −0.094(7)

ReB0(m
−4
π ) −0.085(30) −0.082(30) −0.048(72) −0.017(60)

ImB0(m
−4
π ) 0.049(2) 0.052(2) 0.049(2) 0.051(2)

χ2 259 190 56 35
χ2/F 2.3 2.0 2.9 2.1
∆χ2

χ2/F
9.6 10.6 0.7 0

b0(m
−1
π ) −0.018(1) −0.019(1) −0.020(3) −0.020(2)

b1(m
−1
π ) −0.102(3) −0.099(3) −0.093(12) −0.094(7)

ReB0(m
−4
π ) 0. (fixed) 0. (fixed) 0. (fixed) 0. (fixed)

ImB0(m
−4
π ) 0.048(2) 0.051(2) 0.048(2) 0.050(2)

‘deep’ refers to deeply bound 1s states in 115,119,123Sn and 205Pb.
b0 = −0.0001+0.0009

−0.0021 m−1
π and b1 = −0.0885+0.0010

−0.0021 m−1
π for the free πN

interaction.

πN value. This conclusion remains valid also for all the types of medium
effects for b1 considered in the present work. The second consequence is that
for the large data sets the constraint ReB0 = 0 indeed leads to a significant
deterioration in the quality of fits, as evidenced by the increase of χ2. Recall
that the natural unit for such increases is the value of χ2/F , the χ2 per
degree of freedom. For the large data sets the increase is 10 such units,
which is very significant. Note also that the values of b1 do not depend on
whether or not ReB0 is set to zero. Similar results are obtained for the other
models for b1 discussed above, but with values of b1 in agreement with what
is displayed in the figures. It is concluded that analyses of reduced data
sets with the constraint of ReB0 = 0 must lead to unreliable results. In
fact, analysing only the deeply bound states for 115,119,123Sn and 205Pb, we
obtain excellent fits to the data with values of b1 anywhere between −0.07
and −0.13 m−1

π .
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7. Summary

We have shown that global fits to large sets of data on strong interaction
effects in pionic atoms in terms of a theoretically-motivated optical potential
lead to very good description of the data (χ2/N ∼ 1.7) with well-determined
s-wave isovector amplitude that differs from the corresponding free πN am-
plitude by three standard deviations. This difference indicates modification
of the interaction in the medium and it was shown that a chiral-motivated
model where the pion decay constant is modified in the medium is capable
of reproducing the medium effects. An alternative approach where the em-
pirical on-shell energy dependence of the πN amplitude is included within
the minimal substitution E → E − Vc was also shown to be successful. In
contrast, the fully off-shell chiral energy dependence of the amplitudes fails
badly. The importance of unrestricted and unbiased fits to large scale data
sets has been demonstrated.

I wish to thank A. Gal for many fruitful discussions throughout the
whole project. This research was partially supported by the Israel Science
Foundation grant No. 131/01.
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