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We show a procedure for determining the class of diffusion in systems
governed by a generalized Langevin equation with memory. The analysis
holds for one-dimensional systems. We provide a simple answer for the dif-
fusive exponent and its relation with noise and memory. We discuss as well
limits for mixing, ergodicity and of the fluctuation–dissipation theorem.
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In this talk we shall address the problem of anomalous diffusion and its
permanent presence in physics. This topic has been on for more than one
hundred years and it still surprises us with new basic discoveries. Diffusion
is one of the fundamental mechanisms for transport of materials, energy and
information almost everywhere in nature and has therefore been the focus
of extensive research in many different disciplines of natural science. Many
aspects of diffusion are, as a consequence, well understood today. However,
open questions on, such as how the presence of correlated disorder in the
medium where the diffusion takes place influences the diffusion process, pos-
sibly making it anomalously fast or slow [1,2]. This particular question has
prompted much research over the last couple of decades [1–7]. The disor-
der of the background medium may induce memory effect into the diffusion
process, and our objective is to present an analysis of memory effects in
diffusive systems. The analysis culminates in a simple criterion based on
the structure of the memory function allowing us to determine whether the
diffusion process is normal, i.e. described by a finite diffusion constant and
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spreading according to the standard diffusion constant, or whether the pro-
cess is superdiffusive, and therefore having an infinite diffusion constant, or
subdiffusive, which entails a vanishing diffusion constant.

We start our analysis with the generalized Langevin equation (GLE) of
Mori–Lee form [8–10],

m
d

dt
v(t) = −m

t∫

0

Γ (t − t1)v(t1)dt1 + F (t) , (1)

where the memory Γ (t) is related to the stochastic force F (t) through the
fluctuation–dissipation theorem (FDT)

CF (t) = 〈F (t)F (0)〉 = mkBTΓ (t) . (2)

For short range memory Γ (t) = 2γδ(t), Eq. (1) reduces to the normal
Langevin equation. For a system described by a GLE, the velocity correla-
tion function Cv(t) = 〈v(t)v(0)〉 is a fundamental function from which it is
possible to obtain the system’s physical properties. In particular, Kubo [11]
obtained the diffusion constant as

D = lim
t→∞

1

2t
〈x2(t)〉 =

∞∫

0

Cv(t)dt . (3)

Here
lim
t→∞

〈x2(t)〉 ∝ tα , (4)

is the second moment of the position after the transient time. For α = 1,
we have normal diffusion and D is finite. For α < 1, D = 0, and the motion
is subdiffusive. Finally, for α > 1, D = ∞, and the motion is superdiffusive.

Several authors have claimed that long range correlations in the fluctu-
ating force F (t) may induces anomalous diffusion due to the absence of a
time scale (see [3, 4, 6, 7, 12]. and references therein). It is in addition well
known that long range correlation functions may induce anomalous behavior,
such as delayed fracture [13], or anomalous reaction rates [14] in addition to
anomalous diffusion in disordered media. Such long-range correlations may
even turn off the diffusion process for certain boundary conditions [15].

In this work we discuss the conditions for a system described by Eq. (1)
to present anomalous diffusion [1–4]. We multiply Eq. (1) by v(0) and to
perform an ensemble average. Since 〈F (t)v(0)〉 = 0, we obtain

dCv(t)

dt
= −

t∫

0

Γ (t − t1)Cv(t1)dt1 . (5)
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We Laplace transform this expression to obtain

C̃v(z) =
Cv(0)

z + Γ̃ (z)
, (6)

where tilde denotes the Laplace transform. The diffusion constant Eq. (3)
is then given by

D = C̃v(0) =
Cv(0)

Γ̃ (0)
. (7)

Consequently, it is enough to know Cv(0) and Γ̃ (0) to determine the diffusion
constant. Moreover, if Cv(0) is finite, the diffusion process is controlled by

Γ̃ (0).
Now, most of the physics will be described by the friction constant

γ = Γ̃ (0) =

∞∫

0

Γ (t)dt. (8)

Hence, if Γ̃ (0) is finite, the diffusion is the normal Einstein diffusion, and
consequently it does not matter if the system has long time correlation nor
if the correlations are scale invariant. What does matter are the convergence
properties of the integral (8).

We assume now that
Γ̃ (z → 0) ∼ zβ , (9)

since z plays the role of an inverse cutoff time scale in the Laplace transform,

Γ̃ (z) =

∞∫

0

e−zt′Γ (t′)dt′ ≈

1/z∫

0

Γ (t′) dt′ , (10)

we see that
Γ̃ (1/t) ∼ t−β . (11)

Hence, using Eq. (7), we find that D = limt→∞ Cv(0)/Γ̃ (1/t) ∝ tβ. Using
Eqs. (3) and (4), we obtain

α = β + 1 . (12)

Thus, knowing how Γ (t) behaves as t → ∞, or equivalently, how Γ̃ (z)
behaves as z → 0 determines α.

We now demonstrate these ideas on an explicit system. Consider a noise
described by a bath of thermal oscillators of the form

F (t) =

∞∫

0

A(ω) cos(ωt + φ(ω))dω , (13)
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where A(ω) is obtained from the power spectrum. The random function
φ(ω) where 0 ≤ φ(ω) < 2π, gives the stochastic character to the function
F (t). The system now has a fixed temperature T and a fluctuating energy,
i.e., we are dealing with a canonical ensemble. The force correlation function
is

CF (t) = 〈F (t)F (0)〉 = mkBT

∞∫

0

ρn(ω) cos(ωt)dω . (14)

where ρn(ω) = A2(ω)/(2mkBT ) is the noise density of states (NDS) of the
thermal bath. We have used the relation 〈cos(ωt + φ(ω)) cos(ω′t + φ(ω′)〉 =
δ(ω − ω′)/2. Let us note that Eq. (14) shows CF (t) to be an even function
of t, and that Γ (t) is even as well. This result was pointed out by Lee for
Hamiltonian (i.e., microcanonical) systems [16]. We have hence pointed out
here the validity of this observation for a canonical system.

We can explore once more Eq. (7) if we rewrite

γ = Γ̃ (0) = lim
z→0

∞∫

0

ρn(ω)
z

z2 + ω2
dω =

π

2
ρn(0). (15)

Now we see that the NDS in the long wavelength limit controls the diffusion.
Note that it is only necessary to know the NDS to classify the diffusion
process.

Consider the following NDS

ρn(ω) =

{
C, for ω < ωS

0, for ω > ωS

}
. (16)

Here C is a constant. This corresponds e.g. to the long wavelength limit
of one-dimensional acoustic phonons. For a noise originated from a coupled
harmonic chain, ωS is the Debye phonon frequency.

We calculate the memory function for this system and find

Γ (t) =
2γ∗ωS

π

(
sin(ωSt)

ωSt

)
. (17)

Using Eq. (8), we find that γ = γ∗. For superdiffusive systems, this relation
may not hold, see Eq. (20). Note that this memory function has a t−1

behavior for large t. Laplace transforming Eq. (17) gives

Γ̃ (z) =
2γ∗

π
arctan

(ωS

z

)
. (18)

Using Eqs. (9) and (12), we see that α = 1, i.e., we have normal diffusion.
Furthermore, we find the same diffusion constant as the normal Langevin
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equation (NLE) with friction Γ̃ (0) = γ. Also, note that the limit z → 0 in
Eq. (18) is equivalent to the limit ωS → ∞. However, ωS → ∞ implies in
Γ (t) = 2γδ(t) and Eq. (1) reduces to the NLE, and as expected. Rather than
being a coincidence, this is a very general property. For any time t > 1/ωS ,
the normal diffusion described by either GLE, or NLE, will lead to the same
result. That is the reason we find a large number of phenomena where the
diffusion is normal, even when we have strong correlations.

We now modify the NDS Eq. (16) by removing the lower part of the
acoustic modes,

ρn(ω) =

{
C, for ω1 < ω < ωS

0, otherwise

}
. (19)

Here ω1 < ωS is a finite frequency. This density of states yields

Γ (t) =
2γ∗

π

(
sin(ωSt)

t
−

sin(ω1t)

t

)
. (20)

We use now γ∗ = 0.25, i.e. the same value used before. However, the reader
should keep in mind that γ∗ 6= γ = 0. Now, considering Eq. (7), (15), and
(19), we predict that Eq. (20) shows superdiffusive behavior. In particular,

for small z-values, we find from Eq. (19) that Γ̃ (z) ∝ z(1/ω1−1/ωS). Using
Eq. (9) and (12), we determine α = 2 for this system. Simulations confirms
our result [1,17]. Those concept where used to generate a ratcher device [17].

Now we return to our main variable i.e. the velocity correlation function
Cv(t) that can be obtained as the inverse of the Laplace transform Eq. (6).
Time reversal symmetry implies for Cv(t) a relation similar to Eq. (14)

Cv(t) ∼

∞∫

0

ρ(ω) cos(ωt)dω , (21)

i.e. it can be associated to a Fourier transform with a density of states (DOS)
ρ(ω). Equations (6) and (15) show that

ρn(ω ≃ 0) ∼ ρ−1(ω ≃ 0). (22)

For the lowest modes, the DOS for the velocity correlation function is pro-
portional to the inverse of the NDS. For example, Florencio and Lee [15]
studied diffusion in a classical harmonic chain using a Hamiltonian formu-
lation. They showed that the absence of the zero mode causes the diffusion
constant to vanish. The equivalent of that in our case is an infinite NDS
giving a zero value for Eq. (7).
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Another important point is to know the limits where we can apply both
GLE and the FDT. Recent results from Costa et al. [2] show that the FDT
may fail for the ballist motion, α = 2, and that seems to be a limit, for
α > 2 the stochastic description may not apply. The violation of the FDT
is directly connect with the violation of mixing and ergodicit [16], which
makes it an extremely important problem in physics with large applications
on non linear dynamics [18].

In conclusion, the results presented here are quite general and do not de-
pend on the specific form of the memory, the number of possible application
is increasing and new results are expected. In particular a connection be-
tween the GLE and Hamiltonian systems have been recently formulated [19].

We thank M.H. Lee, F.A.B. Moura, A. Hansen and M.D. Coutinho-Filho
for very useful discussions. This work was supported by CAPES. CNPq and
FINEP (Brazil).
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