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LÉVY STABLE PROCESSES. FROM STATIONARY
TO SELF-SIMILAR DYNAMICS AND BACK.

AN APPLICATION TO FINANCE∗
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We employ an ergodic theory argument to demonstrate the founda-
tions of ubiquity of Lévy stable self-similar processes in physics and present
a class of models for anomalous and nonextensive diffusion. A relation-
ship between stationary and self-similar models is clarified. The presented
stochastic integral description of all Lévy stable processes could provide
new insights into the mechanism underlying a range of self-similar natural
phenomena. Finally, this effect is illustrated by self-similar approach to
financial modelling.

PACS numbers: 05.40.–a, 02.50.Ey, 05.20.–y, 05.45.–a

1. Introduction

Over the past decade there has been much interest in the asymptotic
behaviour of dynamical systems, in particular in detecting self-similar char-
acter of these systems and testing for the existence of so called “long mem-
ory” or “long-range dependence”. It turns out that the self-similar processes
are very important mathematical objects which can be used to model many
physical phenomena (see [1–10] and references therein). After the first step
made by Einstein and Smoluchowski who explained why the range reached
by a Brownian particle is proportional to the square root of the movement
duration, there were constructed many other self-similar processes including
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the most prominent examples: fractional Brownian, Lévy stable, and frac-
tional Lévy stable motions [10–12]. However, as we will show here they are
completely described by a deterministic kernel and the stochastic integral
with respect to the Lévy symmetric α-stable process.

In Section 2 we discuss the canonical decomposition of H-self-similar
Lévy symmetric α-stable processes. The aim is to show the structure of
this class of self-similar processes. A variety of mathematical models for
anomalous [2, 6] or nonextensive [13] diffusion and other physical processes
[6, 7] is provided. To be more precise we develop tools for study of dif-
fusion processes described by the following stochastic differential equation
dXt = µ(t,Xt)dt + σ(t,Xt)dZ

α
t , where dZα

t stands for the increments of
Lévy α-stable motion Zα

t , see [11]. Two basic examples: fractional Brown-
ian motion and fractional Lévy stable motion are described first in the form
of stochastic integrals. Next we discuss the integral representation of all
Lévy stable self-similar processes in the language of nonsingular flows and
exploit the connection with the Hopf decomposition. We identify the three
components of the decomposition with mixed fractional motion, harmoniz-
able and evanescent processes, respectively. The first process corresponds to
a dissipative part and two other to a conservative part of the dynamics given
by the nonsingular flow representing a Lévy stable and self-similar process.
A number of special examples discussed in the paper demonstrate that the
proposed integral representation is user-friendly.

In his pioneering paper [14] Lamperti defined a transformation X(t) =
tHY (a log t) which changes stationary processes Y (t) to the corresponding
self-similar ones X(t). In this context a question arises whether the transfor-
mations proposed by Lamperti are unique. In Section 3 we search for func-
tions φ, ψ, ζ and η such that X(t) = φ(t)Y (ψ(t)) is H-ss for a non-trivial
stationary process Y , and Y (t) = ζ(t)X(η(t)) is stationary for a non-trivial
H-ss process X. We present two constructions in Section 3 which lead to
the conclusion that essentially φ(t) = tH , ψ(t) = a log t, ζ(t) = e−bHt and
η(t) = ebt for some a, b ∈ R. In Section 3 also a visualization of the Lam-
perti transformation is provided. Next we study the influence of various a’s
and b’s on distributions of corresponding processes. This is illustrated in
Section 4 by four processes chosen to express a difference between the Gaus-
sian and non-Gaussian case. As a result of this investigation, we construct,
in a natural way, a pair of distinct SαS Ornstein–Uhlenbeck processes for
α < 2, already known in the literature [15].

In Section 5 we present a test on a DJIA index financial data which
justifies using self-similar models as asset price processes. A modification
of the Black–Scholes model is presented. The idea is to change, in the
stochastic differential equation describing discounted stock prices process Zt

with respect to the reference measure Q, the differential dB̃t to dMt, where
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Mt is a martingale generating the same filtration (history) as BH
t and is well

defined for 1
2 < H < 1. As a result of the investigation we obtain an option

pricing formula which appears to be an extension of the Black–Scholes one
for dependent stock returns. The differences are illustrated graphically. We
hope that this type of modelling can be used not only in econophysics.

2. Stochastic representation

A process X = {X(t)}t≥0 is called self-similar [14] if for some H > 0,

X(at)
d
= aHX(t) for every a > 0 , (1)

where
d
= denotes equality of all finite-dimensional distributions of the pro-

cesses on the left and right. X is also called a H-self-similar process and the
parameter H is called the self-similarity index or exponent. If we interpret t
as “time” and Xt as “space” then (1) tells us that every change of time scale
a > 0 corresponds to a change of space scale aH . The bigger H, the more
dramatic is the change of the space co-ordinate. Notice that (1), indeed,
means a “scale-invariance” of all finite-dimensional distributions of X . This
property of a self-similar process does not imply the same for the sample
paths. A convenient mathematical tool to observe self-similarity is provided
by so-called quantile lines [11] which will be exploited in Section 3.

The fractional Brownian motion (fBm) has the integral representation

BH(t) =

∞
∫

−∞

(

(t− u)
H−1/2
+ − (−u)H−1/2

+

)

B(du) , (2)

where x+ = max(x, 0) and B(du) is a symmetric Gaussian independently
scattered random measure [12]. The classic Brownian motion B(t), is simply
a special case of fBm when H = 1/2. In this case B ((s, t]) = B(t) − B(s)
and the above integral with the deterministic kernel has to be understood
in the Itô sense.

The most commonly used extension of fBm to the α-stable case is the
fractional Lévy stable motion (fLsm). The process Z

H
α =

{

ZH
α (t)

}

t∈R
is

defined by the following integral representation

ZH
α (t) =

∞
∫

−∞

(

(t− u)
H− 1

α

+ − (−u)H− 1

α

+

)

Zα(du) , (3)

where Zα is a symmetric Lévy α-stable independently scattered random
measure [11, 12]. The integral is well defined for 0 < H < 1 and 0 < α ≤ 2
as a weighted average of the Lévy stable motion Zα(u) over the infinite past.
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This process is H-self-similar and has stationary increments. Let us
observe that H-self-similarity follows from the above integral representation
and the fact that the kernel is d-self-similar with d = H − 1/α, when the
integrator Zα(du) is 1/α-self-similar. This implies the following important
relation H = d+ 1/α [10].

The representation (3) of fLsm is similar to the representation (2) of fBm.
Therefore fLsm reduces to fBm if one sets α = 2. When we put H = 1/α
we obtain the Lévy α-stable motion which is an extension of the Brownian
motion to the α-stable case.

Now we exploit the connection between theory of self-similar Lévy stable
processes and ergodic theory of nonsingular flows. We use the minimal
integral representation of any H-self-similar Lévy symmetric α-stable (SαS)
process {Xt}t∈R+

of the form

Xt =

∫

S

tH [atf ◦ φt]m
1/α
t dM, t ∈ R+ . (4)

Here Sα S stands for the Lévy symmetric α-stable distribution of the process
{Xt}t∈R, {φt}t∈R+

is a nonsingular multiplicative flow on (S, µ), {at}t∈R+

is a cocycle for this flow taking values in {−1, 1}, mt = d(µ ◦ φt)/dµ,
f ∈ Lα(S, µ) and M is a SαS random measure [16].

The stochastic process Xt defined in (4) can be interpreted as a weighted
average of the SαS random measure dM over the infinite past with the

weight given by the kernel ft(u) = tH [atf ◦ φt]m
1/α
t . Let us point out that

formula (4) can be given in an equivalent form as the following stochastic
differential dXt = ft(u)dM(t), where dM(t) corresponds to the increment of
SαS-stable motion Zα

t . Thus the stochastic integral (4) is equivalent to the
diffusion without drift (i.e. µ = 0) and with diffusion coefficient (σ = ft()).
The self-similarity property of the above integral with parameter H, follows
directly from 1

α -self-similarity of the random measure M and the following

property of the kernel fct(u) = cH−1/αft(uc
−1).

It follows from (4) that every measurable Lévy SαS self-similar process
is generated by a nonsingular flow. The standard Hopf decomposition [17] of
flows onto conservative and dissipative parts in ergodic theory induce natural
decomposition of the Lévy stable self-similar processes. Consequently, every
Lévy SαS self-similar process {Xt}t>0 admits a unique decomposition into
three independent parts

{Xt}t>0
d
= {X(1)

t }t>0 + {X(2)
t }t>0 + {X(3)

t }t>0 , (5)

where the first process on the right-hand side is a Mixed Fractional Motion
(MFM), the second is harmonizable, and the third one is an H-ss evanescent
process, see [16] for details.
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3. The Lamperti transformation

We start from a illustration of the Lamperti transformation by demon-
strating graphically the statistical behaviour of self-similar processes and
corresponding stationary ones.

We generate the fractional SαS motion with parameters H and α, ap-
plying the algorithm presented in Janicki and Weron [11]. It is based on
Maejima [18] who studied the domains of attraction of the fractional and
log-fractional stable motions in terms of moving averages. They are exam-
ples of the first (conservative) part of the canonical decomposition given in
formula (5). In Fig. 1 we can see four trajectories of the process (thin lines)
for α = 1.6 and H = 0.8. To give the insight view on the nature of the pro-
cess, we follow [11]. We compute quantiles in the points of discretization for
some fixed p (0 < p < 0.5), i.e. we compute F−1(p) and F−1(1−p), where F
is the distribution function. Fig. 1 and Fig. 2 have the same graphical form
of output. The thin lines represent four sample trajectories of the process.
The thick lines stand for quantile lines, the bottom one for p = 0.05 and
the top one for 1 − p = 0.95. The lines determine the subdomain of R

2

to which the trajectories of the approximated process should belong with
probabilities 0.9 at any fixed moment of time. In Fig. 1 they are of the form
y = ctH , where c = F−1(p) is evaluated at t = 1, see formula (1). In Fig. 2
we can see the corresponding process obtained by the Lamperti transfor-
mation for the parameter H = 0.8. We can observe that now the quantile
lines are “parallel”. This means they are time invariant, demonstrating the
stationarity of the process.
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Fig. 1. Visualization of the fractional stable motion for H = 0.8 and α = 1.6.
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Fig. 2. Visualization of the stationary process obtained from the fractional stable

motion (from Fig. 1) by the Lamperti transformation for H = 0.8.

When for two stochastic processes X = (X(t)) and Y = (Y (t)), X(t)
d
=

aY (t) for some a ∈ R\{0}, we say that X and Y are essentially equivalent.
Henceforth we will not distinguish between such processes. Furthermore,
we will assume that all considered processes throughout this section are
stochastically continuous.

Next we discuss the uniqueness of the generalized Lamperti transforma-
tions [19] leading from stationary to self-similar processes, and conversely.

Construction 1. (From stationary to self-similar dynamics)
Let 0 < H <∞.

(i) If (Y (t))t∈R is a stationary process and a ∈ R, then

X(t) =

{

tHY (a log t), for t > 0 ,
0, for t = 0

(6)

is H-ss.

(ii) Conversely, if for some continuous functions φ, ψ on (0,∞) and for a
non-trivial stationary process Y = (Y (t))t∈R,

X(t) =

{

φ(t)Y (ψ(t)), for t > 0 ,
0, for t = 0

(7)

is H-ss, then φ(t) = tH and ψ(t) = a log t for some a ∈ R.



Lévy Stable Processes . . . 1349

Construction 2. (From self-similar to stationary dynamics)
Let 0 < H <∞.

(i) If (X(t))t≥0 is an H-ss process and b ∈ R, then Y (t) = e−bHtX(ebt),
t ∈ R, is stationary.

(ii) Conversely, if for some continuous functions ζ, η, where η is invertible,
and for a non-trivial H-ss process (X(t)), Y (t) = ζ(t)X(η(t)), t ∈ R,
is stationary, then ζ(t) = e−bHt, and η(t) = ebt for some b ∈ R.

We note here that the above construction can be repeated in more gen-
eral setup giving the relationship between the classes of semi-self-similar
processes and periodically distributed processes, see [1, 20, 21].

Let us observe that marginal distributions do not depend on the choice

of a and b, that is, X(t) = tHY (a log t)
d∼ tHY (1) since Y is stationary,

and Y (t) = e−bHtX(ebt)
d∼ X(1) since X is H-ss. The parameters a and b

are meaningful when considering finite-dimensional distributions, hence the
influence of a and b will be discussed in the sequel. We want to establish
the influence of a’s and b’s on distributions of the corresponding processes.

Proposition. (A correspondence principle)
Let 0 < H <∞.

(i) If Y = (Y (t))t∈R is a non-trivial stationary process and if for some

a, a′ ∈ R\{0} tHY (a log t)
d
= tHY (a′ log t), then either a = a′ or

a = −a′.

(ii) If X = (X(t))t≥0 is a non-trivial H-ss process and if for some b, b′ ∈
R\{0} e−bHtX(ebt)

d
= e−b′HtX(eb′t), then either b = b′ or b = −b′.

Part (i) follows directly from the fact that if Y = (Y (t))t∈R is a non-

trivial stationary stochastic process and if Y (ct)
d
= Y (t), for some c ∈ R\{0},

then either c = −1 or c = 1. In order to check (ii) it is enough to apply the
same fact to Y (t) = e−HtX(et).

Up to now we have considered processes merely assuming that they are
stochastically continuous. In order to gain insight into the influence of differ-
ent a’s and b’s on finite-dimensional distributions of corresponding processes
we are to concentrate on α-stable processes. We will study Gaussian and
non-Gaussian examples to take a different view of the foregoing results.
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4. Ornstein–Uhlenbeck processes

Note that for Gaussian stationary processes Y (t)
d
= Y (−t). Hence if Y

is Gaussian, then the statement (i) in the above proposition can be replaced

by that tHY (a log t)
d
= tHY (a′ log t) if and only if a = ±a′, and if X is

Gaussian, then (ii) can be replaced by that e−bHtX(ebt)
d
= e−b′HtX(eb′t) if

and only if b = ±b′. Therefore we have the following.

Example 1 Let 0 < H < ∞ and (Yλ(t))t∈R be a Gaussian Ornstein–
Uhlenbeck process, namely

Yλ(t) =

t
∫

−∞

e−λ(t−x)B(dx), t ∈ R , (8)

where B(t) is a standard Brownian motion. Then

tHYλ(a log t)
d
= tHYλ(a′ log t), for t > 0 if and only if a = ±a′.

Example 2 Let (X(t))t≥0 be a Gaussian H-ss process and 0 < H < 1.
(If, in addition, it has stationary increments, it is the fractional Brown-

ian motion defined by the stochastic integral (2)). Then e−bHtX(ebt)
d
=

e−b′HtX(eb′t), for t ∈ R, if and only if b = ±b′.

Let us recall that the Gaussian Ornstein–Uhlenbeck process can be ob-
tained by transforming the Brownian motion by the Lamperti transforma-
tion and there exists only one such process (this was observed by Doob and
Itô [11]). How does this fact match the above results? Comparing the co-
variance functions we obtain that generalized Lamperti transformation with
parameter a maps the Brownian motion B(t) to the Gaussian Ornstein–
Uhlenbeck process Yλ(at) (characterized by parameter λ, where λ = 1

2).
Observe that Yλ(at) and Yλ(a′t) are different processes when a 6= ±a′

(with respect to finite-dimensional distributions) but nevertheless they are

still in the same class of processes because Yλ(at)
d
=

√
aYaλ(t), (see Exam-

ple 1). Due to the above generalization of the Lamperti theorem we are
able to obtain the complete class of Ornstein–Uhlenbeck processes from the
standard Brownian motion.

Using the generalized Lamperti transformation with different a’s, one
can generate the entire class of H-ss Gaussian Markov processes starting
from the standard Ornstein–Uhlenbeck process with λ = 1, (see Exam-
ple 1). They are given by the covariance function in the following way:
E[X(t)X(s)]=tHsHE[Y1(a log t)Y1(a log s)]= tHsHe−a(log t−log s)=tH−asH+a,
where a > 0 and s < t.

We proceed to non-Gaussian stable cases.
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Example 3 Let 0 < H <∞ and (Yλ(t))t∈R be a SαS Ornstein–Uhlenbeck

process, namely Yλ(t) =
∫ t
−∞ e−λ(t−x)Zα(dx), t ∈ R where

0 < α < 2. Then tHYλ(a log t)
d
= tHYλ(a′ log t), for t > 0, if and only

if a = a′.

0

1

2

3

4

5 −10

−5

0

5

10

0

0.5

1

st
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−10−8−6−4−20246810

0

0.5

1

s

t

Fig. 3. The kernel of the integral representation of the SαS Lévy motion with

α = 1.6 (left panel), the kernel of the corresponding stationary process through the

Lamperti transformation for H = 1/1.6, i.e. the SαS Ornstein–Uhlenbeck process

(right panel).

Example 4 Let 0 < α < 2, H = 1
α and (Zα(t))t≥0 be a SαS Lévy motion.

Then e−bHtZα(ebt)
d
= e−b′HtZα(eb′t), for t ∈ R if and only if b = b′.

By the proposition it is enough to show that e−HtZα(et)
d
6= eHtZα(e−t),

which is equivalent to Zα(t)
d
6= t2HZα(t−1). For that, we show that the pro-

cess on the right hand side does not have independent increments. To this

end, it suffices to represent the process by a stable integral t2H
∫ t−1

0 dZα(u)
and to check its increments. Use the fact that two non-Gaussian sta-
ble random variables

∫

fdZα and
∫

gdZα are independent if and only if
f · g = 0 a.e. (see [11, 12]).

As in the Gaussian case there is a correspondence between the SαS Lévy
motion Zα(t) (characterized by the parameter α) and the SαS Ornstein–
Uhlenbeck process Yλ(at) (determined by α and λ, where λ = 1

α) through the
generalized Lamperti transformation with parameter a. It is enough to com-
pute and compare the characteristic functions of processes {e−at/αZα(eat)}
and {Y1/α(at)}.



1352 K. Burnecki, A. Weron

Contrary to the Gaussian case, Yλ(at) defines distinct processes for a
and for −a (see Example 3). This is a kind of symmetry breaking effect.
For example, a = 1 and a = −1 produce the SαS Ornstein–Uhlenbeck
and the reverse SαS Ornstein–Uhlenbeck process, respectively (which are

different when 0 < α < 2), see [11,12]. Since Yλ(at)
d
= a1/αYaλ(t), so we can

construct only two different Ornstein–Uhlenbeck processes.

5. Self-similar processes in financial modelling

A “self-similar” structure is one that looks the same on a small or a large
scale. For example, share prices of stock when plotted against time have
very much the same shape on a yearly, monthly, weekly and even on a daily
basis. Brownian motion (1

2 -ss process) as a limit process is an unavoidable
tool in finance. In his famous paper, Bachelier proposed Brownian motion
as an appropriate model for pricing. More recently, in the traditional ap-
proach to contingent pricing, in the Black–Scholes model, the log-Brownian
model for the movement of share prices was used. However it has been
empirically demonstrated to be incorrect in a number of ways (stochastic
volatility, volatility smile, etc.). Certain attempts have been made to replace
Brownian motion by another self-similar process — α-stable Lévy motion;
see [11] and [22]. Similarly, one can apply stationary Ornstein–Uhlenbeck
processes since they correspond to the popular in finance Vasicek model of
term structure. It is believed that, to some extent, such Lévy stable model
would explain the large jumps which evidently occur in prices and which
are caused by dramatic political or economic events [23]. Moreover, var-
ious alternatives have been suggested to account for empirically observed
defiances, among them the fractional Brownian motion which displays de-
pendence between returns on different days, in stark contrast to Brownian
motion [24]. However, fBm is not a semimartingale (except in the Brownian
case), and therefore there can be no equivalent martingale measure. Hence,
by general results (cf. Rogers [25]) this leads to a conclusion that there must
be arbitrage. This practically disqualifies the fBm model. Nonetheless, fBm
has attracted some attention in mathematical finance [26].

Now we present a test on a DJIA index financial data which justifies
using self-similar models as asset price processes. Some modification of the
Black–Scholes model is presented. The new idea is to change, in the stochas-
tic differential equation describing discounted stock prices process Zt with
respect to the reference measure Q, the differential dB̃t to dMt, where Mt

is a martingale generating the same filtration as BH
t and is well defined for

1
2 < H < 1. As a result of the investigation we will obtain an option pric-
ing formula which appears to be distinct from the Black–Scholes one. The
differences are illustrated graphically.
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We are going to apply a method from [27], which was called variance–
time plots, for the DJIA index process. The method can be summarized
as follows. Let (Xt)t≥0 be an H-self-similar process with stationary incre-
ments. It is well known that if EX2

t <∞ and H ∈
(

1
2 , 1
)

then the increment
process (Yk = (Xk+1 −Xk) : k = 0, 1, . . .) exhibits long-range dependence.
This means the time series Yk has the autocovariance function of the form
r(k) = Cov(Y0, Yk) ∼k→∞ L1(k)k

2H−2, H ∈
(

1
2 , 1
)

, where L1(k) is a
slowly varying function as k → ∞. This property implies that the correla-
tions are not summable and the spectral density has a pole at zero. More
specifically, under suitable conditions on L1(·), the spectral density has the
property f(x) = 1

2π

∑∞
k=−∞ r(k) exp(−ikx) ∼|x|→0 L2(x)|x|1−2H for some

L2(·) that is slowly varying at the origin. The best known models of the
above long-range dependence are the fractional Gaussian noise model and
the fractional autoregressive integrated moving-average model (FARIMA).
The parameter H describes the long-memory behaviour of the series. Now,

for each m = 1, 2, . . . , let
(

Y (m) =
(

Y
(m)
k

)

: k = 1, 2, . . .
)

denote a new

time series obtained by averaging the original series Y over nonoverlap-
ping blocks of size m; that is, for each m = 1, 2, . . . , Y (m) is given by

Y
(m)
k = 1/m(Ykm−m+1 + · · · + Ykm), k = 1, 2, . . .

From a statistical point of view, the most salient feature of the process
Yk is that the variance of the arithmetic mean decreases more slowly than
the reciprocal of the sample size; that is it behaves like n2H−2 for some
H ∈

(

1
2 , 1
)

instead of like n−1 for the processes whose aggregated series
converge to a second-order pure noise. A specification of the autocovariance
function r(k) (or equivalently of the spectral density function f(x)) is the
same as a specification of the sequence (Var(Y (m) : m ≥ 1) with the property
Var(Y (m)) ∼m→∞ am2H−2, where a is a finite positive constant independent
of m, andH ∈

(

1
2 , 1
)

. On the other hand, for covariance stationary processes

whose aggregate series Y (m) tend to second-order pure noise it is easy to see
that the sequence (Var(Y (m) : m ≥ 1) satisfies Var(Y (m)) ∼m→∞ bm−1,
where b is a finite positive constant independent of m. Thus, for self-similar
processes with stationary increments the variances of the aggregated pro-
cesses Y (m),m = 1, 2, . . . , decrease linearly (for large m) in log–log plots
against m with slopes arbitrary flatter than −1. The so-called variance–
time plots are obtained by plotting log(Var(Y (m)) against log(m) (“time”)
and by fitting a line through the resulting points in the plane, ignoring the
small values form. Values of the estimate Ĥ of the asymptotic slope between
−1 and 0 suggest self-similarity.
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Example 5 Let us consider the DJIA index analysed from January 2, 1901
to December 31, 2000. We define Yk’s as log-returns of the index. We
normalize the data in order to set the variance of the process Yk to 10.
Figure 4 shows an asymptotic slope that is clearly different from −1 and is
estimated to be about −0.92, resulting in an estimate of the parameter H of
about 0.54.
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Fig. 4. Variance-time plot of the sequence of log-returns of DJIA index from Jan-

uary 2, 1901 to December 31, 2000.

Let Bt be, as usually, a standard (zero drift and unit variance) Brownian
motion on some probability space (Ω , F, P ). Let r, µ and σ be real con-
stants with σ > 0. A market in the classical Black–Scholes model is defined
as a pair (Λt, St), where Λt = exp(rt),St = S0 exp(σBt + µt). Interpret Λt

as the price at time t of a riskless bond and St as the price, in dollars per
share, of a stock which pays no dividents. Furthermore r is called a fixed
(riskless) interest rate, σ the volatility of the stock price process St and µ
is his drift. Moreover, in the model, we assume a frictionless market with
continuous trading, namely we demand that the two fundamental securities
are traded continuously with no transaction costs with publically announced
prices. Now we consider a ticket which entitles its bearer to buy one share
of stock at the terminal date T , if he wishes, for a specified price of K dol-
lars. This is a European call option on the stock, with exercise price K and
expiration date T . It is easy to see that the call option is equivalent to a
ticket which entitles a bearer to a payment of X = (ST − K)+ dollars at
time T . Black and Scholes asserted that there exist a unique rational value



Lévy Stable Processes . . . 1355

V for the option. Originally Black and Scholes obtained the price formula
by solving a differential equation. Our approach to option pricing is based
on a martingale method, which generalizes the ideas to arbitrary contingent
pricing. The Black–Scholes formula in this approach is proved by consider-
ing so called completeness of the market, finding the reference measure Q via
Girsanov theorem, asserting the measure is unique, due to the representa-
tion theorem for martingales, and computing V = exp(−rT )EQ(X), where
X = (ST −K)+.

In the Black–Sholes model stock price fluctuations are modelled by a
stochastic differential equation with respect to the white noise dBt, i.e. dSt =
St(σdBt +(µ+ 1

2σ
2)dt). If we introduce discounted stock price process Zt =

Λ
−1
t St, then applying Itô formula and Girsanov theorem for the Brownian

motion we may claim the existance of a measure Q, such that dZt = σZtdB̃t

is a martingale under Q, where B̃t is a standard BM with respect to that
measure.

Now the idea is to replace the process B̃t in the stochastic differen-
tial equation for discounted stock price Zt by a process Mt, namely Mt =
∫ t
0 c1s

1

2
−H(t − s)

1

2
−HdBH

s , where c1 =
[

H(2H − 1)B
(

3
2 −H,H − 1

2

)]−1
,

where B stands for the Beta function and 1
2 < H < 1.

First let us take a closer look at the properties of such defined process
Mt. It turns out (see [28]) that Mt is a Gaussian martingale which gen-
erates the same filtration as BH

t , with EMt = 0 and the second moment

EM2
t = c22t

2−2H , where c2 =
(

H(2H − 1)(2 − 2H)B(H − 1
2 , 2 − 2H)

)−1
.

Moreover, Mt is a (1 −H)-self-similar process of independent but not sta-
tionary increments, with continuous paths.

Thus we obtain dZt = σZtdMt. Since Mt is a martingale, the equation
has a unique solution given by a stochastic exponential Zt = Z0 exp {σMt−
1
2c

2
2σ

2t2−2H}, which is a martingale with continuous paths.

Now let us define Et = E(Λ−1
T X|Ft). It is a martingale with respect to

Ft (the filtration generated by Mt, so BH
t ). Nonetheless, since the mar-

tingale Zt does not satisfy the representation theorem for martingales we
can not guarantee the existence of a unique predictable process Ht such
that Et = E0 +

∫ t
0 HsdZs for an arbitrary contingent claim X (the model is

not complete). Thereby we can not construct an appropriate self-financing
strategy. Nevertheless we may compute a non-arbitrage price E(Λ−1

T X) for
a specific contingent claim X. Let us take as an example X = (ST −K)+.
We are to compute V M = e−rTE(ST − K)+. Since we have Zt = e−rtSt,
the process St can be expressed as St = S0 exp{σMt + rt − 1

2c
2
2σ

2t2−2H}.
Hence, it is enough to calculate V M = e−rTE(S0 exp(Z+ rT )−K)+, where
Z ∼ N(−1

2c
2
2σ

2T 2−2H , c22σ
2T 2−2H).
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Thus an European call option value in the model, driven by the martin-
gale of fBm Mt, is given by

VM = S0Φ

(

log S0

K + rT + 1
2c

2
2σ

2T 2−2H

c2σT 1−H

)

−Ke−rT
Φ

(

log S0

K + rT − 1
2c

2
2σ

2T 2−2H

c2σT 1−H

)

. (9)

The formula we obtained is different from the Black–Scholes one, however
it reduces to it when H = 1/2. It is not surprising as we are aware that the
model we use in modelling stock prices has changed, i.e. we incorporated an
additional parameter H — index of self-similarity.

Example 6 We will compare the two formulas using the data from Example
5 in order to compute DJIA index options. Analysing the data we obtain that
the estimated standard deviation σ̂ = 0.010644. We assume that S0 = 8000
and the striking price K = 7500 . . . 8500. We consider index options on the
interval [0, 20 days] and set the interest rate r to 0.05/365. Furthermore,
Example 5 justifies the parameter H equal to 0.54. Figure 5 depicts the
difference between M price (obtained by the martingale Mt) and BS price.

0

5

10

15

20

7500

8000

8500
−25

−20

−15

−10

−5

0

5

Fig. 5. M minus BS price for the DJIA index option.
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In sum, we have just presented a martingale model based on a fractional
Brownian motion, the model which stems from the classical Black–Scholes
one. We may claim that despite of its disadvantages (further we can add
an inevitable Gaussianity of the model) it possesses interesting features and
the new parameter H provides additional information allowing to improve
adjustment to the real-world phenomena.
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Nowak for kind invitation to the XVI Marian Smoluchowski Symposium.
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