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A novel approach to the Tsallis’ superstatistics is discussed. On the
basis of limit theorems of probability theory we have shown that the Tsallis
generalization of the classical Boltzmann–Gibbs statistics can be repre-
sented by a distribution of an appropriately constructed scaled minima of
a random variables sequence. This formalism provides a natural framework
of construction of even more generalized statistics in which the Tsallis and
the Boltzmann–Gibbs ones are special cases. It leads also to a new inter-
pretation of the entropic index q.
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1. Introduction

Entropy is the fundamental concept of thermodynamics that connects
the microscopic motion of particles to the macroscopic world [1]. Thus the
Boltzmann–Gibbs–Shannon’s expression

S = −kB

b
∫

a

ρ(x) ln(ρ(x))dx (1)
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is one of the most important formulas of the classical (extensive) statistical
mechanics. According to the maximum entropy principle, given some partial
information on a random variable, i.e., information on related to it macro-
scopic observable, one finds the probability distribution which is consistent
with that information but has otherwise a maximum uncertainty. As it is
well-known, most of the probability distributions used in natural, biolog-
ical, social, and economic sciences can be formally derived by maximizing
entropy (1) with adequate constraints (see Ch.3 [2]). The maximum entropy
probability density function (mepdf) depends on the choice of the limits of
integration in (1) and on functions gi(x) whose expectation values are pre-

scribed
∫ b
a gi(x)ρ(x)dx < ∞, i = 1, 2.... The pdf ρ(x) that maximizes (1)

subject to constraints:
∫ ∞

0 ρ(x)dx = 1 and
∫ ∞

0 xρ(x)dx = 1
B0

< ∞ has the

corresponding distribution F (x) =
∫ x
0 ρ(s)ds of an exponential form

1 − F (x) = G(x) = e−B0x, (2)

which is known as the Boltzmann–Gibbs (BG) statistics, where the con-
stant 1

B0
is an intensive physical quantity (e.g. temperature). However most

distributions derived by maximizing (1) possess finite second moments, the
heavy-tailed distributions like the Cauchy or Pareto ones are also available
by imposing specific forms on the functions gi(x) [2].

The formalism of nonextensive statistical mechanics, as introduced by
Tsallis in 1988 [3] and further developed by many others, has been proposed
as a generalization of the classical approach with potential applications not
only for equilibrium systems but also for nonequilibrium ones with a sta-
tionary state. It introduces a more general statistics which depends on an
entropic index q and for q = 1 reduces to the ordinary BG form (2). The
generalized statistics (or so-called superstatistics) has so far been observed
to be relevant for three different classes of systems: for systems with long-
range interactions [4–7], for multifractal systems [8,9], and for systems with
fluctuations of temperature or energy dissipation [10, 11].

The Tsallis’ superstatistics follows from the extremization of the entropy

Sq = kB

1 −
∞
∫

0

[ρq(x)]qdx

q − 1
, (3)

where q is the entropic index. In the limit of q = 1 the above formula leads
to the classical entropy definition (1).

Subject to the normalization condition

∞
∫

0

ρq(x)dx = 1 , (4)
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and to the finite q-expectation of the random variable X distributed accord-
ing to ρq(x) pdf

Eq [X] =

∞
∫

0

x [ρq(x)]q dx

∞
∫

0

[ρq(x)]q dx

< ∞ (5)

one obtains the mepdf ρq(x) of the form known as the Tsallis’ maximum-
entropy density

ρq(x) = A (1 + Bx)−
1

q−1 . (6)

The positive constants are defined as A = 1/Eq [X] and B = q−1
2−q (1/Eq [X]).

The Tsallis’ maximum-entropy density can be identified as the Pareto
density supported on the positive half-line. It is defined in the range 1 <
q < 2. The properties of this density are determined by the asymptotic
behavior of the tail of the corresponding distribution as x → ∞. Namely,
the n-th moment E [Xn] of the random variable X, distributed according

to (6), exists only if 2−q
q−1 > n (and hence, for 1 < q < 2+n

n+1). The density

ρq(x) belongs to the domain of attraction of the completely asymmetric Lévy
stable distributions if q exceeds the value 3/2.

Although the applications of the Tsallis superstatistics are already nu-
merous [4–18], the recent experimental data (see, e.g. [19]) provide evidence
for a non-Tsallis superstatistics. Also, the theoretical studies [20,21] clearly
show a need for a new approach toward generalized statistics than that pro-
posed by Tsallis.

In this paper, we propose a novel attempt to the Tsallis’ superstatistics.
By using of purely statistical arguments, we show that it can be derived in
the framework of the extreme value theory [22]. This approach provides a
natural way to construct a more generalized statistics in which the Tsallis
and BG ones are special cases. It also allows us to find a new interpretation
of the entropic index q.

2. The origins and consequences of the Tsallis statistics

The BG factor (2) can be generalized by taking average over the various
β-parameter random fluctuations, i.e.,

G(x) =
〈

e−βx
〉

f(b)
=

∞
∫

0

e−bxf(b)db . (7)
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As it has been already found, randomness of β may result either from local
temperature fluctuations or fluctuations of an effective friction coefficient
[10, 12] and the Tsallis statistics (6) is recovered as soon as the gamma
distribution of the variable β is assumed. If the gamma pdf has the form

f(b) =
1

BΓ (c)

(

b

B

)c−1

e−
b
B (8)

we obtain [23]

G(x) =

∞
∫

0

e−bxf (b) db = (1 + Bx)−c , (9)

where c = 2−q
q−1 > 0 and B = 1

c .

Such an approach to the Tsallis’ statistics has been justified by consid-
ering the Langevin model (Brownian motion) with the parameters that are
neither temporally nor spatially constant but have some random distribu-
tions. As a result one obtains G(x) significantly different from the ordinary
Boltzmann factor which is recovered itself for pdf of the random variable β
being a Dirac delta function f(b) = δ(b − B0). Unfortunately, the proposed
models do not present satisfactory statistical reasons for appearing of the
gamma distribution of the fluctuating parameter β [10, 12].

Let us introduce another derivation of the Tsallis statistics. It follows
from the fact that the classical Boltzmann factor (2), as well as, the corre-
sponding Tsallis statistics (9) has the meaning of the tail of the probability
distribution of the random variable X [24]. More precisely,

1 − F (x) = G(x) = Pr

(

Γ1

Γc
> x

)

=

∞
∫

0

Pr (Γ1 > bx) f(b)db

=

∞
∫

0

e−bxf(b)db , (10)

where Γ1 and Γc denote the exponential and gamma random variables, re-
spectively.

On the basis of limit theorems [25] of probability theory we have that all
the distributions of the ratio Γ1/Y of independent, positive random variables
are the asymptotic distributions of an appropriately constructed scaled min-
ima of a random variables sequence. In order to find a scheme corresponding
to the studied case, we consider a sequence of independent and identically
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distributed (i.i.d) positive random variables {Yi}1≤i≤N . When Yi is expo-

nentially distributed, i.e., Yi = Γ1, then the random variable S(N) given by

expression S(N) = [min (Y1, Y2, . . . , YN )]−1 fulfills the following relation

Pr

(

N

S(N)
> x

)

= Pr
(

min (Y1, Y2, . . . , YN ) >
x

N

)

(11)

=
N
∏

i=1

Pr
(

Yi >
x

N

)

= Pr (Γ1 > x)

for each N . Hence

Pr

(

S(N)

N
≤ x

)

= Pr

(

1

Γ1
≤ x

)

. (12)

We must notice also that negative-binomial random variable Mt, which den-
sity is of the form

Pr (Mt = n) =
Γ (n + c)

n!Γ (c)
(pt)

c (1 − pt)
n , 0 < pt < 1; n = 0, 1, 2, . . . (13)

has a very useful property, namely, if pt
t→∞
−→ 0 then ptMt

t→∞
−→ Γc. Indeed,

the moment-generating function for the rescaled negative-binomial distribu-
tion

φ(z)ptNB = E
[

zptMt
]

=
∞

∑

k=1

Pr (Mt = k) (zpt)k

=
pc

t

[1 − (1 − pt)zpt ]c
, z = eiω, (14)

gives for t → ∞ characteristic function of gamma Γc random variable, i.e.,
(1 − iω)−c. Now we can make use of the following theorem [25]:

Let us assume that {S(n)}n≥1 is a sequence of the independent and
identically random variables such that

Pr

(

S(n)

cnρ
≤ x

)

→ Y (x) , (15)

where Y (x) is a limiting distribution for n → ∞; {Mt}t>0 is independent on
S(n) family of random variables which fulfills

Pr

(

Mt

dtδ
≤ x

)

→ Z(x) (16)
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with limiting distribution Z(x) for t → ∞, where c, ρ, d, δ are positive
constants. Then for t → ∞, we have

Pr

(

S(Mt)

cdρtρδ
≤ x

)

→ Pr (ZρY ≤ x) , (17)

where Z and Y are independent random variables distributed with Z(x) and
Y (x), respectively.

So, in particular, the Tsallis statistics (9) may be constructed as

(1 + Bx)−c = lim
t→∞

Pr
(

p−1
t min (Y1, Y2, . . . , YMt) > x

)

, (18)

where Mt represents the random number of Gibbsian (exponential) contri-
butions to the generalized statistics. The number Mt is distributed with
the negative-binomial law (13) and Y1, Y2, . . . is the sequence of independent
and exponentially distributed random variables. In fact, to derive the limit
in (18) it is not necessary to know the detailed nature of the distribution
of Yi. The limit is determined only by the behavior of the distribution for
small x. The necessary and sufficient condition reads

FY (x) = Pr (Yi ≤ x) ∝ x for x → 0 . (19)

Let us note that this condition is fulfilled if the distribution is of the ex-
ponential form FY (x) = 1 − e−x. If instead of (19), one imposes a more
general, “fractal” condition

Pr (Yi ≤ x) ∝ xα for x → 0 and α > 0 (20)

then the extreme-value scheme may lead to a generalization of the Tsallis
statistics [26]. Namely, if the condition (20) is assumed then the limit minima
is distributed with the Weibull law [22]

lim
N→∞

Pr
(

N1/α min (Y1, Y2, . . . , YN ) > x
)

= e−A0xα

, x ≥ 0 . (21)

This result helps us to find a natural generalization of the Tsallis statistics
(18) if α ∈ (0, 1)

[

1 +
1

c
(A0x)α

]−c

= lim
t→∞

Pr
(

p
−1/α
t min (Y1, Y2, . . . , YMt) > x

)

. (22)

As it is easy to check, the new statistics in the limit case of c → ∞ tends
to the stretched exponential form exp[−(A0x)α], where A0 is a positive con-
stant. If, moreover, α → 1 we recover the BG statistics. The above result
can be written as the Laplace transform

[

1 +
1

c
(Ax)α

]−c

=

∞
∫

0

e−bxfML (b) db , (23)



Extreme-Value Approach to the Tsallis’ Superstatistics 1381

of the pdf fML (b) which is known as the generalized Mittag–Leffler pdf and
can be given in the series expansion only (for details see [26])

fML (b) =

∞
∑

k=0

(−1)kΓ (c + k)

k!Γ (c)Γ [α(c + k)]

(

b

A

)α(c+k)−1

. (24)

In general, the explicit forms of the superstatistics, resulting from the ex-
treme value scheme, depends on the assumed properties of the distributions
of the random variable Yi and the number of contributions Mt.

The class of negative-binomial distributions has a long-time tradition in
biological [27, 28] and physical modeling [29, 30]. In biology the negative-
binomial distribution has been applied to model growth of populations and
physical examples cover, e.g., random walk models of the scattered electro-
magnetic field in granular materials or the clan structure of the high energy
reactions. In general, the negative-binomial distribution is very often a first
choice as an alternative [31] when it is felt that the counting Poisson distribu-
tion might be inadequate, i.e., when the strict randomness requirements for
the Poisson distribution, particularly independence, are not approximated
sufficiently closely. Note, the Poisson distribution approaches the total num-
ber of successes in N (N → ∞) independent trials, in each the probability
of a success (an occurrence of a zero-one-type outcome) equals to p ∈ [0, 1]
and Np → const.

The model leading to the negative-binomial number of contributions may
be a birth-and-death immigration model where Mt = M(t) is a Markov pro-
cess with the time parameter t being a continuous quantity, whereas the
state space consists of non-negative integers. The state at time t is the
value of M(t) and the state changes can only happen between neighboring
states. In particular, for the birth-and-death immigration process the tran-
sition probabilities in the time interval (t, t + ∆t) are given by the following
conditions

Pr(M(t + ∆t) = n + 1|M(t) = n) = (λn + ν)∆t + o(∆t) , (25)

Pr(M(t + ∆t) = n − 1|M(t) = n) = µn∆t + o(∆t) , (26)

Pr(M(t + ∆t) = n |M(t) = n) = [1 − ((λ + µ)n + ν)∆t] + o(∆t) ,

(27)

and

Pr(M(t + ∆t) > n + 1 ∨ M(t + ∆t) < n − 1|M(t) = n) = o(∆t) . (28)

The positive constants λ and µ may be interpreted as the rates at which
each member of the process creates “an offspring” and perishes, respectively,
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whereas the parameter ν > 0 stands for the constant stream of “immigrants”
who arrive independently of the actual state. From the conditions (25)–(28)
one derives the reccurence formula

Pn(t + ∆t) = (λ(n − 1) + ν)Pn−1(t)∆t + [1 − ((λ + µ)n + ν)∆t]Pn(t)

+µ(n + 1)Pn+1∆t + o(∆t) (29)

that corresponds to the differential equation of the form

dPn(t)

dt
= (λ(n−1)+ν)Pn−1(t)−[(λ+µ)n+ν]Pn(t)+µ(n+1)Pn+1(t) , (30)

where Pn(t) is the probability of finding the system in the state n = 0, 1, 2, . . .
at time t and it is understood that P−1(t) ≡ 0. Multiplying by sn and
summing over n from 0 to ∞ yields

∂φ(s, t)

∂t
= (λs − µ)(s − 1)

∂φ(s, t)

∂s
+ ν(s − 1)φ(s, t) , (31)

where φ(s, t) is the moment generating function of M(t) (compare with (14)).
As a solution, under the assumption that the process starts in state 0, i.e.,
P0(0) = 1, one obtains

φ(s, t) =

[

pt

1 − s(1 − pt)

]ν/λ

, (32)

where

pt =
λ − µ

λe(λ−µ)t − µ
. (33)

Resulting distribution is clearly negative binomial, with parameters pt and
ν/λ (not necessarily an integer). This yields the following formula for indi-
vidual probabilities

Pr(M(t) = n) =
Γ (n + ν/λ)

n!Γ (ν/λ)
(pt)

ν/λ(1 − pt)
n. (34)

Let us note that for negligible rate µ ≈ 0 the model becomes linear birth-
immigration one and still leads to the negative-binomial distribution, i.e.,

Pr(M(t) = n) =
Γ (n + ν/λ)

n!Γ (ν/λ)
(e−λt)ν/λ(1 − e−λt)n. (35)

Again, in the special case of µ ≈ λ, pt reduces (on the basis of the
de L’Hôspital rule) to 1

1+λt which implies

Pr(M(t) = n) =
Γ (n + ν/λ)

n!Γ (ν/λ)

(

1

1 + λt

)ν/λ (

1 −
1

1 + λt

)n

. (36)
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The birth-and-death immigration model provides a new interpretation of the
index c = 2−q

q−1 (appearing in (8) and (9)), namely c = ν/λ is the ratio of the

state-independent immigration rate and the state-dependent birth one.

On the other hand, the negative-binomial distribution may be regarded
as a discrete compound Poisson one. A random variable is said to be com-

pound Poisson distributed if it is of the form
∑Ñ

i=0 ξi, where ξ0, ξ1, . . . is a

sequence of i.i.d. discrete random variables and Ñ is the Poisson random
variable independent of the ξi’s . In particular, for the number of “groups”
(clusters) of individuals having a Poisson distribution with expected value
ϕ and the number of individuals per group having the logarithmic series
distribution [32]

Pr(ξi = k) = −
1

ln p
(1 − p)k/k , k = 1, 2, . . . , 0 < p < 1 (37)

the probability that the total number of individuals equals n is negative
binomial and reads

Γ (c + n)

n!Γ (c)
pc(1 − p)n , (38)

where c = −ϕ/ ln p. Such an interpretation of the negative-binomial law
leads to the concept of the cluster system. Therefore, it seems natural to re-
place the continuous parameter t in (13) with the integer-valued system-size-
dependent parameter N. The cluster interpretation of the negative-binomial
law provides also another meaning of the parameter c connecting it with the
measure of aggregation in the system. If we consider the probability PM (n)
to have n particles belonging to M clusters we will obtain the recurrence
relation of the form

PM (n)

PM+1(n)
=

Pr
(

∑M
i=0 ξi = n

)

Pr(M̃ = M)

Pr
(

∑M+1
i=0 ξi = n

)

Pr(M̃ = M + 1)

=

∑∗ Pr(ξ1 = n1, . . . , ξM = nM )
∑∗ Pr(ξ1 = n1, . . . , ξM+1 = nM+1)

M + 1

ϕ

=
(−1/ ln pM )M

(−1/ ln pM )M+1

∑∗ [(1 − pM)n1/n1] . . . [(1 − pM)nM /nM ]
∑∗ [(1 − pM )n1/n1] . . . [(1 − pM )nM+1/nM+1]

M+1

ϕ

=
− ln pM

ϕ

∑∗ (n1 . . . nM)−1

∑∗ (n1 . . . nM+1)−1
(M + 1)

= c−1

∑∗ (n1 . . . nM )−1

∑∗ (n1 . . . nM+1)−1

(n!(M)!)−1

(n!(M + 1)!)−1
(39)
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which shows that c−1 may be regarded as an aggregation coefficient between
clusters. The sum

∑∗ runs over all possible partitions of n, i.e.

∑∗
=

∑

n1+...+nM+1=n; ni≥1

.

3. Conclusions

On the basis of limit theorems of probability theory we argued that
the Tsallis generalization of the classical Boltzmann–Gibbs statistics can be
represented by a distribution of an appropriately constructed scaled minima
of a random variables sequence representing Gibbsian contributions to the
superstatistics. The proposed formalism provides a natural framework of
construction of the class of generalized statistics in which the Tsallis and
the Boltzmann–Gibbs ones are special cases. As a consequence, the new
interpretation of the entropic index q has been found. We have shown that
q = c+2

c+1 as a function of the negative-binomial distribution parameter c is
related to the number of random, exponentially distributed contributions
to the effective statistics of a complex system. We have also shown that
c−1 contains the information on the correlations that are characterized by
aggregation of entities in the studied systems.

f(b)

b

q=1.001

q=1.2

q=1.5

q=1.9

Fig. 1. The gamma probability density function for different values of the entropic

index 1 < q < 2. The density is unimodal with mode 3

2−q
when q < 3

2
and when

q > 3

2
it is monotone with an infinite peak at 0. For q = 3

2
the gamma density

becomes simply an exponential one.

The presented model introduces the gamma distribution of the parameter
β in (7) as the limit of the negative-binomial distribution of the Gibbsian
contributions. Thus the gamma pdf, underlying the Tsallis statistics, re-
flects the influence of the fluctuating number of random contributions to
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this statistics, each with property (19). The entropic parameter q changes
the character of the gamma pdf (see Fig. 1). The gamma distribution tends
to a degenerate one, i.e., to the Dirac delta function as q → 1. This cor-
responds to the situation when the number of contributions becomes deter-
ministic and the random parameter β takes a particular value, say B0, with
probability 1.

Therefore, the presented analysis brings to light the origins of the ran-
domness of the parameter β the averaging over which generates the super-
statistics (23), in particular, the Tsallis’ one (9). It also points on the role
of random number of contributions as a main difference between the gener-
alized statistics and the classical one.
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