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Fractional diffusion equations are widely used to describe anomalous
diffusion processes where the characteristic displacement scales as a power
of time. For processes lacking such scaling the corresponding description
may be given by distributed-order equations. In the present paper we con-
sider different forms of distributed-order fractional kinetic equations and
investigate the effects described by different classes of such equations. In
particular, the equations describing accelerating and decelerating subdiffu-
sion, as well as those describing accelerating and decelerating superdiffusion
are presented.

PACS numbers: 05.40.+j, 02.50.–r

1. Introduction

The diffusion equation proposed by Adolf Fick almost 150 years ago
is a partial differential equation of parabolic type, with the first temporal
derivative on its l.h.s. and the second spatial derivative on its r.h.s. The
corresponding equation can be put down both for the particles’ concentration
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in a diffusing cloud and for a probability of a single particle’s position:

∂

∂t
p(x, t) = K

∂2

∂x2
p(x, t) . (1.1)

The mean squared particle’s displacement from its initial position given
by the solution of this equation grows linearly in time:

〈

x2(t)
〉

= 2Kt. This
scaling behavior follows immediately from the structure of Fick’s equation,
being second order in spatial coordinate and first order in time: Changing
the spatial scale by a factor of 2 corresponds to changing the time scale by
a factor of 4.

In complex systems this kind of behavior is often violated, being replaced
by an anomalous diffusion relationship,

〈

x2(t)
〉

∝ tβ , (1.2)

with β 6= 1, or (in absence of the second moment) by related forms where the
lower, not necessarily integer, moment of the distribution scales as a function
of time. The continuous description of anomalous diffusion is given by gener-
alizations of Fick’s scheme based on fractional derivatives [1]. The fractional
generalizations of the diffusion equation may have either a corresponding
fractional derivative instead of the whole-number one, or an additional frac-
tional derivative on the “wrong” side of the equation. In what follows we
refer to these two possibilities as to “normal” and “modified” forms of a frac-
tional diffusion equation. An example of the “normal” form is an equation
for superdiffusion with the Riesz fractional spatial derivative instead of the
second derivative on the r.h.s. [2]. The situation with an additional deriva-
tive on the “wrong” side is exemplified by the standard fractional diffusion
equation for subdiffusion [3]. We note that the two forms, i.e. the form with
a Caputo derivative on the l.h.s. for subdiffusive processes, and a form with
an additional spatial derivative on the l.h.s. for a superdiffusive process, are
equivalent to the commonly used ones. This equivalence will be discussed
in detail in Section 2 of the present work, introducing the corresponding
fractional operators.

Many physical processes, however, lack power-law scaling, Eq. (1.2), over
the whole time-domain. These processes can not be characterized by a
single scaling exponent β. Examples of processes lacking scaling include
several cases of decelerating subdiffusion (e.g. the Sinai diffusion [4]) and
decelerating superdiffusion (as exemplified by truncated Levy-flights [5]).
Such processes can be described by derivatives of distributed order [6, 7],
introduced by Caputo [8]. The equivalence between the different forms of
fractional diffusion equations is lost in this case: Different forms of the
distributed-order fractional equations describe different situations. Thus,
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the equations with the distributed-order derivatives on the “proper” side de-
scribe processes getting more anomalous in course of the time (accelerating
superdiffusion and decelerating subdiffusion) [9], while the equations with
additional distributed-order derivative on the “wrong” side describe the sit-
uations getting less anomalous (decelerating superdiffusion and accelerating
subdiffusion). As an example a special model with two fractional derivatives
of different orders is used throughout the work.

In Sections 2 and 3 we discuss the four forms of fractional diffusion
equations for the processes showing scaling behavior. These forms corre-
spond to possible permutations of fractional temporal/spatial derivative on
the “proper”/“wrong” side of the equation. Three of the four forms dis-
cussed below are well-known. The fourth one, to our best knowledge, was
not previously discussed. We first turn to the forms pertinent to temporal
fractional equations, i.e. to subdiffusion, and then to the superdiffusive case.
Sections 4 and 5 are devoted to the distributed-order generalizations of the
corresponding equations. The results are summarized in Section 6.

2. Two forms of time fractional diffusion equations

2.1. Riemann–Liouville form

The time fractional diffusion equation (TFDE) in the Riemann–Liouville
form (RL-form), which in our terminology corresponds to a “modified” form
of the fractional diffusion equation, reads [2]:

∂

∂t
p(x, t) = Kβ 0D

1−β
t

∂2

∂x2
p(x, t) , (2.1)

p(x, t = 0) = δ(x), 0 < β ≤ 1.
Here Kβ is a positive constant, [Kβ ]=cm2/secβ , and 0D

µ
t is the Riemann

–Liouville fractional derivative on the right semi-axis, which, for a “suffi-
ciently well-behaved” function φ(t), is defined as follows:

0D
µ
t φ =

d

dt
J1−µφ =

1

Γ (1 − µ)

d

dt

t
∫

0

dτ
φ(τ)

(t− τ)µ
, 0 ≤ µ < 1 , (2.2)

where Jαφ(t) = 1
Γ (α)

∫ t
0 dτ(t − τ)α−1φ(t), t > 0, α ∈ R

+ is the Riemann–

Liouville fractional integral of the order α. In what follows, we omit the
subscript “0”, for brevity.

Applying the Laplace transform,

φ̃(s) ≡ L {φ(t)} =

∞
∫

0

dte−stφ(t) ,
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and the Fourier-transform

g(k) ≡ Φ {g(x)} =

∞
∫

−∞

dxeikxg(x)

in succession, and using the Laplace transform of the Riemann–Liouville
derivative (2.2),

L {Dµ
t φ(t)} = sµφ̃(s) (2.3)

we get from Eq. (2.1) the form of the Laplace-transformed characteristic
function f(k, t) of the distribution p(x, t):

f̃(k, s) =
sβ−1

sβ +Kβk2
. (2.4)

The corresponding probability density function (PDF) is exactly the one
typical for continuous-time random walks with a power-law waiting-time
distribution [1, 2].

2.2. Caputo form

The TFDE in the Caputo form (C-form, corresponding to a “normal”
form of the fractional diffusion equation) is written as follows:

∂β

∂tβ
p(x, t) = Kβ

∂2

∂x2
p(x, t) , (2.5)

p(x, 0) = δ(x), where Kβ is the same constant as in Eq. (2.1), and the time
fractional derivative of order β, 0 < β < 1 is understood in the Caputo
sense [11],

∂β

∂tβ
φ ≡ Dβ

∗tφ(t) = J1−β d

dt
φ =

1

Γ (1 − β)

t
∫

0

dτ(t− τ)−β d

dτ
φ(τ) . (2.6)

Here, the sequence of temporal integration and differentiation is reversed
with respect to a Riemann–Liouville operator. Recalling the Laplace trans-
form of the Caputo derivative,

L

{

dµφ

dtµ

}

= sµφ̃(s) − sµ−1φ(0) , (2.7)

0 < µ < 1, and making the Fourier–Laplace transform of Eq. (2.5) we again
arrive at Eq. (2.4). Thus, both forms of TFDE are equivalent.
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In the literature, the third form of TFDE is mentioned, the one using
the Riemann–Liouville derivative [12]:

Dβ
t p(x, t) = Kβ

∂2

∂x2
p(x, t) +

t−β

Γ (1 − β)
p(x, 0) , (2.8)

0 < β < 1. The equivalence of the RL- and this third form can be eas-
ily shown by applying

∫ t
0 dt

′ . . . to both sides of Eq. (2.1) and using the

Riemann–Liouville derivative of a constant, Dβ
t 1 = t−β/Γ (1−β). The equiv-

alence of the “normal” (C-) and the third form can also be shown easily, if
one uses the relation between the Riemann–Liouville and Caputo derivatives
which can be obtained straightforwardly:

Dβ
t φ(t) =

∂β

∂xβ
φ+

t−β

Γ (1 − β)
φ(0) (2.9)

with 0 < β < 1. Then, starting, e.g., from the C-form of TFDE, Eq. (2.5),
and using Eq. (2.9) we immediately arrive at Eq. (2.8).

In this paper we are interested in the mean squared displacement (MSD)
given by

〈

x2(t)
〉

= L−1

{(

−∂
2f̃

∂k2

)

k=0

}

. (2.10)

From Eq. (2.4) we get:

〈

x2(t)
〉

= L−1
{

2Kβs
−β−1

}

=
2Kβt

β

Γ (1 + β)
. (2.11)

3. Two forms of space fractional diffusion equations

3.1. The “normal” form

The “normal” form of space fractional diffusion equation reads as:

∂p

∂t
= Kα

∂αp

∂ |x|α , (3.1)

p(x, t = 0) = δ(x), 0 < α ≤ 2, where Kα is a positive constant, [Kα] =
cmα/sec, and the Riesz fractional derivative ∂α/∂ |x|α (we adopt here the
notation introduced in [12]) is defined for a “sufficiently well-behaved” func-
tion f(x) through the Liouville–Weil derivatives [10]:

dα

d |x|α f(x) =

{

− 1
2 cos(πα/2)

[

Dα
+ +Dα

−

]

α 6= 1

− d
dxĤf(x) α = 1

, (3.2)
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where Dα
± are the left- and right-hand side Liouville–Weil derivatives,

Dα
+φ =

1

Γ (2 − α)

d2

dx2

x
∫

−∞

φ(ξ)dξ

(ξ − x)α−1
,

Dα
−φ =

1

Γ (2 − α)

d2

dx2

∞
∫

x

φ(ξ)dξ

(x− ξ)α−1
(3.3)

for 0 < α < 2, α 6= 1 (for α = 1 D1
± = ±d/dx), and H is the Hilbert

transform operator,

Hφ =
1

π

∞
∫

−∞

φ(ξ)dξ

x− ξ
.

In Fourier space the operators of fractional derivatives have a simple form:

Φ(Dα
±φ) =

∞
∫

−∞

dx exp(ikx)Dα
±φ = (∓ik)αφ(k) , (3.4)

where

(∓ik)α = |k|α exp

(

∓απi
2

sign k

)

.

Since

Φ(Hφ) = isign kφ(k) (3.5)

then, with the use of Eqs. (3.2)–(3.5) we get the expression, which is valid
for the Fourier transform of the Riesz fractional derivative, for all values
of α:

Φ

(

dαφ

d |x|α
)

= − |k|α φ(k) . (3.6)

Applying the Fourier-transform to Eq. (3.1), and noting Eq. (3.6), we get
the characteristic function for the PDF of Lévy flights,

f(k, t) = exp (−D |k|α t) , (3.7)

see Ref. [2].
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3.2. The “modified” form

Let us turn to the fractional equation for superdiffusion with the addi-
tional spatial derivative on its l.h.s.

∂2−α

∂ |x|2−α

∂p

∂t
= −Kα

∂2

∂x2
p , (3.8)

where Kα is the same as in Eq. (3.1). Note the minus sign in Eq. (3.8). This
sign gets clear when turning to a Fourier representation: applying Fourier
transform and using Eq. (3.6), we arrive at the characteristic function (3.7).
Thus, both forms of the space fractional diffusion equation, Eqs. (3.1) and
(3.8), are equivalent.

Since the mean square displacement diverges for Lévy flights [2], their
anomalous nature can be characterized by a typical displacement δx of the
diffusing particle,

δx ∝ 〈|x|q〉1/q , q < α , (3.9)

which differs, of course, from the MSD discussed in Eq. (2.10). To get the
q-th moment we use the following expression [13]:

〈|x|q〉 =
2

π
Γ (1 + q) sin

πq

2

∞
∫

0

dk (1 − Ref(k, t)) k−q−1 . (3.10)

Inserting Eq. (3.7) into Eq. (3.10) and changing to a new variable, ξ =
Kαk

αt, we obtain

∞
∫

0

dk . . . =
(Kαt)

1/α

α

∞
∫

0

dξ(1− e−ξ)ξ−q/α−1 =
(Kαt)

q/α

q
Γ
(

1 − q

α

)

, (3.11)

and, thus

〈|x|q〉 = C(q, α)(Kαt)
q/α , q < α . (3.12)

Here

C(q, α) =
2

πq
sin
(πq

2

)

Γ (1 + q)Γ
(

1 − q

α

)

. (3.13)

Note that for a = q = 2 Eqs. (3.12), (3.13) give

〈

x2
〉

= 2Kt .
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4. Distributed-order time fractional diffusion equations

4.1. Distributed-order time fractional diffusion equation in the RL form

The fractional diffusion equation with a distributed-order Riemann
–Liouville derivative reads:

∂p

∂t
=

1
∫

0

dβw(β)K(β)D1−β
i

∂2p

∂x2
, (4.1)

p(x, 0) = δ(x), where K(β) = Kτ1−β, [K] = cm2/sec, [τ ] = sec, w(β) is

a dimensionless non-negative function, which should fulfill
∫ 1
0 dβw(β) = 1.

If we set w(β) = δ(β − β0), 0 < β0 < 1, then we arrive at time fractional
diffusion equation in the RL form, see Eq. (2.1), where Kβ = Kτ1−β0 .

We now prove that the solution of Eq. (4.1) is a PDF. The derivation here
follows the method used in [14]. Its aim is to show that the random process
whose PDF obeys Eq. (4.1) is subordinated to the Wiener process. This
means that the trajectory of such a process corresponds to a simple Brownian
motion. However, this motion takes place in some intrinsic (“operational”)
time, which in turn is a nondecreasing random function of the physical
time t [14]. Making a Fourier–Laplace transform of Eq. (4.1) and using
Eq. (2.3) we get

f̃(k, s) =
1

sIRL

(

I−1
RL + k2Kτ

) , (4.2)

where

IRL(sτ) =

1
∫

0

dβ(sτ)−βw(β) . (4.3)

We rewrite Eq. (4.2) as follows:

f̃(k, s) =
1

sIRL

∞
∫

0

du exp
[

−u
(

I−1
RL + k2Kτ

)]

=

∞
∫

0

due−uk2KτG̃RL(u, s) ,

(4.4)
where

G̃RL(u, s) =
1

sIRL(sτ)
exp

[

− u

IRL(sτ)

]

(4.5)

is a Laplace transform of a function whose properties will be specified below.
Now, with the help of Eqs. (4.4) and (4.5) the PDF p(x, t) can be written
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as

p(x, t) =

∞
∫

−∞

dk

2π
e−ikx

∫

Br

ds

2πi
est

∞
∫

0

due−uk2KτG̃RL(u, s)

=

∞
∫

0

du
e−x2/4uKτ

√
4πuKτ

GRL(u, t) , (4.6)

where Br denotes the Bromwich integration contour.
In order to prove the positivity of p(x, t) we demonstrate that the func-

tion GRL(u, t) is the PDF providing the subordination transformation from
time scale t to time scale u, that is, GRL(u, t) is positive and normalized
with respect to u for any t. At first we demonstrate normalization,

∞
∫

0

duGRL(u, t) = L−1







∞
∫

0

du
e−u/IRL

sIRL







= L−1

{

1

s

}

= 1 . (4.7)

Now, to prove the positivity of function GRL(u, t), according to the Bernstein

theorem [15], it is enough to show that G̃RL(u, s), Eq. (4.5), is completely
monotonic as a function of s on positive real axis, i.e., it is positive and the
signs of its derivatives alternate. We do this for the special case when

w(β) = B1δ(β − β1) +B2δ(β − β2) (4.8)

with 0 < β1 < β2 ≤ 1, B1 > 0, B2 > 0, B1 + B2 = 1. This choice allows
us to show in a simple way the property of the diffusive behavior governed
by distributed-order diffusion equations. This is why this case is repeatedly
discussed in our article.

Inserting Eq. (4.8) into Eq. (4.3) we have

IRL(sτ) = b1s
−β1 + b2s

−β2 , (4.9)

where b1 = B1/τ
β1 , b2 = B2/τ

β2 . From Eq. (4.5) it follows that G̃RL(u, s)

is a product of two functions: G̃RL(u, s) = φ1(s)φ2(u, s) with

φ1 =
1

sIRL(sτ)
, φ2 = exp

[

− u

IRL(sτ)

]

. (4.10)

We will prove that both functions φ1 and φ2 are completely monotonic, and
therefore, as a product, G̃RL(u, s) is completely monotonic too.

Let us start from φ1. It can be rewritten as φ1 = φ(h(s)), where φ(y) =
1/y is a completely monotonic function, and h(s) = b1s

1−β1 + b2s
1−β2 is a
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positive function with a completely monotonic derivative (this is evident by
direct inspection). Therefore, φ1(s) is completely monotonic according to
Criterion 2 in [15], Chapter XIII, §4.

Now we turn to φ2. Again, it can be rewritten as φ2 = φ(ψ(s)), where
φ(y) = exp(−uy) is a completely monotonic function. According to the
same Criterion, it is enough to show that the positive function

ψ(s) =
1

IRL(sτ)
=

1

b1s−β1 + b2s−β2

=
sβ2

b2

1

1 + b1
b2
sβ2−β1

(4.11)

possesses completely monotonic derivative. By differentiating Eq. (4.11) we
get

ψ′(s) =
sβ2−1

b2

1

1 + b1
b2
sβ2−β1

− sβ2

b2

b1
b2

(β2 − β1)s
β2−β1−1

(

1 + b1
b2
sβ2−β1

)2

=
β2s

β2−1

b2

1

1 + b1
b2
sβ2−β1

1 + b1β1

b2β2
sβ2−β1

1 + b1
b2
sβ2−β1

. (4.12)

Denoting ξ = β2 − β1, 0 < ξ < 1, we note that this function is a product of
three completely monotonic functions, and thus is itself completely mono-
tonic, too. Indeed, (i) the first function is sβ2−1 being a negative power of
s; (ii) the second one is completely monotonic since it has the form g(h(s)),
with g(y) = 1/(1 + y) being completely monotonic, and h(ξ) = sξ is a posi-
tive function with a completely monotonic derivative; (iii) the last function
has the same form with g(y) = (1 + cy)/(1 + dy), where 0 < c < d with
c = b1β1/b2β2, d = b1/b2. The function g(y) is completely monotonic since
its n-th derivative (obtained using the Leibnitz rule) has the form

g(n)(y) =
(−1)n−1(c− d)n!dn−1

(1 + dy)n+1
,

and the signs of the successive derivatives alternate. Thus, we have proved
that ψ′(s), Eq. (4.12), is a completely monotonic function. Therefore the
exponential φ2, Eq. (4.10), is a completely monotonic function, too, and the

whole function, G̃RL(u, s), is completely monotonic as a product of two com-
pletely monotonic functions, φ1 and φ2. Therefore, the function GRL(u, t) is
a PDF and, according to Eq. (4.6), the function p(x, t) is a PDF, too. Thus,
we have proved that the solution of the distributed order time fractional
diffusion equation in the Riemann–Liouville form is a PDF.

We are interested in the MSD which is given by

〈

x2(t)
〉

= L−1

{(

−∂
2f̃

∂k2

)

k=0

}

= KτL−1

{

2IRL(sτ)

s

}

. (4.13)



Distributed-Order Fractional Kinetics 1333

For the particular case (4.8) we get, by inserting Eq. (4.9) into Eq. (4.13)
and making an inverse Laplace transform,

〈

x2(t)
〉

=
2κ1

Γ (1 + β1)

(

t

τ

)β1

+
2κ2

Γ (1 + β2)

(

t

τ

)β2

, (4.14)

where κ1 = B1Kτ and κ2 = B2Kτ . Since 0 < β1 < β2 ≤ 1, at small
times the first term in the r.h.s. of Eq. (4.14) prevails, whereas at large
times the second one dominates. Thus, the overall behavior corresponds to
accelerating subdiffusion.

4.2. Distributed-order time fractional diffusion equation in the C-form

The distributed-order time fractional diffusion equation in the “normal”
form can be written as

1
∫

0

dβτβ−1w(β)
∂βp

∂tβ
= K

∂2p

∂x2
, (4.15)

p(x, 0) = δ(x), where τ is a positive constant representing some characteris-
tic time of the problem (vide infra), [τ ] = sec, K is the diffusion coefficient,
[K] = cm2/sec, w(β) is a dimensionless non-negative function, and the time
fractional derivative of order β , 0 < β < 1 is understood in the Caputo
sense, Eq. (2.6). Note the difference between Eq. (4.15) and Eq. (4.1).

If we set w(β) = δ(β − β0), 0 < β0 < 1, we arrive at the “normal” form
of a fractional diffusion equation, Eq. (2.5), with β = β0 and Kβ = Kτ1−β0 .

Let us prove that the solution of Eq. (4.15) is a PDF. Applying the
Laplace- and Fourier-transforms in succession, we get:

f̃(k, s) =
1

s

IC(sτ)

IC(sτ) + k2Kτ
, (4.16)

where

IC(sτ) =

1
∫

0

dβ(sτ)βw(β) . (4.17)

We rewrite Eq. (4.16) in the form analogous to Eq. (4.4),

f̃(k, s) =
IC
s

∞
∫

0

du e−u[IC+k2Kτ ] =

∞
∫

0

du e−uk2Kτ G̃C(u, s) , (4.18)
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where

G̃C(u, s) =
IC(sτ)

s
e−uIC(sτ) (4.19)

is the Laplace transform of a function GC(u, t) whose properties will be spec-
ified below. Now, p(x, t) can be written in the form analogous to Eq. (4.6):

p(x, t) =

∞
∫

−∞

dk

2π
e−ikx

∫

Br

ds

2πi
est

∞
∫

0

due−uk2KτG̃C(u, s)

=

∞
∫

0

du
e−x2/4uKτ

√
4πuKτ

GC(u, t) . (4.20)

Similar to the RL case, the function GC(u, t) is the PDF providing the
subordination transformation, from time scale t to time scale u. Indeed, at
first we note that GC(u, t) is normalized with respect to u for any t. Using
Eq. (4.19) we get

∞
∫

0

duGC(u, t) = L−1







∞
∫

0

du
IRL

s
e−u/IC







= L−1

{

1

s

}

= 1 . (4.21)

To prove the positivity of GC(u, t) it is enough to show that its Laplace
transform is completely monotonic on the positive real axis [15]. The last
statement is proved by noting that it is a product of two completely mono-
tonic functions, IC/s and exp(−uIC). We again demonstrate this for the
particular choice of w(β), see Eq. (4.8). For this choice we obtain from
Eq. (4.17)

IC(s) = b1s
β1 + b2s

β2 , (4.22)

where b1 = B1τ
β1 , b2 = B2τ

β2 . Then, IC/s is completely monotonic as a
sum of the negative powers of s, and IC itself is a positive function with
a completely monotonic derivative. Thus, exp(−uIC) is also completely
monotonic. Thus, we have proved that it is completely monotonic, and that
GRL(u, t) is a PDF, according to the Bernstein theorem.

We are interested in the behavior of the MSD, i.e. in the second moment
of the PDF. Using Eq. (4.16), we have

〈

x2(t)
〉

= L−1

{(

−∂
2f̃

∂k2

)

k=0

}

= 2KτL−1

{

1

sIC(sτ)

}

. (4.23)
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Inserting Eq. (4.22) into Eq. (4.23) one obtains:

〈

x2(t)
〉

= 2KτL−1

{

1

s (b1sβ1 + b2sβ2)

}

=
2Kτ

b2
L−1

{

s−β1−1

b1
b2

+ sβ2−β1

}

.

(4.24)
Recalling the Laplace transform of the generalized Mittag–Leffler function
Eµ,ν(z), µ > 0, ν > 0, which can be conveniently written as [11]

L
{

tν−1Eµ,ν(−λtµ)
}

=
sµ−ν

sµ + λ
, Res > |λ|1/µ , (4.25)

we get from Eq. (4.24):

〈

x2(t)
〉

=
2Kτ

b2
tβ2Eβ2−β1,β2+1

(

−b1
b2
tβ2−β1

)

. (4.26)

To obtain asymptotics at small t, we use an expansion, which is, in fact
the definition of Eµ,ν(z), see [16], Ch. XVIII, Eq. (19):

Eµ,ν(z) =

∞
∑

n=0

zn

Γ (µn+ ν)
, (4.27)

which yields in the main order for the MSD

〈

x2(t)
〉

=
2Kτ

B2Γ (β2 + 1)

(

t

τ

)β2

∝ tβ2 . (4.28)

For large t we use the following expansion valid on the real negative axis,
see [16], Ch. XVIII, Eq. (21):

Eµ,ν(z) = −
N
∑

n=0

z−n

Γ (−µn+ ν)
+O

(

|z|−1−N
)

, |z| → ∞ (4.29)

which yields
〈

x2(t)
〉

=
2Kτ

B1Γ (β1 + 1)

(

t

τ

)β1

∝ tβ1 . (4.30)

Since β1 < β2, we have retarded subdiffusion. It is worthwhile to note
that the distributed-order equation (4.15) with the Caputo derivative always
describes retarding, or slowing-down, sub-diffusive processes. Indeed, it is
clearly seen from Eqs. (4.22), (4.23) that, for w(β) given by Eq. (4.8), for
large s (short times) I(sτ) behaves as sβ2 , so that, due to the Tauberian
theorem, the MSD behaves as tβ2 , while at long times (small s) I(sτ) ∝ sβ1

and, respectively,
〈

x2
〉

∝ tβ1 , β1 < β2. Thus, Eq. (4.15) cannot describe the
accelerating sub-diffusive process. The same arguments applied to Eq. (4.1)
with the Riemann–Liouville derivative demonstrate that Eq. (4.1) cannot
describe retarded sub-diffusive processes.
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5. Distributed-order space fractional diffusion equation

5.1. The “normal” form

We write the distributed-order space fractional diffusion equation in the
“normal” form as

∂p

∂t
=

2
∫

0

dαK(α)
∂αp

∂ |x|α , p(x, 0) = δ(x) , (5.1)

where K(α) is a (dimensional) function of the order of the derivative α,
and the Riesz space fractional derivative ∂α/∂ |x|α is given by its Fourier
transform, see Eq. (3.6). SettingK(α) = Kα0

δ(α−α0) we arrive at Eq. (3.1).
In the general case K(α) can be represented as

K(α) = lα−2Kw(α) , (5.2)

where l and K are dimensional positive constants, [l] = cm, [K] = cm2/sec
and w is a dimensionless non-negative function of α. The equation for the
characteristic function of Eq. (5.1) has the solution

f(k, t) = exp







−Kt
l2

2
∫

0

dαw(α)(|k| l)α






. (5.3)

Note that the normalization condition,

∞
∫

−∞

dxp(x, t) = f(k = 0, t) = 1 (5.4)

is fulfilled.
Let us consider the simple particular case,

w(α) = A1δ(α − α1) +A2δ(α − α2) , (5.5)

where 0 < α1 < α2 ≤ 2, A1 > 0, A2 > 0. Inserting Eq. (5.5) into Eq. (5.3)
we have

f(k, t) = exp {−a1 |k|α1 t− a2 |k|α2 t} , (5.6)

where a1 = A1K/l
2−α1 , a2 = A2K/l

2−α2 . The characteristic function (5.6)
is a product of two characteristic functions of Lévy stable PDFs with the

Lévy indexes α1, α2, and the scale parameters a
1/α1

1 and a
1/α2

2 , respectively.
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Therefore, the inverse Fourier transformation of Eq. (5.6) gives the PDF
which is a convolution of two stable PDFs,

p(x, t) = a
− 1

α1

1 a
− 1

α2

2 t
− 1

α1
− 1

α2

∞
∫

−∞

dx′Lα1,1

(

x− x′

(a1t)
1

α1

)

Lα2,1

(

x′

(a2t)
1

α2

)

,

(5.7)
where Lα,1 is the PDF of a symmetric Lévy stable law given by its charac-
teristic function

L̂α,1(k) = exp (− |k|α) . (5.8)

The PDF given by Eq. (5.7) is, obviously, positive, as the convolution of two
positive PDFs.

The PDF will be also positive, if the function A(α) is represented as a
sum of N delta-functions multiplied by positive constants, N is a positive
integer. Moreover, if A(α) is a continuous positive function, then discretizing
the integral in Eq. (5.1) by a Riemann sum and passing to the limit we can
also conclude on the positivity of the PDF in the general case.

Let us consider the q-th moment, Eq. (3.10), at small and large t. After
inserting Eq. (5.6) into Eq. (3.10) we get

〈|x|q〉 =
2

π
Γ (1 + q) sin

(πq

2

)

∞
∫

0

dk
(

1 − e−tφ(k)
)

k−q−1 , (5.9)

where
φ(k) = a1k

α1 + a2k
α2 . (5.10)

In order to get the q-th moment at small t, we expand exp (−a1 |k|α1 t)
in power series with subsequent integration over k. As the result we have
the following expansion valid at q < α1:

〈|x|q〉 =
2

πq
(a2t)

q/α2 sin
(πq

2

)

Γ (1 + q)Γ

(

1 − q

α2

)

×







1 +
1

Γ
(

1 − q
α2

)

∞
∑

n=1

(−1)n+1

α2n!
an

1a
−

nα1

α2

2 Γ

(

nα1 − q

α2

)

t
n
(

1−
α1

α2

)







(5.11)

for t → 0. We recall that the radius R of convergence of a series
∑∞

n=0 cnx
n

is determined from the equation

1

R
= lim

n→∞
|cn|1/n .
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Then, by using the Stirling formula, one can see that in case of Eq. (5.11)

|cn|1/n ∼ nα1/α2−1 → 0 for n → ∞, and therefore expansion (5.11) is valid
at all t. The leading term of a series (5.11) gives for the characteristic
displacement at small t,

δx ∼ 〈|x|q〉1/q ∝ t1/α2 . (5.12)

In order to get the q-th moment at large t we integrate by parts the right
hand side of Eq. (5.9):

〈|x|q〉 =
2

π
Γ (1 + q) sin

(πq

2

) t

q
J(t) , (5.13)

where

J(t) =

∞
∫

0

dkζ(k)e−tφ(k) (5.14)

with

ζ(k) =
φ′(k)

kq
=
a1α1k

α1 + a2α2k
α2

kq+1
.

Since at small k one has φ(k) ≈ a1k
α1 , ζ(k) ≈ a1α1k

α1−q−1, then at large t
we have exactly the case of Laplace asymptotic integral, see [17], Chapter III,

Theorem 7.1. For J(t) one immediately obtains J(t) = a
q/α1

1 tq/α1−1Γ (1 −
q/α1) and

〈|x|q〉 ∼ 2

πq
(a1t)

q/α1 sin
(πq

2

)

Γ (1 + q)Γ

(

1 − q

α1

)

, q < α1 . (5.15)

For the characteristic displacement at large t we get

δx ∼ 〈|x|q〉1/q ∝ t1/α1 . (5.16)

Therefore, at small times the characteristic displacement grows as t1/α2 ,
whereas at large times it grows as t1/α1 . Since α1 < α2, one encounters an
accelerated superdiffusion.

5.2. The “modified” form

Let us now consider the conjugated form of the equation, namely one
with an additional distributed-order fractional operator in the l.h.s.:

2
∫

0

dαw(α)l2−α ∂2−α

∂ |x|2−α

∂p

∂t
= −K∂2p

dx2
, p(x, 0) = δ(x) , (5.17)



Distributed-Order Fractional Kinetics 1339

where l, K and w have the same meaning as in Eq. (5.2). Setting w(α) =
δ(α − α0) we arrive at Eq. (3.8) where Kα ≡ Kα0

= Klα0−2. The equation
for the characteristic function of the solution of Eq. (5.17) reads:

f(k, t) = exp

[

− Kt/l2
∫ 2
0 dαw(α)(|k| l)α

]

(5.18)

(compare with Eq. (5.3)). Note that the normalization condition, Eq. (5.4),
is fulfilled.

As we did it throughout the present article, let us consider a particular
case of

w(α) = A1δ(α − α1) +A2δ(α − α2) , (5.19)

0 < α1 < α2 ≤ 2. From Eq. (5.18) we get for the characteristic function,

f(k, t) = exp

[

− t
a1

|k|α1
+ a2

|k|α2

]

, (5.20)

where a1,2 = A1,2l
2−α1,2/K. The proof of non-negativity of the PDF given

by inverse Fourier transform of Eq. (5.20) follows along the same lines as for
the accelerating subdiffusion case.

The q-th moment is given by Eq. (5.9), where

φ(k) =
1

a1k−α1 + a2k−α2
. (5.21)

We insert Eq. (5.21) into Eq. (5.9) and pass to a new variable ξ = tkα1/α1.
For the integral over k we get

∞
∫

0

dk . . . =

(

t

a1

)q/α1 1

α1

×
∞
∫

0

dξξ−1−q/α1







1 − exp



− ξ

1 + a2

a1
ξ
1−

α2

α1

(

t
a

)

α2

α1
−1











.

(5.22)

At small t we can neglect the term with t in the denominator in square
brackets. Therefore,

〈|x|q〉 = C(q, α1)

(

t

α1

)q/α1

, q < α1 , (5.23)



1340 I.M. Sokolov, A.V. Chechkin, J. Klafter

where C(q, α1) is given by Eq. (3.13), and

δx ∼ 〈|x|q〉1/q ∝ t1/α1 (5.24)

for t→ 0.
In order to get the q-th moment at large t, we again use the Laplace

method. Turn to Eq. (5.13), where φ(k) is given by Eq. (5.21) and

ζ(k) =
φ′(k)

kq
=

1

k1+q

a1α1k
−α1 + a2α2k

−α2

(a1k−α1 + a2k−α2)2
. (5.25)

Since at small k we have φ(k) ≈ kα2 , ζ(k) ≈ (α2/a2) k
α2−q−1, then at large t

we again have exactly the case of Laplace asymptotic integral [17]. For J(t)

we have immediately J(t) = a
−q/α1

2 tq/α2−1Γ (1 − q/α2), and

〈|x|q〉 ≈ C(q, α2)

(

t

α2

)q/α1

, q < α1 , (5.26)

where C(q, α) is given by Eq. (3.13), and

δx ∼ 〈|x|q〉1/q ∝ t1/α2 (5.27)

for t→ ∞.
Therefore, at small times the characteristic displacement grows as t1/α1 ,

whereas at large times it grows as t1/α2 . Since α1 < α2, we encounter
retarding superdiffusion.

6. Conclusions

Distributed-order diffusion equations generalize the approach based on
fractional diffusion equations to processes lacking temporal scaling. The
typical forms of fractional diffusion equations can be classified with respect
to the position of the fractional derivative in time/coordinate instead of or
in addition to the first and second derivatives in the classical Fick’s form. In
the present paper we considered the corresponding forms of distributed-order
fractional diffusion equations and elucidate the effects described by different
classes of such equations. We show that equations with the distributed-
order fractional operator replacing the corresponding whole-number deriva-
tive describe processes getting more anomalous in course of the time, i.e.
the accelerating superdiffusion or retarded subdiffusion. On the opposite,
equations with additional fractional operators on the “wrong” side of the
diffusion equation describe processes getting less anomalous, i.e. retarded
superdiffusion and accelerating subdiffusion.



Distributed-Order Fractional Kinetics 1341

The work was supported by an INTAS grant. IMS gratefully acknowl-
edges the support by the Fonds der Chemischen Industrie.

REFERENCES

[1] I.M. Sokolov, J. Klafter, A. Blumen, Physics Today 55, 48 (2002).

[2] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000).

[3] R. Metzler, E. Barkai, J. Klafter, Phys. Rev. Lett. 82, 3563 (1999).

[4] Ya.G. Sinai, Theory Probab. & Appl. 27, 256 (1982).

[5] R.N. Mantegna, H.E. Stanley, Phys. Rev. Lett. 73, 2946 (1994).

[6] A.V. Chechkin, J. Klafter, I.M. Sokolov, Europhys. Lett. 63, 326 (2003).

[7] I.M. Sokolov, A.V. Chechkin, J. Klafter, preprint, cond-mat/0309464.

[8] M. Caputo, Fract. Calc. Appl. Anal. 4, 421 (2001).

[9] A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Phys. Rev. E66, 046129 (2002).

[10] S.G. Samko, A.A. Kilbas, O.I. Marichev, Integraly i proizvodnye drobnogo
poryadka i nekotorye ikh prilozheniya, Nauka i technika, Minsk 1987 (in Rus-
sian); Engl. Transl. Fractional Integrals and Derivatives, Theory and Applica-
tions, Gordon and Breach, Amsterdam 1993.

[11] R. Gorenflo, F. Mainardi, in Fractals and Fractional Calculus in Continuum
Mechanics, A. Carpinteri, F. Mainardi (eds.) Springer Verlag, Wien and New
York 1997, p. 223.

[12] A.I. Saichev, G.M. Zaslavsky, Chaos 7, 753 (1997).

[13] V.M. Zolotarev, Odnomernye ustoichivye raspredeleniya, Mir, Moskva 1983
(in Russian); Engl. Trans. One Dimensional Stable Distributions, Amer. Math.
Soc., Providence, RI, 1986.

[14] I.M. Sokolov, Phys. Rev. E63, 056111 (2001).

[15] W. Feller, An Introduction to Probability Theory and Its Applications, vol. II,
John Wiley and Sons, Inc., 2-nd ed., New York 1971.

[16] A. Erdélyi, ed., Bateman Manuscript Project. Higher Transcendental Func-
tions, vol. III., McGraw-Hill, Inc., New York 1955.

[17] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York
1974.


