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Using a numerical library for arbitrary precision arithmetic I study the
irregular dependence of the diffusion coefficient on the slope of a piecewise
linear map defining a dynamical system. I find that the graph of the diffu-
sion coefficient as a function of the slope has the fractal dimension 1, but
the convergence to this limit is slowed down by logarithmic corrections.
The exponent controlling this correction depends on the slope and is either
1 or 2 depending on existence and properties of a Markov partition.
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1. Introduction

Determining the transport coefficients of many-particle systems is one of
the fundamental problems of nonequilibrium statistical physics. This is also
a notoriously difficult problem: it turns out that even in a simplified system
where a single particle moves in a periodic array of scatterers, the drift and
diffusion coefficients are highly irregular, apparently nowhere differentiable
functions of control parameters [1–4] (an example is also shown in Fig. 1
below). Closer inspection of these functions reveals that usually their “ir-
regularities” are not random, but rather form patterns. This has led some
researchers to the idea that the graphs of these functions are fractals with
nontrivial, perhaps locally varying fractal dimension. This is an interest-
ing concept, since fractal structures are quite commonly found in dynamical
systems in various contexts [3, 4].
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Until very recently no reliable investigation of fractal properties of trans-
port coefficients was possible because all general methods of calculating
transport coefficients in dynamical systems — e.g. the transition matrix
technique combined with the escape rate formalism [1–6], the Green–Kubo
formula [1, 3, 4], or the periodic-orbit formalism [3, 7] — eventually lead to
complicated and time-consuming numerical calculations. Moreover, usually
they are applicable only for some special values of the control parameters.
For these reasons none of them could be used to collect a sufficiently large
number (counted at least in millions) of very precise data required in fractal
analysis. This situation changed when Groeneveld and Klages [8] gave exact
formulas for the transport coefficients in a simple one-dimensional dynamical
system introduced by Grossmann and Fujisaka [9].

The system investigated by Groeneveld and Klages can be considered as
a model of a particle moving in a one-dimensional array of scatterers. The
role of the equation of motion is played by a one-dimensional map M

xn+1 = Ma,b(xn) , (1)

where n is a discrete-time variable and the map Ma,b:R → R is given by a
simple linear function

Ma,b(x) = ax + b, x ∈ I−0 (2)

on the fundamental interval I−0 = [−1
2 , 1

2), with a > 1, b ∈ R being the con-
trol parameters representing the slope and the bias of the map, respectively;
the map is then continued periodically onto the real line by a lift of degree
one, i.e. by requiring that

Ma,b(x + 1) = Ma,b(x) + 1, x ∈ R . (3)

For a > 1 the Lyapunov exponent of this system is positive, and so the
dynamics defined by Ma,b is chaotic. If we choose an arbitrary number x0 as
the starting point, the resulting sequence (xn) will almost always look “ran-
dom” (the set of points x0 generating a regular, periodic or quasi-periodic
sequence (xn) is of Lebesgue measure 0). For suitably chosen values of a
and b the deterministic dynamics defined by the map Ma,b is equivalent to a
Markov stochastic process of random-walk type: each deterministic trajec-
tory (xn) is equivalent to some particular realization of the corresponding
random-walk process, and taking the average over all initial states is equiva-
lent to calculating averages over the corresponding Gibbs ensemble. Actually
any random-walk Markov process in a one-dimensional periodic system with
fixed transition rates can be translated into the language of simple piecewise
linear deterministic maps [10]. From this point of view there is no surprise
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that the process defined by Ma,b (or similar maps) is called “deterministic
diffusion” and that the two basic transport coefficients, the drift velocity J
and diffusion constant D, can be defined as

J = lim
n→∞

〈xn〉

n
, D = lim

n→∞

〈x2
n〉 − 〈xn〉

2

2n
, (4)

where 〈· · ·〉 denotes the average over the uniform ensemble of initial val-
ues x0.

The graph of the diffusion coefficient D for the map Ma,b as a function of
the slope a for the bias b = 0 is shown in Fig. 1. The fractal properties of this
highly irregular graph (as well as that of the drift velocity J) were recently
studied by Klages and Klauß [11]. Using two numerical methods: the box
counting and the autocorrelation function methods, they found that the local
fractal dimensions of graphs of J and D are well-defined, but highly irregular
functions of a and b. In other words they found that the graph shown in
Fig. 1 cannot be described with a single fractal dimension, but rather by
a set of quickly varying local fractal dimensions. Taking this into account
they suggested that the local fractal dimensions of graphs of J and D as
functions of the slope a with the bias b fixed are fractal themselves. This,
in turn, leads to the concept of a “fractal fractal dimension of deterministic
transport coefficients” [11].
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Fig. 1. The diffusion coefficient D for the map Ma,b as a function of the slope a for

the bias b = 0. The inset depicts a blow-up of a region 6 ≤ a ≤ 6.0001 (pointed at

by the arrow).

Klages and Klauß found the local fractal dimension D of J(a, b) and
D(a, b) to be very close to 1. The autocorrelation function method gave
1.05 . D . 1.15, and the box-counting method gave even lower values
1.02 . D . 1.05. All these values are very close to 1, i.e. the fractal di-
mension of a regular, “smooth” curve. This suggests that perhaps D = 1
and that the results obtained in the above-mentioned computer simulations
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reflected extremely slow convergence of D to its true asymptotic limit of
infinitesimally small “boxes”. Such slow convergence is often caused by log-
arithmic corrections. The main purpose of my paper is thus to try and find
such tiny corrections. To accomplish this task I will use a different method
of calculating the local fractal dimension of a curve — the so called oscil-
lation method [12] — and I will carry out all calculations with a help of
a special high-accuracy numerical library, which will enable me to consider
exceptionally small “boxes”. For sake of simplicity I shall restrict the present
study to the simplest case of zero bias (b = 0) where, due to symmetry, the
drift velocity J = 0.

The structure of the paper is as follows. Section 2 briefly describes the
method I have used to determine the local fractal dimension. It describes
all steps necessary to calculate the diffusion coefficient for the map Ma,b,
a method of calculating the local fractal dimension of a continuous curve
(“the oscillation method”), mathematical formulation of the main conjecture
about the logarithmic convergence of the fractal dimension to its limiting
value, and the numerical aspects of the algorithms used. Section 3 presents
the main results. Finally, Section 4 is devoted to discussion of results.

2. Method

2.1. Transport coefficient

The explicit formulas [8] for the transport coefficients in the model de-
pend on some auxiliary variables. For each a > 1, b ∈ R, and ǫ = ± we
define two infinite sequences, (yǫ

r), r = 0, 1, . . ., and (nǫ
r), r = 1, 2, . . ., con-

sisting of real and integer numbers, respectively. Their values are uniquely
determined by demanding that yǫ

0 = ǫ
2 and that for each r > 0

nǫ
r + yǫ

r = ayǫ
r−1 + b , (5)

with additional conditions nǫ
r ∈ Z and yǫ

r ∈ Iǫ
0, where I+

0 ≡
(

−1
2 , 1

2

]

and

I−0 ≡
[

−1
2 , 1

2

)

. Next we define “N -numbers”:

N ǫ
r = −

ǫ

2
+

r
∑

s=1

nǫ
s , (6)

Nk,l =
1

k!l!

∞
∑

r=0

a−r[(N+
r )k − (N−

r )k]rl , (7)

where r, k, l ≥ 0. The basic transport coefficients, J and D, can be now
expressed ( [8], cf. [13]) as

J =
N2,0

N1,1
, D =

N3,0 − N2,1J + N1,2J
2

N1,1
. (8)
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2.2. The oscillation method

The fractal dimension D of a continuous function f defined on an interval
[t0, t1] can be evaluated through analysis of its Hölder exponents [12] and
τ -oscillations [12]. The τ -oscillation of f at t ∈ (t0, t1) is defined as

oscτ (f ; t) = sup
|t−t′|≤τ

f(t′) − inf
|t−t′|≤τ

f(t′) . (9)

If there exist constants c > 0 and 0 < H ≤ 1 such that for all τ

oscτ (t) ≤ cτH (10)

then f is called a Holderian of exponent H at t and its fractal dimension D
at t is related to H through

D ≤ 2 − H . (11)

Similarly, if there exist constants c > 0 and 0 < H ≤ 1 such that for all τ

oscτ (t) ≥ cτH (12)

then f is called an anti-Holderian of exponent H at t and

D ≥ 2 − H . (13)

2.3. Reformulation of the problem and numerical implementation

We are now ready to formulate our main conjecture: for the map Ma,b

with b = 0
oscτ (D; a)

τ
≈ c(a) [− log(τ)]γ(a) , as τ → 0 , (14)

where the prefactor c(a) > 0 and the exponent γ(a) ≥ 0. Owing to (9)–(13)
this implies that the fractal dimension of the graph of D as a function of the
control parameter a is equal 1, but the convergence to this limiting value
is logarithmically slow, with the exponent γ(t) controlling the convergence
rate.

I checked conjecture (14) using equations (5)–(8). Because the consecu-
tive terms of the sequences n±

s in (6) can be generated extremely efficiently
(it took less than a second to generate 20 000 data points used to draw
figure 1), I decided to employ GMP (GNU multiple precision arithmetic
library, version 4.1.2) — a library for arbitrary precision arithmetic [14]. Al-
though any calculations performed by such a library must be several orders
of magnitude slower that those performed directly, thanks to the GMP I was
able to study numerically the limit of τ → 0 for τ ranging from 1 down to
at least 10−100 (the accuracy of typical computers currently available, with-
out using such special-purpose libraries, is limited typically to about 10−17).
Such fine resolution of my calculations will turn out crucial for determining
logarithmic corrections predicted by formula (14).
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3. Results

In my present study I decided to concentrate on verifying conjecture (14)
for the symmetrical case of vanishing bias (b = 0) and for several selected
values of the slope a. I decided to examine especially carefully the slopes
corresponding to finite Markov partitions. These values are particularly
interesting from the theoretical point of view [1–3]; for example, even though
the diffusion coefficient D is always continuous in a [8], the numerator and
denominator in (7) can be discontinuous for such (and only such) slopes.
One of the reasons why I chose to set b = 0 is that in this case the slopes
corresponding to Markov partitions can be found easily on a computer: they
are algebraic numbers generating periodic sequences nk and yk. Such values
of a will be henceforth referred to as “Markov slopes”.

Figure 2 presents results obtained for two Markov slopes generating
strictly periodic sequences (i.e., yǫ

k+l = yǫ
k for a period l > 0 and all k ≥ 0).

The value used in Fig. 2(a) is a = 3. This slope generates simple sequences
y+

k and y−k of period 1. The oscillations of the diffusion coefficient on inter-

vals (3− 1
2τ, 3+ 1

2τ), rescaled by τ , obtained for τ = 10−n, n = 1 . . . 100, are
represented in this plot by circles, while the solid line represents a quadratic
fit of form px2 + qx + r with p = 0.733, q = 0.57, and r = −0.2. The fit
is excellent, which suggests that for this slope the exponent γ, as defined in
Eq. (14), is 2. I have obtained similarly good quadratic fits for other integer
odd slopes, which also generate simple sequences of period 1 [2].
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Fig. 2. Oscillations of the diffusion coefficient rescaled in accordance with Eq. (14)

calculated on intervals (a− 1

2
τ, a+ 1

2
τ) for τ = 10−n, n = 1, . . . , 100 and for (a) a = 3

and (b) a ≈ 3.314. The circles represent results calculated from conjecture (14),

and the solid lines are quadratic fits. The inset in graph (b) shows the blow-up of

results obtained for 1 > τ ≥ 10−20.
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A question arises whether the length of the period has any influence on
the limiting value of oscτ (D; a)/τ . Figure 2(b) shows the results obtained for
the largest root of the polynomial a4 − 4a3 + 2a2 + 3, i.e. for a ≈ 3.314. For
this slope the period l = 4. Just as in the previous example, oscτ (D; a)/τ
can be approximated by a quadratic, although the fit is not as excellent as
for a = 3. The inset in this figure depicts the blow-up of the data obtained
for 1 > τ ≥ 10−20. It shows that for 1 > τ > 10−10 the value of oscτ (D; a)/τ
fluctuates about a constant value, which might suggest that the exponent
γ vanishes. This example demonstrates that the “resolution” of calculations
used in Ref. [11], i.e. τmin . 10−10, is insufficient to find the true asymptotic
fractal properties of the graph of the diffusion coefficient as a function of the
slope a.
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Fig. 3. The same as in Fig. 2. (a) a = 4 (circles), a ≈ 3.3497 (squares), a ≈ 3.043

(pluses) with linear fits (solid lines); (b) a ≈ 3.160 (circles), a ≈ 4.200 (squares)

with quadratic fits (solid lines). See text for details.

All other Markov slopes generate sequences nǫ
k and yǫ

k with the period
starting at a term m > 0. There are two cases: either all terms of y+

k

are different from all the terms of y−k or the two sequences have the same
period sequence. Let us start from the latter case. Three examples of results
obtained for Markov slopes of this type are shown in figure 3(a). The data
depicted in this graph were calculated for a = 4 (circles), for the largest root
of a4 − 4a3 + 2a2 + 2, i.e. for a ≈ 3.3497 (squares), and for the largest root
of a5 − 4a4 + 2a3 + 3a2 − 2a+ 4, i.e. for a ≈ 3.043 (pluses). For the first two
of the above slopes all the terms of the sequences yǫ

k eventually vanish. In
the case of a = 4 this happens for k ≥ 1, and for a ≈ 3.3497 the terms of yǫ

k

vanish for k ≥ 4. As for the third example, a ≈ 3.043, the period starts at
k = 2 and has the length 6. Specifically, the first five terms of y+

k are (to 3
S.F.) 1/2, −0.478, −0.456, −0.387, −0.179, and for k ≥ 5 the terms satisfy
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y+
k = −y+

k−3 = y−k−3. As we can see, in all these cases oscτ (D; a)/τ diverges

linearly with log(τ−1), suggesting that conjecture (14) is satisfied with the
exponent γ = 1.

The results obtained for the last category of Markov slopes, i.e. slopes
generating two disjoint periodic sequences y+

k and y−k , are shown in Fig. 3(b).
The two data sets were collected for the largest root of a5 −4a4 +2a3 +a2 +
4a−2, i.e. for a ≈ 3.16 (circles) and for the largest root of a5−4a4−4a2+a+4,
i.e. for a ≈ 4.20 (squares). The first of these slopes, a ≈ 3.16, generates a
sequence with a period of length 3 starting at y+

2 , while a ≈ 4.20 generates a
sequence of period length 4 starting at y+

1 . As we can see, for these Markov
slopes oscτ (D; a)/τ can be very well approximated by a quadratic function
of log(τ−1). This suggests that in this case conjecture (14) is satisfied with
the exponent γ = 2.
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Fig. 4. The same as in Fig. 2 for two slopes a that do not correspond to finite

Markov partitions: (a) a = π ≈ 3.14 and (b) a = 4.5.

Figure 4 presents results for two slopes a which do not correspond to
a Markov partition. These are a = π ≈ 3.14 (left panel) and a = 9/2
(right panel). The results turned out to be “noisy” and I had to increase the
resolution down to τmin = 10−300. As can be seen, in both cases oscτ (D; a)/τ
has a clear trend linear in log(τ−1). However, this limiting behaviour is
disturbed by very large fluctuations. Actually, for a = π these fluctuations
are so large that my numerical results cannot rule out the possibility that
in this case the limit limτ→0 oscτ (D; a)/τ does not exist.

4. Conclusions

In my study I proposed and verified numerically a hypothesis that the lo-
cal fractal dimension of the graph of the diffusion coefficient of the piecewise
linear map Ma,b as a function of the slope a is D = 1 and that the con-
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vergence to this limit is slowed down by logarithmic corrections described
by Eq. (14). This contradicts the earlier findings of Klages and Klauß [11]
that this graph is a fractal with a locally varying fractal dimension D(a) > 1
which, when plotted as a function of the slope, forms a fractal itself.

I found that the exponent γ, which controls the logarithmic correction,
is actually a function of the slope a. Interestingly, γ appears to be a dis-
continuous function that can take only one of two values: 1 or 2. The value
of 1 corresponds to Markov slopes that generate two disjoint sequences y+

k

and y−k , and the value of γ = 2 corresponds to Markov slopes that gener-

ate periodic sequences y+
k and y−k with the same period terms. The case

of slopes that do not generate Markov partitions is not clear — apparently
γ = 1, but this statement cannot be verified numerically because of very
large fluctuations making the convergence extremely slow. Note that my
findings imply that both of the sets {a: γ(a) = 1} and {a: γ(a) = 2} are
dense, and hence that γ(a) is nowhere continuous.

Any numerical study is naturally restricted to investigation of several
particular cases. It cannot be ruled out that I have overlooked some cate-
gories of slopes a for which the local fractal dimension of the graph of the
diffusion coefficient behaves in a way not predicted in this study. Numerical
investigation of the logarithmic correction to the asymptotic limit is here a
particularly delicate problem, as apparently γ is a nowhere continuous func-
tion of the slope. Only through an analytical approach could this problem
be solved conclusively. Such a study will be published elsewhere.

I thank R. Klages for many inspiring discussions. Support from
the Polish State Committee for Scientific Research (KBN) Grant
Nr 2 P03B 030 23 is gratefully acknowledged.
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