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We study effects of noisy and deterministic perturbations on oscilla-
tory solutions to delay differential equations. We develop the multiscale
technique and derive amplitude equations for noisy oscillations near a crit-
ical delay. We investigate effects of additive and multiplicative noise. We
show that if the magnitudes of noise and deterministic perturbations are
balanced, then the oscillatory behavior persists for long times being sus-
tained by the noise. We illustrate the technique and its results on linear
and logistic delay equations.
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1. Introduction

Many physical phenomena are modeled by delay differential equations
(DDE’s); for example, these include lasers coupled face to face [1,2], optical
communication systems [3], a system of coupled neurons [4], population
dynamics [5], among others [6]. In such a setup, the value of the state
variable at a previous moment of time affects the current rate of change and
hence the current value of the state variable. Including the delay in the model
often makes it more physically plausible. Solutions to DDE’s exhibit many
interesting properties; in particular, existence of periodic solutions makes an
explanation of some experimentally observed phenomena possible when the
oscillatory behavior is induced by a delay in the independent variable.

∗ Presented at the XVI Marian Smoluchowski Symposium on Statistical Physics,

Zakopane, Poland, September 6–11, 2003.

(1387)



1388 M. Kłosek

Analysis of DDE’s and stochastic DDE’s (SDDE’s) poses many chal-
lenges. Despite recent interest in SDDE’s [7–15], many questions remain
open. In particular, analytical tools and methods for such equations are not
well established. The techniques developed for ordinary differential equa-
tions (ODE’s) often do not apply to delay/functional equations. Various
insights and intuition gained from ODE’s cannot be easily translated into
new techniques for DDE’s since these equations and their periodic solutions
do not exhibit symmetries present in ODE’s. A classical nonlinear oscillator
is described by a second order differential equation; on the other hand, a first
order DDE may have periodic solution(s). A linear first order (backward)
DDE is the simplest example of this class of equations, and plays a role
similar to the harmonic oscillator in providing the understanding of basic
properties and the development of new analytical methods.

In this paper, we consider the one-dimensional SDDE’s

dx(t) = f(x(t), x(t− τ)) dt + δg(x(t)) dw(t) , (1)

where τ > 0 is a delay parameter and w(t) denotes standard Brownian
motion. In particular, we take the linear f in (1)

dx(t) = (−αx(t) + βx(t− τ)) dt + δg(x(t)) dw(t) , (2)

and the logistic equation

dx(t) = −rx(t)(1 + x(t− τ)) dt + δg(x(t)) dw(t) . (3)

We present a multiscale approach to analyze the effect of additive (g(x(t))≡1
in (1)–(3)) and multiplicative noise on a periodic solution to a SDDE. The
assumption that the unperturbed system possesses a periodic solution is es-
sential for our analysis. We derive dynamics of the perturbed oscillations
under the assumption that the magnitude of the perturbations is small com-
pared to the frequency of the periodic solution. Specifically, we discuss the
case near the bifurcation point of the deterministic DDE; that is, in the
absence of the perturbation, the delay parameter τ takes on a critical value
τc for which the DDE has 2 linearly independent periodic solutions. The
case of noisy DDE’s away from the bifurcation point (i.e., the case of noisy
perturbations of an isolated periodic solution (a limit cycle) to a DDE) is to
be presented elsewhere [16]. We illustrate this multiscale technique in detail
for the linear DDE (2) and then show how it works in a nonlinear example
of the logistic DDE (3).

We show how noisy and deterministic perturbations affect the amplitude
of the oscillatory solution. If the strength of the noise and deviation of the
delay parameter are balanced, then the oscillatory behavior of the solution
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persists for a long time. This fundamentally alters the dynamics of the sys-
tem: in the absence of the noise, the exponential behavior governs the decay
(or growth). Due to noise, the exponential decay is replaced by periodic
behavior with stochastically varying amplitude. We derive the amplitude
equations which combine effects of all perturbations. These equations are
again SDDE’s but with a small delay. (We note that the value of the de-
lay parameter of the original problem is not assumed to be small.) The
analysis of these equations shows that in the linear case the amplitude is
a stationary process whose variance is proportional to the strength of the
noise and inversely proportional to the proximity to the critical value of
the delay parameter. In the nonlinear case, numerical calculations yield the
same conclusion [17].

Previous studies of SDDE’s in the physics literature have been limited
to specific examples which include (but are not limited to) phase equations
with specific forms of nonlinearity [14,15], systems with small delay [11], and
population models which can be transformed to linear equations [10]. Tools
used to study SDDE’s combine linearization with numerical simulations [9,
10,13,15], or analytical approaches designed for particular problems and do
not allow clear extensions [12,14]. In this paper, we outline the development
of more systematic methods that can be applied in a general set-up.

Standard techniques used in studying SDE’s based on generators and
density evolution equations have limited applicability to the SDDE’s. In
Section 2, we show that the Fokker–Planck type equation for the transition
probability density of the process defined by a SDDE involves a joint two-
dimensional density calculated at times separated by the delay of the SDDE.
In a nonlinear case, the solution to the Fokker–Planck equation for a SDE
is not available in general. In the case of a SDDE, an additional difficulty
stems from the fact that such a solution requires the nonlocal behavior of
the density.

In the case of a linear SDDE, we can solve the evolution equation exactly.
We derive the fundamental results on the covariance of the process given by
a system of linear SDDE’s by extending the results of [7].

In Section 3, we review standard multiscale techniques [18] and explain
their applicability to our problem. Then we derive the amplitude equations
for the linear SDDE’s with additive and multiplicative noise. The latter case
requires a generalization of projection techniques developed for the Duffing–
van der Pol stochastic oscillator [19].

In Section 4, we illustrate this technique with the logistic DDE’s. In Sec-
tion 5, we summarize the results and discuss future directions of multiscale
analysis of SDDE’s.
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2. Linear SDDE’s: Are there any analogies to SDE’s?

The theory of linear systems of SDE’s has been well established for
years [20]. Direct analysis of the SDE leads to rules for variance and covari-
ance. The generator (the backward Kolmogorov operator) and the Fokker–
Planck equation provide methods to study properties of the process given
by a SDE. The form of the equivalence between a SDE’s and its generator is
well understood. A complete parallel theory for the SDDE’s is still lacking.
In this section we fill some of these voids.

2.1. The Fokker–Planck-like equation

In this section, we take the SDDE (2) with additive noise, g ≡ 1.
The transition probability density function (tpdf) p(x, t) ≡ d

dxP (x(t) ≤
x|x0(t), t ∈ (−τ, 0]) satisfies the integro-differential equation [10, 11]

pt(x, t) = − ∂

∂x

(
∫

f(x, z)p(x, t, z, t − τ)dz

)

+
1

2
σ2pxx(x, t) , (4)

where p(x, t, z, t−τ) = ∂2

∂x∂zP (x(t) ≤ x, x(t−τ) ≤ z|x0(t)) is a 2-dimensional
tpdf.

If the initial condition x0(t) is a deterministic function or a Gaussian
stochastic process, and f(x, z) = −αx + βz, then the solution to (4) is a
Gaussian process whose tpdf p(x, t) has the form

p(x, t, z, t − τ) =
1

2π
√

detC
exp

{

−1

2
[x, z]TC−1[x, z]

}

, (5)

with the covariance matrix C

C =

[

cov(x(t)x(t)) cov(x(t)x(t − τ))
cov(x(t)x(t− τ)) cov(x(t− τ)x(t− τ))

]

≡
[

a(t, t) a(t, t− τ)
a(t, t− τ) a(t− τ, t− τ)

]

. (6)

Substituting (6) into (5), we obtain

d

dt
a(t, t) = 2[−αa(t, t) + βa(t, t− τ)] + σ2. (7)

Eq. (7) relates the variance with the covariance at the lag of the delay τ .
Eq. (7) is a special case of (12), below; and hence the solution can be written
as (11) with t1 = t2 = t. In Section 2.2, we derive general results on the
covariance of the process defined by a SDDE.
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Given an initial function x0(t), t ∈ (−τ, 0], (4) reduces to the Fokker–
Planck equation for t ∈ (0, τ ]. On successive time intervals of length τ the
solution to (4) can be obtained by conditioning on a particular realization
on a preceding time interval, and averaging over all possible paths. Such an
approach requires further development. Here we focus on a different method
based directly on the SDDE.

2.2. Correlations, stationary solutions

In this section, we consider a linear system of SDDE’s

dX (t) = P X (t) dt + Q X (t− τ̄) dt + D dw(t) . (8)

First we state general results on the covariance of the process X (t) in (8),
and then in Section 3 we use these results to study the amplitude equation
for the noisy oscillations.

We define by Φ the fundamental solution to the deterministic system

d

dt
Φ(t) = P Φ(t) + Q Φ(t− τ̄) ,

Φ(0) = I , Φ(t) = 0 for t < 0 . (9)

Explicitly, we write

Φ(t) =

{

∑J
j=0 eP(t−jτ̄)Qj (t−jτ̄)j

j! t ≥ 0

0 t < 0
, (10)

where J ≡ max{j : t−jτ̄ ≥ 0}. Then the covariance K (t1, t2) of the process
X (t) is given by

K (t1, t2) =

min(t1,t2)
∫

0

Φ(t1 − s)D DTΦT (t2 − s) ds + Φ(t1)cov(X (0),X (0))ΦT (t2) . (11)

In particular, if t1 = t2 = t, then from (11) we obtain

d

dt
K (t, t) =

D DT + P K (t, t) + Q K (t− τ̄ , t) + K (t, t)PT + K (t, t− τ̄)QT . (12)

If all roots to the characteristic equation

det(P + Qe−λτ̄ − λI ) = 0 (13)
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have negative real parts, then the process X (t) is stationary (if an initial
condition X (0) is suitably chosen or as t→ ∞), so that K (t1, t2) = K (t1 −
t2) and from Eq. (12) (since K (t1 − t2) = K T (t2 − t1)) we obtain

D DT + P K (0) + Q K T (τ̄) + K (0)PT + K (τ̄ )QT = 0 . (14)

The nonnegative definite solution of (14) can be written as

K (u) =

∞
∫

0

Φ(u+ s)D DTΦT (s)ds . (15)

Since Φ(t) satisfies Eq. (9), it follows that K (u) in Eq. (15) can be written
as

d

du
K (u) = P K (u) + Q K (u− τ̄) for u ≥ 0 . (16)

In particular, from Eqs. (14) and (16), we obtain

d

du
K (0) = −1

2
D DT , (17)

while from Eqs. (14) and (16), for u ∈ [0, τ̄ ] we have

d2

du2
K (u) = PK (u)PT −QK (u)QT + P

d

du
K (u) − d

du
K (u)PT . (18)

We note that in the case when Q ≡ 0, Eqs. (12) and (14), and (16) reduce
to the well known results for linear stochastic systems [20]. In the case of a
linear SDDE, Eqs. (17) and (18) reduce to results obtained in [7].

To calculate the variance of the process X (t), it is enough to solve a
system of second order linear differential equations (18) with initial condi-
tions (14) and (17). Longer than τ̄ time correlation involves the fundamental
solution (10) through (15).

3. Multiscale approach to noisy linear DDE

We begin with the linear model, considering both additive and multi-
plicative noise. The underlying general assumption states that the unper-
turbed system exhibits a periodic solution. To capture the time evolution
of this periodic solution under noisy and deterministic perturbations we ex-
tend the classical multiscale technique to SDDD’s. We develop and illustrate
this approach on a linear SDDE’s and then in Section 4 we extend it to a
nonlinear problem. Our multiscale analysis is not limited to small delays.
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3.1. Classical multiscale method

In the setting of a Hopf bifurcation, a multiscale approximation explicitly
employs the natural frequency, say ω, of the oscillation of the unperturbed
system [18]. To capture the behavior of the solution near the bifurcation
point, the following form of the solution is postulated:

x ∼ A(T ) cos ωt+B(T ) sinωt, T = ε2t , (19)

where ε2 is the parameter measuring the proximity to the bifurcation. Here
A(T ) and B(T ) are functions of a slow time T and they are treated as
constants with respect to the fast oscillations with frequency ω on the t
time scale. The approximate behavior of the solution is captured in the
amplitude (envelope) equations for A(T ) and B(T ).

The method treats x as a function of two independent times t and T ,
x = x(t, T ). Then a perturbation expansion x ∼ x0 + εx1 + . . . is used, with
x0 given by (19) and derivative xt replaced by xt+ε

2xT . Proceeding with the
perturbation expansion, the equation for the higher order contributions xj

for j > 0 are subject to solvability conditions, which give envelope equations
for A(T ) and B(T ). These solvability conditions are often in the form of
conditions of orthogonality to the oscillatory modes cosωt and sinωt. The
benefits of analyzing the envelope equations are that they are often relatively
simple compared to the original model and that they allow an analysis or
computation on the long time scale.

In the context of DDE’s, the applicability of the multiscale method can
be easily seen in the example of a first order differential equation

dx

dt
= −αx(t) + βx(t− τ) . (20)

If the delay τ takes on a critical value τc, then (20) has periodic solutions

{cos bt, sin bt} where b =
√

β2 − α2, β cos bτc = α, and b = −β sin bτc, so

that x(t) = Ã cos bt + B̃ sin bt (where Ã and B̃ are arbitrary constants).
If τ < (>)τc then the oscillatory solution to (20) decays to zero (grows
to infinity) at an exponential rate. Specifically, if τ = τc + ε2τ2 then the
exact solutions to (20) behaves like {exp(λε2t) cos bt, exp(λε2t) sin bt} where

λ is given in (31). That is, we write x = x(t, T ) = Ã exp(λT ) cos bt +

B̃ exp(λT ) sin bt ≡ A(T ) cos bt + B(T ) sin bt. Hence, the amplitude evolves
on the slow time scale T = ε2t and the exact solution to (20) has the form
(19). The bifurcation parameter measures the proximity of the delay τ to
its critical value τc and the decay or growth rate is determined by the sign
of τ2.
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3.2. Additive noise

We first consider a linear SDDE

dx = (−αx(t) + βx(t− τ))dt + δdw . (21)

Here w is Brownian motion and we take δ ≪ 1, in order to examine sensi-
tivity to small noise. We assume the parameter values to be such that the
system is just below the threshold for growth or decay of oscillatory solutions
such as x = cos bt. Without loss of generality, we define the threshold as τc,
keeping the other parameters fixed. We set τ = τc + ε2τ2; the parameter ε
measures the proximity to this threshold, and we assume that 1 ≫ ε > 0.

In order to capture the influence of the noise over a long time, we seek
a periodic solution which has an amplitude that varies stochastically on a
slow time scale T = ε2t. The choice of slow time is motivated by the form
of the exact solution to the linear deterministic equation (20). We postulate
the form (19) for the solution to (21), but now A(T ) and B(T ) evolve in
time stochastically, and we assume their form as

[

dA
dB

]

=

[

ψA

ψB

]

dT + σ

[

dξA(T )
dξB(T )

]

. (22)

Here dξA(T ) and dξB(T ) denote independent white noises and σ is a dif-
fusion matrix. The relation between the noises dξA(T ) and dξB(T ) in the
ansatz (22) and the noise dw(t) in the original equation (21) is going to be
determined in the ensuing analysis. The same analysis will determine the
form of the drift coefficients ψA and ψB . In this section we postulate that
σ is a diagonal matrix with unknown entries on the diagonal, σA and σB .

First, we calculate the differential dx on the left-hand side of (21) using
Itô’s formula and the ansatz (19) with (22). Then, on the right-hand side of
(21), we substitute the assumed form of the solution and compare the two
representations of the solution.

From Itô’s formula we obtain

dx =
∂x

∂t
dt +

∂x

∂A
dA+

∂x

∂B
dB +

σ2
A

2

∂2x

∂A2
dT +

σ2
B

2

∂2x

∂B2
dT . (23)

In the linear case, the second derivatives of x with respect to A and B vanish,
and with the representation (22) of dA and dB (23) becomes

dx = (−bA(T ) sin bt+ bB(T ) cos bt)dt + (ψA cos bt+ ψB sin bt)dT

+σA cos btdξA(T ) + σB sin btdξB(T ) . (24)

Second, substituting (19) into the right-hand side of (21) gives

dx = [−α(A(T ) cos bt+B(T ) sin bt)

+ β
{

A(T − ε2τ)(cos bt cos bτ + sin bt sin bτ)

+B(T − ε2τ)(sin bt cos bτ − cos bt sin bτ)
}]

dt+ δdw(t) . (25)
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Now we equate these two expressions (24) and (25) for dx, and thus deter-
mine the coefficients ψA, ψB, σA, and σB . To account for the noise effects,
we rewrite the Brownian motion as

dw(t) = cos bt dw1(t) + sin bt dw2(t) , (26)

where dwj(t), j = 1, 2 are independent Brownian motions. To account for
the time evolution of the amplitude equations (22) on the T time scale we
change the time scale in the white noises dwj(t) = dwj(T )/ε (j = 1, 2) in
(26), and consequently in (25).

We neglect the O(ε4) terms and obtain the drift and diffusion coefficients
ψA, ψB , σA and σB in the equations for A and B by projecting these equa-
tions onto cos bt and sin bt, while treating functions of T as independent of t.
We find σA = σB = δ/ε, dw1(T ) = dξA(T ), dw2(T ) = dξB(T ), and

ψA = bτ2 (−αB(T ) + bA(T ))

+
B(T − ε2τ) −B(T )

ε2
+ α

A(T − ε2τ) −A(T )

ε2
, (27)

ψB = bτ2 (αA(T ) + bB(T ))

−bA(T − ε2τ) −A(T )

ε2
+ α

B(T − ε2τ) −B(T )

ε2
.

The drift [ψA, ψB ] correspond to the long time dynamics obtained using a
multiscale analysis for the deterministic problem δ = 0. This correspondence
also holds for the non-linear logistic example considered in Section 4.

Given these expressions for ψA and ψB , the system (22) can be written

[

dA(T )
dB(T )

]

=

{

P

[

A(T )
B(T )

]

+ Q

[

A(T − ε2τ)
B(T − ε2τ)

]}

dT + D

[

dξA(T )
dξB(T )

]

, (28)

where

P =

[

b2τ2 − α/ε2 −αbτ2 − b/ε2

αbτ2 + b/ε2 b2τ2 − α/ε2

]

, Q =

[

α/ε2 b/ε2

−b/ε2 α/ε2

]

and

D =
δ

ε

[

1 0
0 1

]

. (29)

The characteristic equation (13) with matrices in (29) becomes

[

b2τ2 −
α

ε2

(

1 − e−λτε2
)

− λ
]2

+

[

αbτ2 +
b

ε2

(

1 − e−λτε2
)

]2

= 0 . (30)
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For ε≪ 1 roots of (30) are given by

λ =
1

1 + 2ατc + β2τ2
c

(

b2τ2 ± i
[

(1 + ατc)τ2αb+ b3τcτ2
])

+O(ε2) , (31)

so that if τ2 < 0 then roots (31) have negative real parts. Starting with
arbitrary initial conditions, the process approaches its stationary realization
at a rate on the T scale determined by the real part of these eigenvalues. If
τ2 > 0, then the process (28) is not stationary, and the multiscale approx-
imation is valid only for short times; the original model (21) is dominated
by exponential growth.

The assumptions made to derive (28) imply our results are valid for
δ = O(ε) or smaller. That is, the noise strength of the original problem
cannot exceed (the square root of) the deviation of the delay from its critical
value. If the strength of the noise is small, then the oscillatory behavior of the
solution to the original SDDE (21) persists for long times. The deterministic
periodic solutions of the unperturbed equation serve as carriers, with their
amplitudes evolving stochastically. The long time behavior of the amplitude
processes [A(t), B(T )] can be approximated by a stationary Gaussian process
whose statistics can be explicitly determined using the formulas derived in
Section 2.

The delay parameter τ of the original problem (21) is not necessarily
small, but the parameters characterizing the system are near their critical
values. This causes the delay in the amplitude equations (28) to be small,
and proportional to the proximity to the critical values of the parameters.

Since the delay in (28) is small, it is tempting to replace the quotient
terms in (27) which involve the small delay by derivatives. We investigate
the validity of such an approximation by comparing first order statistics
of the original process (28) and its non-delay approximation, the process
[A0(T ), B0(T )].

We replace the quotient terms in (27) by the derivatives as

A(T ) −A(T − ε2τ)]/ε2 ∼ τA′(T ) ,

B(T ) −B(T − ε2τ)]/ε2 ∼ τB′(T ) ,

to obtain the system for [A0(T ), B0(T )]

d

[

A0(T )
B0(T )

]

=
1

1 + 2ατc + β2τ2
c

×
([

τ2b
2 −γ

γ τ2b
2

] [

A0(T )
B0(T )

]

dT +
δ

ε

[

1 + ατc −bτc
bτc 1 + ατc

] [

dw1

dw2

])

,

(32)
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where γ ≡ −(1 + ατc)τ2αb − b3ττ2. The process [A0(T ), B0(T )] is a 2-di-
mensional Ornstein–Uhlenbeck process. We calculate its variance K 0(0) by
evaluating (15) with Φ(t) = exp(Pt) where P is the matrix of system (32)
and D is the diffusion matrix of the same system. We find

K 0(u) = − δ2

ε2τ2b2
I , (33)

and in particular, from (33) we obtain

var (A0(T ) cos(bt) +B0(T ) sin(bt)) = −δ
2

ε2
1

τ2b2
. (34)

Using (18) with conditions (14) and (17), we calculate the variance of the
process x(t) in (21) (again assuming that α > 0 and τ2 < 0, so that the
process x(t) is stationary)

varx(t) =
δ2

2b

b− β sin[b(τc + ε2τ2)]

α− β cos[b(τc + ε2τ2)]
= − δ2

ε2τ2b2
+

δ2

12τ2
ε2 +O(ε6) . (35)

Hence, the variance in Eq. (34) is the leading term of (35).
Eqs. (33) and (35) show that the variances of the process [A(T ), B(T )]

and its delay-free approximation [A0(T ), B0(T )] agree to the leading order
in ε. Correlations over longer time intervals of the process [A(T ), B(T )] con-
tain a combination of exponentials and polynomials as indicated by (10) and
(15). In contrary, the covariance of the delay-free approximation contains
only exponential terms. In general, approximation of a small delay by a
derivative may not be correct to any order. It may result in the removal of
oscillatory behavior generated by a delay. Also, when the oscillatory behav-
ior includes sharp front the replacement of the delay terms by derivatives
may lead to a solution which blows up in finite time [21]. While the delay-
free approximation may provide some local description of the process, it does
not capture the correct long time response of the full SDDE’s; this fact can
be illustrated by numerical simulations [17].

3.3. Multiplicative noise

In this section, we outline the procedure to find the stochastic amplitude
equations when the DDE is acted on by multiplicative noise

dx = (−αx(t) + βx(t− τ))dt + δg(x(t)) dw . (36)

Again we postulate the form of the solution as in (19) and (22), so that
x(t) is to be replaced by a function of 2 time scales x(t, T ), but now the
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matrix σ = σ(A,B) is a full matrix. To determine how the noise g(x(t)) dw
is distributed between the two variables A and B, or equivalently how to
find its projection on {cos bt, sin bt}, we write the white noise in the form of
a Fourier series with noisy coefficients. These coefficients are independent
white noises on the slow time scale T ; that is, we have

δg(x(t, T )) dw(t) =
δ

ε
g(A(T ) cos bt+B(T ) sin bt)

×
(

∞
∑

j=0

kc
j cos(jbt) dwc

j(T ) +

∞
∑

j=1

ks
j sin(jbt) dws

j (T )

)

. (37)

Projection of (37) on {cos bt, sin bt} identifies the matrix σ as follows

σ(A,B)

[

dξA(T )
dξB(T )

]

≡ 2

∞
∑

j=0

b

2π
kc

j











2π/b
∫

0

g(x(t, T )) cos(jbt) cos(bt)dt

2π/b
∫

0

g(x(t, T ) cos(jbt) sin(bt)dt











dwc
j(T )

+2
∞
∑

j=1

b

2π
ks

j











2π/b
∫

0

g(x(t, T )) sin(jbt) cos(bt)dt

2π/b
∫

0

g(x(t, T ) sin(jbt) sin(bt)dt











dws
j(T ) . (38)

(The factor 2, on the right-hand side, is included here to make the represen-
tation (22) consistent with the results of the projection procedure. This pro-

cedure gives the factor 1/2 = b/(2π)
∫ 2π
0 cos2(bt)dt = b/(2π)

∫ 2π
0 sin2(bt)dt

in front of dA and dB and here we account for the elimination of this fac-
tor.) The objective of our analysis is to find unknown coefficients kc

0, k
c(s)
j ,

j = 1, 2, . . ., rather than identify the matrix σ directly. To determine these
coefficients we look at the generator (the backward Kolmogorov operator) of
the noise δg(x(t, T )) dw(t) averaged over the fast time scale, so it becomes
the generator for the process on the slow time scale. That is, we calculate

b

2π

2π/b
∫

0

g2(x)
∂2

∂x2
dt

=
b

2π

2π/b
∫

0

g (A(T ) cos bt+B(T ) sin bt))2
(

cos bt
∂

∂A
+ sin bt

∂

∂B

)2

dt
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=

(

b

2π

2π/b
∫

0

g2 cos2 bt dt

)

∂2

∂A2
+

(

b

π

2π/b
∫

0

g2 cos bt sin bt dt

)

∂2

∂A∂B

+

(

b

2π

2π/b
∫

0

g2 sin2 bt dt

)

∂2

∂B2
, (39)

and identify the diffusion matrix which must agree with calculations in (38).
Specifically, we obtain

σ(A,B)σT (A,B) = D

≡ 2
b

2π











2π/b
∫

0

g2 cos2 bt dt
2π/b
∫

0

g2 cos bt sin bt dt

2π/b
∫

0

g2 cos bt sin bt dt
2π/b
∫

0

g2 sin2 bt dt











. (40)

(Again the factor 2 in (40) results from averaging out the fast time scale
in the generator.) According to results in [19], Eq. (40) can be solved for

the coefficients k
c(s)
j . An arbitrary function g yields an infinite system of

equations; a function g which is a polynomial in x gives a finite system of
equations. We illustrate this procedure for linear and quadratic multiplica-
tive couplings.

First we take g(x) = x in (36). Evaluating integrals in (38) we see that
only 3 modes {1, cos 2bt, sin 2bt} give non-zero contributions:

2







b

2π

2π/b
∫

0

x dw(T )

[

cos bt
sin bt

]

dt







= kc
0

[

A
B

]

dwc
0(T )+

1

2
kc
2

[

A
−B

]

dwc
2(T )+

1

2
ks
2

[

B
A

]

dws
2(T ). (41)

Evaluating (40), we find the diffusion matrix D and obtain the system of
equation for kc

0, k
c
2, k

s
2

D =
1

4

[

3A2 +B2 2AB
2AB A2 + 3B2

]

= (kc
0)

2

[

A2 AB
AB B2

]

+
(kc

2)
2

4

[

A2 −AB
−AB B2

]

+
(ks

2)
2

4

[

B2 AB
AB A2

]

,(42)

which yields kc
0 = 1/

√
2 and kc

2 = ks
2 = 1. After combining all the terms

in the slow time amplitude equations and simplifying their coefficients, we
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obtain
[

dA(T )
dB(T )

]

=

[

ψA

ψB

]

dT

+
1√
2

[

A
B

]

dwc
0(T ) +

1

2

[

A
−B

]

dwc
2(T ) +

1

2

[

B
A

]

dws
2(T ). (43)

Similarly, the quadratic multiplicative noise, g(x) = x2, enters the slow time
equation through 4 modes {cos bt, sin bt, cos 3bt, sin 3bt} as

σ

[

dξA(T )
dξB(T )

]

= 2
b

2π

2π/b
∫

0

x2 dw

[

cos bt
sin bt

]

dt

=
1

4

(

kc
1

[

3A2 +B2

2AB

]

dwc
1(T ) + ks

1

[

2AB
A2 + 3B2

]

dws
1(T )

+ kc
3

[

A2 −B2

−2AB

]

dwc
3(T ) + ks

3

[

2AB
A2 −B2

]

dws
3(T )

)

. (44)

The diffusion matrix D is calculated as

D =
1

8

[

5A4 +B4 + 6A2B2 4(A3B +AB3)
4(A3B +AB3) A4 + 6A2B2 + 5B2

]

, (45)

so that the solution to (40) for k
c(s)
1(3) with σ and D given by (44) and (45) is

by k
c(s)
1 = k

c(s)
3 = 1 and that the amplitudes evolve on the slow time scale

according to
[

dA(T )
dB(T )

]

=

[

ψA

ψB

]

dT +
1

4

([

3A2 +B2

2AB

]

dwc
1

+

[

2AB
A2 + 3B2

]

dws
1 +

[

A2 −B2

−2AB

]

dwc
3 +

[

2AB
A2 −B2

]

dws
3

)

. (46)

Terms of the Fourier series representation of the noise g(x(t, T ))dw which
give nonzero contribution to the amplitude equation correspond to reso-
nances with the oscillations of the unperturbed system. In the case of linear
multiplicative noise, g(x) = x, it is necessary to include 3 Fourier terms
which imply that 3 independent white noises are needed to describe the
stochastic effects in the amplitude equations. Similarly, in the case of the
quadratic g, 4 independent white noises are needed in the amplitude equa-
tions. The representation of the total noise effects by independent modes
makes simulations of such a system efficient. It is not surprising that mul-
tiplicative noise in the original equation affects the amplitude equations in
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a multiplicative way by the same functional rule; that is, a linear g makes
the noise in each of the amplitude equations proportional to A and B, while
a quadratic g = x2 generates proportionality factors in the form A2, B2,
and AB. We reiterate that to determine all coefficients of the noise in the
amplitude equations, we compare the averaged noise representation to the
averaged noise generator. The equivalence between two such descriptions
of diffusion processes implies consistency of the method. We note that we
adapt the approach of [19] to SDDE’s. In the original setting, the projection
of a two-dimensional motion of the Duffing–van der Pol equation on a two-
dimensional basis of the linear motion is analyzed. Both analyzes lead to
system of type (40) for the coefficients of the Fourier series. Results of [19]
show that this system has a unique solution for a given function g. Non-
polynomial g leads to an infinite system of equations which imply that an
infinite collection of independent white noises is necessary in the amplitude
equation. As illustrated in examples, a polynomial g induces a finite number
of independent noises in the averaged equations. If g ≡ 1 and the noise is
additive, and this procedure can be used to rederive results of Section 3.2.

4. Logistic equation and noise near bifurcation point

We consider the logistic SDDE

dx = (rx(s)(1 − x(s − τ)))ds + δdw (47)

to illustrate the multiscale technique applied to a nonlinear equation near
the bifurcation point. We first review some results for the deterministic case
δ = 0 [22]. We consider values of r, r > 0, where the solution x = 0 is
unstable. The oscillations about x = 1 decay for subcritical delays (τ < τc)
and are sustained for supercritical values (τ > τc), where rτc = π/2. Here
we consider the supercritical case; we investigate the effects of the noisy and
nonlinear deterministic perturbations when their magnitudes are balanced
on the critical periodic solution. This periodic solution is defined by the
critical delay rτc = π/2. (The subcritical case is discussed elsewhere [17].)
As in the case of a classical nonlinear oscillator (described by a second order
ODE), the amplitude and frequency of a periodic solution to the nonlinear
DDE are related. Here we show their interdependence for the logistic DDE.
We write the problem for εy(t) = x(t/ω(ε))−1, and seek a periodic solution
to the problem for y(t); that is, while keeping ε ≪ 1, we derive a small
amplitude periodic solution near x(t) = 1. On the time scale s = t/ω we
obtain

ωdy = −ry(t− ωτ)(1 + y(t)) dt + δdW (t) , (48)
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where W (t) = w(t/ω). Using the strained coordinates technique, we find
the relation between the frequency ω(ε), the delay τ , and the amplitude for
the periodic solution of (48) to exist [18, 22]. Specifically, we have

ω(ε) = 1 − 3

20
ε2(A2 +B2) + . . . ≡ 1 + ε2ω2 + . . . (49)

τ =
π

2r
+ ε2

(

− 1

20r
+

2

30

π

2r

)

(A2 +B2) + . . . ≡ τc + ε2τ2 + . . . (50)

y(t) = A cos rt+B sin rt

+ε

[

1

5

(

A2−AB−B2
)

cos 2rt+
1

10

(

A2+4AB−B2
)

sin 2rt

]

+ . . .

(51)

Eqs. (49)–(51) indicate that for fixed amplitude (squared) A2+B2 and delay
τc+ε

2τ2, the frequency of the periodic solution is uniquely specified. Without
any loss of generality, we normalize the amplitude to one, A2 +B2 = 1, fix
r > 0, and define the small parameter ε as a measure of the proximity of
the delay τ to the critical delay τc, so that with τ2 > 0 the frequency of the
periodic solution is given by ω = 1 − ε2(τ2 + 1/(20r))/τc +O(ε4) [22].

Now we turn to the stochastic problem. To determine the amplitude
equation on the slow time scale, we postulate the form of the solution to
(48) as

y = [A(T ) cos rt+B(T ) sin rt]+ε[C(T ) cos 2rt+D(T ) sin 2rt]+O(ε2) . (52)

Given the form of the oscillatory solution in (51), without any loss of gen-
erality we set A(0) = 1 and B(0) = 0. Functions C(T ) and D(T ) in (52)
are quadratic functions of A(T ) and B(T ) as suggested by the form (51),
C(T ) = (A(T )2 − B(T )2 − A(T )B(T ))/5 and D(T ) = ((A(T )2 − B(T )2 +
4A(T )B(T ))/10. Following the procedure developed for the linear case we
calculate the differential dy on the left-hand side of (48) using Itô’s formula
(with x in (23) replaced by y). In the present case, second partial derivatives
do not vanish. We substitute y(t) as given in (52) on the right-hand side of
(48), keeping terms up to O(ε2) in the drift coefficient. Writing the noise
term as (26) and projecting the resulting equation onto cos rt and sin rt, we
obtain

ψA = −ω2rB + r2(τ2 + ω2τc)A+ r
B(T − ε2τ) −B(T )

ε2

−r
2

[

AD −BC

]

+
r

2

[

AC +BD

]

,

ψB = +ω2rA+ r2(τ2 + ω2τc)B − r
A(T − ε2τ) −A(T )

ε2
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+
r

2

[

AC +BD

]

− r

2

[

−AD +BC

]

, (53)

σA = σB =
δ

ε
, (54)

if the argument are omitted for A, B, C, and D, it is simply T .
In the absence of noise δ = 0, there is a steady state solution to the

equations A′(T ) = ψA and B′(T ) = ψB , given by A = 1, B = 0 and ω
given by (49). That is, the drift gives attracting dynamics to this steady
state for A and B, and the noise gives fluctuations about this steady state.
Linearization of (53) about the steady state gives a system of linear SDDE’s
with a small delay. This in turn can be analyzed using the tools of Section 2.
Locally, the fluctuations can be described by an Ornstein–Uhlenbeck process.
The long time steady state probability density of the amplitude equations
(53) exhibits two peaks about two steady states of the deterministic system
((53) with δ = 0) [17].

5. Discussion

We developed the multiscale method to analyze SDDE near the bifur-
cation point of the unperturbed system. The method derives a system of
amplitude equations. This approach allows the study of the long time re-
sponse of the original system to noisy and deterministic perturbations. The
long time response of the system includes persistent oscillations. In the
absence of the noise, the solution would decay exponentially fast. Oscilla-
tory behavior of the solution to the stochastic equation is a result of the
interaction between random and deterministic perturbations. The periodic
solution serves as a carrier whose amplitude evolves stochastically. The am-
plitude satisfies a SDDE with a small delay. Exact analysis in the linear
case shows that the variance of the steady state amplitude increases as the
strength of the noise increases and the delay parameter decreases toward
its critical value. This same conclusion applies to the local behavior of the
amplitude of the nonlinear equation about its steady state. In the case of
the logistic equation, the amplitude density is bimodal with peaks about
the two steady points of the deterministic dynamics. The method applies
both to the linear and nonlinear equations. The form of the averaged ampli-
tude equation depends on the form of the nonlinearity and the type of the
noise. Noise effects enter the equation through the resonant modes between
the deterministic carrier and the coupling of the random term. In the case
of the additive noise, there are two resonant modes; in the case of linearly
multiplicative noise there are three resonant terms, and so on. Although we
have expressed the evolution of the envelope [A(T ), B(T )], Itô’s formula can
be used to transform these equations into a stochastic equation for phase
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of the oscillatory modes. Hence the “phase diffusion” of the system can be
determined as the covariance of the phase.

The assumption of being near the bifurcation point implies that the
projection of the fast time scale is done on a two-dimensional space. An
analysis of the DDE and SDDE away from the bifurcation point requires a
different approach [16]. A periodic solution to a time autonomous first order
DDE is determined up to phase. Linearization of the DDE about the periodic
solution is again a first order DDE. The multiscale approach developed for
this case differs from the classical method outlined in Section 3.1. The
single resonant mode of the DDE is defined by the isolated solution. In a
classical case of a nonlinear oscillator with an isolated periodic solution, the
linearization of the second order ODE is a linear equation with two linearly
independent solutions [18]. Solvability conditions which remove resonances
use these 2 solutions. In the case of a DDE, the analogy to the nonlinear
oscillator cannot be carried out. Since the isolated solution to the DDE is
determined up to phase, the perturbations of the amplitude are observed as
higher order effects; the amplitude equation is slaved to the phase equation.
In the case of the SDDE’s, this implies that additive noise in the DDE acts
in multiplicative way in the amplitude equation [16].

This work was developed in a long term collaboration with R. Kuske
from the University of British Columbia [16, 17].

R.W. Cox of the NIMH NIH is thanked for hugs and kisses, and for being
mostly right.
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