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The noise can stabilize a fluctuating or a periodically driven metastable
state in such a way that the system remains in this state for a longer time
than in the absence of white noise. This is the noise enhanced stability
phenomenon, observed experimentally and numerically in different phys-
ical systems. After shortly reviewing all the physical systems where the
phenomenon was observed, the theoretical approaches used to explain the
effect are presented. Specifically the conditions to observe the effect in sys-
tems: (a) with periodical driving force, and (b) with random dichotomous
driving force, are discussed. In case (b) we review the analytical results
concerning the mean first passage time and the nonlinear relaxation time
as a function of the white noise intensity, the parameters of the potential
barrier, and of the dichotomous noise.

PACS numbers: 05.40–a, 05.10.Gg, 02.50.–r

1. Introduction

The escape from metastable states continues to attract increasing in-
terest since the Kramers’ seminal paper [1]. It occurs in a wide variety
of natural systems such as chemical systems, spin systems, quantum liq-
uids, polymers and in problems of transport in complex systems, such as
glasses and proteins. Specifically the noise activated escape in systems with
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metastable states and fluctuating barriers is important to describe the dy-
namics of complex nonequilibrium systems such as the molecular dissoci-
ation in strongly coupled chemical systems, electron transport in a quan-
tum double-well structure, crystal growth, glasses, microstructures, lasers,
Josephson junction devices, ratchet models, migration of ligands in proteins
and biological systems [2–4]. A common peculiarity of all these systems is
that are open systems with internal nonlinear dynamics, and interacting with
a noisy environment, which is responsible for noise induced phenomena. In
these complex nonstationary nonequilibrium systems the continuous time-
translation symmetry is broken, in contrast to the phenomenon of stochastic
resonance characterized by deterministic barrier modulations [5].

Noise activated escape from a metastable state with oscillating or fluc-
tuating barriers has recently attracted increasing attention [6–10]. In many
situations the system is driven away from thermal equilibrium by an addi-
tional periodical driving force or by some external random perturbations.
While important from both fundamental and applied point of view, analyti-
cal progress in the theory of oscillating barrier crossing is rather difficult. In
the weak noise regime an interesting phenomenon appears: the enhancement
of stability by thermal noise in systems with a metastable state and a peri-
odically driven potential [11,12]. This noise enhanced stability phenomenon
(NES) was observed experimentally and numerically in various physical sys-
tems [8–23]. By varying the value of the thermal noise intensity we can
lengthen or shorten the mean lifetime of the metastable state of our phys-
ical system. The enhancement of stability implies that the system remains
in the metastable state for a longer time than in the absence of noise.

The paper is organised as follows. In the first section we shortly review
all the physical systems where the effect was observed. The theoretical ap-
proaches that we used to explain the effect are presented in second and third
sections. Specifically the conditions for the NES effect: (a) with periodical
driving force, and (b) with random dichotomous driving force, are discussed.
In the final section we review for the case (b) the analytical results concern-
ing the mean first passage time (MFPT) and the nonlinear relaxation time
(NLRT) as a function of the white noise intensity, the parameters of the
potential barrier, and of the dichotomous noise.

2. Enhancement of stability in physical systems

The mean first passage time of a Brownian particle moving in potential
fields with metastable and unstable states normally decreases with noise
intensity growth according to the Kramers’ formula [1]

τk = A e∆U/q (1)



Noise Enhanced Stability 1421

or some universal scaling function of the system parameters [24]. In equa-
tion (1) A is a pre-factor, which depends on the curvature of the potential
at the metastable state and at the top of the potential barrier of height
∆U , and 2q is the noise intensity. However, the dependence of the MFPT
for unstable or oscillating metastable states, was revealed to have resonance
character with a nonmonotonic behaviour as a function of the noise inten-
sity. This is the NES phenomenon: the noise can modify the stability of the
system. Under the action of noise a system remains in the unstable or in the
oscillating metastable state for a longer time than in the deterministic case
and the escape time as a function of noise intensity has a maximum. The
NES phenomenon has been observed in different physical systems, which we
review in this section.

Hirsch et al. [19] first noted this nonmonotonic dependence in studying
the onset of intermittent chaotic behaviour for one-dimensional maps just
before a tangent bifurcation. They considered the effect of external noise on
the regular path length and obtained an interesting result: for some values
of the system parameters the average length of the laminar regions may
be enhanced by the presence of a given finite amount of noise. Hirsh and
coauthors considered a Langevin equation with the potential corresponding
to the unstable state and reduced the average path length of the laminar
regime problem to the mean first passage time problem. They found that
a small amount of noise increase the average time of passage, contrary to
what one might have expected. A simple model which exhibits the same
phenomenon was studied by Agudov and Malakhov [25]. They considered
a logistic map with a piece-wise linear function and studied this effect in
detail.

In a theoretical study of the transient dynamics of an overdamped Brow-
nian particle in a time dependent cubic potential with metastable state (see
Fig. 1), Dayan et al. [11] showed numerically that the stability of the system
is enhanced for a wide choice of values of the control parameter. The initial
intuition of authors was that an increase in the amplitude of the noise should
decrease the mean escape time because noise forces the particle to sample
more of the available space than without noise. However their simulation
studies showed that at an appropriately chosen frequency of the periodical
driving force the escape time increases when the intensity of the noise in-
creases. This means that the noise can modify the stability of the system in a
counter-intuitive way. This effect was named by Mantegna and Spagnolo [12]
as Noise Enhanced Stability (NES) and gives a nonmonotonic behaviour of
the average escape time as a function of the noise intensity. The NES phe-
nomenon was experimentally observed by investigating the escape time from
a time modulated physical system: the tunnel diode [12]. The system can be
deterministically overall stable or overall unstable. In the presence of noise
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the overall-stable regime becomes metastable, the stability of the system is
higher for lower values of noise amplitude. In the overall-unstable regime,
however, a finite amount of noise increase the stability of the otherwise de-
terministically unstable system. A related phenomenon was revealed and
investigated by Agudov and Malakhov in Refs. [13,14] for different kinds of
fixed potential profiles. This is the noise delayed decay (NDD) of unstable
nonequilibrium states. Previous investigations showed that noise accelerated
the decay of any unstable state [24,26]. Agudov and Malakhov by analysing
the influence of the potential profile shape and initial conditions on the NDD
effect showed that the decay time of unstable states, under some conditions,
can be increased considerably by the external noise. In other words, the
external additive noise can delay the decay of unstable states.

x

U x( )

Fig. 1. Cubic potential with a metastable state.

We note that the NDD and NES effects are two different aspects of the
same noise induced phenomenon occurring in nonlinear physical systems,
but with some peculiarities. The NDD effect concerns the delay of the decay
of unstable nonequilibrium initial states in fixed potential profiles [13, 14].
The NES effect appears in potential profiles with metastable state in the
presence of a strong driving force. The dynamical regime is characterized by
the absence of the potential barrier for some short time interval; that is, the
system is deterministically overall unstable [12] and in this time interval we
have the same physical situation as for NDD effect. After this time interval
the Brownian particle, because of the interplay between the noise and the
time dependent driving force, can return into the potential well and the
mean lifetime of the metastable state increases with the noise intensity, in
comparison with the dynamical lifetime [8, 11, 12]. When we consider fixed
potentials with metastable state and with initial unstable positions, we can
refer to both NDD or NES effect. In this case we have a nonmonotonic
behaviour of the average escape time as a function of noise intensity and
a new interesting dynamical regime, characterized by a divergency of the
average escape time similar to an exponential Kramers behaviour [8, 9].
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By investigating the influence of thermal fluctuations on the supercon-
ductive state lifetime and the turn-on delay time for a single Josephson
element with high damping, Malakhov and Pankratov [20] found that fluc-
tuations may both decrease and increase the turn-on delay time. Specifically
they found that for low noise intensities and for current values greater than
the critical current, which characterize the onset of the resistive state from a
superconductive state, an increase of fluctuations intensity causes increasing
of the metastable state lifetime.

Wackerbauer analysed in detail the influence of dynamical noise on
switching processes in one-dimensional discontinuous maps [17], namely the
piece-wise linear map, the Lorenz map and the piece-wise linear Lorenz map.
The main result is that the switching dynamics of all Lorenz-type maps is
significantly reduced by dynamical noise. This reduction is mainly caused
by a noise-induced escape of a typical trajectory into a less frequently vis-
ited part of the attractor. This causes a noise-induced stabilization, i.e.
an enhancement of the mean passage time. Several properties found in the
noisy Lorenz system are related to findings in the transient dynamics of a
modulated metastable system, which shows the NES phenomenon [12].

The mobility of an overdamped particle in a periodic potential tilted by a
constant external field and moving in a medium with periodic friction coeffi-
cient shows noise induced slowing down [21]. For large values of the constant
external field, for which the potential barrier disappears, the mobility de-
creases as the intensity of the thermal noise increases from zero temperature,
where one would have expected the particle to become more mobile as the
temperature is increased from zero. The presence of noise slows down the
motion of deterministically overall unstable states in an appropriate range
of potential parameters, contrary to what one might have expected. This is
somewhat akin to the phenomenon of noise enhanced stability of unstable
states [12].

The overdamped motion of a Brownian particle in an asymmetric bistable
fluctuating potential shows noise induced stability of the state which has
most of the time the higher energy [18]. For intermediate fluctuation rates
the mean occupancy of minima with energy above the absolute minimum
is enhanced. The less stable minimum most of the time is metastable and
nevertheless it can be highly occupied.

Yoshimoto showed in recent papers [22] that one type of noise-induced
order, in one-dimensional return map of the Belousov–Zhabotinsky reaction,
takes place in the intermittent chaos, when the length of the laminar region
was increased by the noise. Finally Xie and Mei studied in Ref. [23] the
transient properties of a bistable kinetic system driven by two correlated
noises: an additive noise and a multiplicative coloured noise. They found
one-peak structure in the mean first passage time (MFPT) as a function of
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noise intensity for strongly correlated noises. The peak grows highly as the
correlation time and the cross-correlation coefficient increase, which means
that the noise colour causes the suppression effect of the escape rate to
become more pronounced, i.e. the enhancement of the average escape time
with increasing noise intensity.

3. Periodical driving force

3.1. Dichotomous driving

We consider the model of overdamped Brownian motion described by
the equation

dx

dt
= −dU (x)

dx
+ F (t) + ξ (t) , (2)

where ξ(t) is the white Gaussian noise with zero mean, 〈ξ(t)ξ(t + τ)〉 =
2qδ(t), and F (t) is the dichotomous driving force. Here U(x) is a piece-wise
potential with the reflecting boundary at x = 0, the barrier at x = L, and
the absorbing boundary at x = b (see Fig. 2)

U (x) =







+∞, x < 0
hx , 0 ≤ x ≤ L ,

E − k (x − L) , L < x < b
(3)

where h > 0, k > 0 and E = hL is the height of the potential barrier.

bL
x

xc

x0

U x( )

E DE

Fig. 2. The piece-wise linear potential with metastable and unstable states.
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For fixed potential (F (t) = 0), when the particle is within the potential
well, the decay time of metastable state increases exponentially in the limit
q → 0, according to Kramers’ formula (1). The MFPT from initial position
x0 to boundary b is

τ(x0, b) =
1

q

b
∫

x0

e
U(x)

q dx

x
∫

0

e
−U(y)

q dy . (4)

If the starting position of the particle is between the maximum and the right
boundary of the potential (L < x0 < b), then the initial state is unstable.
Specifically if the initial position of the particle is between the maximum
and the crossing point of the potential with the x-axis xc = (L+E/k), then
the average escape time (MFPT) rises to infinity when q → 0, while for zero
noise we obtain a finite deterministic decay time (b − x0)/k. In fact from
Eq. (4), for ∆E < E and q → 0, we obtain

τ(x0, b) ≃
q

kh
e

(E−∆E)
q −→ ∞ , for q −→ 0 , (5)

where ∆E = k(x0 − L). The average escape time has therefore a singu-
larity at q = 0 for the following range of starting positions of the particle:
L < x0 < xc. When the initial position is between the crossing point and
the absorbing boundary (xc < x0 < b), then ∆E > E (see Fig. 2) and
the average escape time has a nonmonotonic behaviour, with a maximum,
as a function of noise intensity [8]. The qualitative mechanism of this phe-
nomenon is as follows: a small quantity of noise can push the particle into
potential well, then the particle will be trapped there for a long time be-
cause the well is deep with respect to the noise intensity considered. As a
consequence the NES effect appears for a fixed potential with a metastable
state if the initial position of the particle is within the range L < x0 < b [8].

We consider now the initial state at x(0) = 0 and dichotomous driving
force F (t) = ±a with period T . When F (t) = −a, the initial state x(0) = 0
is metastable, while for F (t) = +a, it becomes unstable. Potential U(x) is
defined by Eq. (3) where h = 0. We choose F (t) = +a (0 ≤ t < T/2), i.e.
the potential barrier is absent for the first half of a period. In the absence
of noise Eq. (2) has a periodical solution in the deterministic regime for
T < 2L/a, and the particle always remains trapped in the metastable state
(x(t) < L). This is the overall stable regime. We have overall unstable
regime when the period of the driving force is

T >
2L

a
. (6)



1426 B. Spagnolo, N.V. Agudov, A.A. Dubkov

In this case the particle surmounts the region [0, L] at time t = L/a and
reaches some point x1, between L and boundary b, at time t = T/2, and
then crosses the absorbing boundary. If we add a small quantity of noise
into the system, the position of the particle at time t = T/2 is almost
the same: x1(q) ≈ x1(0). The decay time for an initial position x(0) = 0
is therefore τ(0, q) ≈ T/2 + τ(x1, q), and τ(x1, q) ≫ τ(x1, 0) because the
potential barrier, which appears at t = T/2, makes the average escape time
very large just for q → 0, in accordance with Eq. (5). This means that
the particle at time t = T/2 is in an unstable position with a potential
well on the left (see Fig. 2). All the trajectories that put the particle into
the metastable state contribute to increase the average escape time τ with
respect to the dynamical time, producing a nonmonotonic behaviour of τ as
a function of noise intensity. The decay time τ(0, q) will increase with small
q and the NES phenomenon appears. Thus, the NES effect will occur, if the
position x of the particle at time t = T/2 is in the following range

L < x

(

T

2

)

< b . (7)

This condition can be rewritten as follows [8]

L

a
<

T

2
<

ab + kL

a (a + k)
. (8)

This inequality, together with the condition a < k, gives the area on
the parameters region (T, a), where the NES effect takes place for small
noise intensity with respect to the barrier height (see Fig. 2). Below the
lower boundary we obtain Kramers behaviour. The magnitude of the NES
effect decreases from the lower to the upper boundary. This is because near
the upper boundary the potential barrier is absent or the reverse potential
barrier “seen” from the particle becomes very high during the noise induced
escape process.

3.2. Sinusoidal driving

In the case of sinusoidal force F (t) = a sinωt we consider the same
fixed potential profile U(x) of Eq. (3) with h = 0. The solution in the
deterministic regime is x(t) = (a/ω) (1 − cos ωt) for ω > 2a/L. We have
overall stable regime, x(t) < L for any t, and the particle always remains in
the metastable state. If the frequency is ω < 2a/L, the particle surmounts
the region [0, L], and the solution reads

x (t) =

{

(a/ω) (1 − cos ωt) , 0 < t < θ1 , 0 < x (t) < L ,
k (t − θ1) + (a/ω) (1 − cos ωt) , t > θ1 , L < x (t) < b ,

(9)
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where θ1 is the time at which the particle crosses the point x = L. Since
the mechanism of NES effect is the same as for dichotomous driving, we can
apply the same condition (7) for the effect occurrence. For the sinusoidal
driving this condition can be rewritten as follows

k

b

[

π − arccos

(

1 − ωL

a

)]

+
2a

b
< ω <

2a

L
. (10)

This inequality, together with the condition a < k, give the area on the
parameters region (a, ω), where the NES effect takes place for small noise
intensity with respect to the barrier height (see Fig. 3). So the particle, after

a

Fig. 3. The shaded area, obtained by numerical simulations, is the region of the

plane (lnT, a), where the NES effect appears for a dichotomous driving force. The

lower and upper continuous lines correspond to the left and to the right sides of in-

equality (8). The average escape time is greater than 10%, above the deterministic

escape time, near the lower boundary. The parameters are: b = 7, k = 1, L = 2.

Inset: the average escape time versus the noise intensity for a = 0.3 and T = 13.5.

The dashed line indicates the deterministic escape time.

t = T/2, has the potential well on the left as in previous case (see Fig. 2),
and as a result, the average escape time will increase with q, and the NES
phenomenon takes place. When the frequency ω and the amplitude a are
chosen exactly on the left hand boundary of Eq. (10), the maximal height of
induced potential barrier is zero, and the effect is very small. When we move
to the right hand boundary of Eq. (10), the maximal barrier increases and the
NES phenomenon too. After we cross the right boundary the deterministic
decay time becomes infinite and the NES effect disappears. Then, in the
presence of noise we get Kramers behaviour.
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4. Dichotomous random force

4.1. Mean first passage time

We consider now a randomly switching potential profile with reflecting
boundary at x = 0 and absorbing boundary at x = b. In Eq. (2) U(x) is
a fixed potential and F (t) = aη(t), where η(t) is a Markovian dichotomous
process which takes the values ±1 with the mean rate of switchings ν. Exact
results of MFPT for non-Markovian processes driven by two-state noise,
without thermal diffusion (q = 0), have been obtained in Ref. [27] and then
generalized by various authors (see, for example, [28]). Exact equations
for MFPTs for Brownian diffusion in switching potentials were first derived
in [29].

From the backward Fokker–Plank equation, we obtain the following cou-
pled differential equations

qT ′′

+ +
[

a − U ′ (x)
]

T ′

+ + ν (T− − T+) = −1 ,

qT ′′

− −
[

a + U ′ (x)
]

T ′

− + ν (T+ − T−) = −1 . (11)

Our boundary conditions are

T ′

± (0) = 0 , T± (b) = 0 . (12)

Here T+(x) and T−(x) are the mean first passage times for initial values
η(0) = +1 and η(0) = −1, respectively. Introducing two auxiliary functions

T =
T+ + T−

2
, θ =

T+ − T−

2
(13)

we can write the boundary conditions (12) in the form: T ′(0) = θ′(0) = 0,
T (b) = θ(b) = 0. So that from Eqs. (11) and (13) we obtain

qT ′′ − U ′ (x) T ′ + aθ′ = −1 ,

qθ′′ − U ′ (x) θ′ + aT ′ − 2νθ = 0 . (14)

After removing T (x) from Eqs. (14) we obtain a third-order linear differential
equation for the variable θ(x)

θ′′′ − 2U ′ (x)

q
θ′′ +

[

U ′2 (x)

q2
− U ′′ (x)

q
− γ2

]

θ′ +
2νU ′ (x)

q2
θ =

a

q2
, (15)

where

γ =

√

a2

q2
+

2ν

q
. (16)



Noise Enhanced Stability 1429

We analyze here the piece-wise linear potential (3) with h = 0. We have a
metastable state for η(t) = −1, and an unstable state for η(t) = +1. Let us
focus on T+(0) corresponding to a finite deterministic escape time. We solve
Eqs. (14) and (15) separately for regions 0 ≤ x ≤ L, and L ≤ x ≤ b. Using
the boundary conditions and the continuity conditions at the point x = L,
we obtain for small noise intensity

T+ (q) ≃ T+ (0) +
q

a2
f(β, ω, s) + o(q) , (17)

where

f(β, ω, s) =
β3

[

2 + s(1 + β2)
]

(1 + β) (1 − β2)
e−s +

β
(

1 − β2 − 2β3
)

2 (1 − β2)

(

1 − e−s
)

− 5 + β

2 (1 + β)
+ 2ω

(

1

1 − β2
− 3

β

)

− 2ω2

β2
(18)

with dimensionless parameters β, ω and s

β =
a

k
, ω =

νL

k
, s =

2ν (b − L)

k (1 − β2)
=

2ω

1 − β2

(

b

L
− 1

)

, (19)

and

T+ (0) =
2L

a
+

νL2

a2
+

b − L

k

[

1 − β

s (1 + β)

(

1 − e−s
)

]

(20)

is the MFPT T+(0) of initially unstable state in the absence of thermal
diffusion.

The condition to observe the NES effect can be expressed by the following
inequality

f(β, ω, s) > 0 . (21)

Let us analyze the structure of NES phenomenon region on the plane (β, ω).
At very slow switching ν → 0 (ω → 0, s → 0), in accordance with Eq. (18),
the inequality (21) takes the form

β > 0, 802; ω <
2β2 (1 − β) − 5β

(

1 − β2
)2

/2

6 (1 − β2)2 − 2β (1 − β2) + β2 (3β2 − 1) (b/L − 1)
. (22)

In the case of β ≃ 1 we obtain from Eqs. (18), (21) and (22)

ω <
1 − β

b/L − 1
,

1

2
+

5

2
(1 − β) < ω <

1

2(1 − β)
. (23)

In Fig. 4 are shown two NES regions (shaded area) on the plane (β, ω).
The NES effect occurs at the values of β ≃ 1, i.e. at very small steepness



1430 B. Spagnolo, N.V. Agudov, A.A. Dubkov

k − a = k(1 − β) of the reverse potential barrier for the metastable state.
For such a potential profile, a small noise intensity can move back Brownian
particles into potential well, after they crossed the point x = L, increasing
the MFPT.
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Fig. 4. The shaded area is the region of the plane (a, ω) where the NES effect takes

place for a sinusoidal driving force. The parameters are: b = 1, k = 1, L = 0.5.

Inset: the average escape time versus the noise intensity for a = 0.1 and ω = 0.39.

The dashed line indicates the deterministic escape time.

4.2. Nonlinear relaxation time

Now we consider the nonlinear relaxation time (NLRT) for the sys-
tem with randomly fluctuating potential of the previous paragraph. The
NLRT implies to take into account the inverse probability current through
the boundary, or equivalently, to consider the absorbing boundary at infin-
ity [13]. By considering the well-known expression for probability density of
the process x(t)

W (x, t) = 〈δ (x − x (t))〉
and using the auxiliary function

Q (x, t) = W (x, t) 〈η (t) | x (t) = x〉
we obtain the following set of closed equations for the functions W (x, t) and
Q (x, t) [10, 30]

∂W

∂t
=

∂

∂x

[

U ′ (x) W
]

− a
∂Q

∂x
+ q

∂2W

∂x2
,
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∂Q

∂t
=

∂

∂x

[

U ′ (x) Q
]

− a
∂W

∂x
+ q

∂2Q

∂x2
− 2νQ . (24)

The initial conditions for these functions are: W (x, 0)=δ(x−x0), Q(x, 0)=0.
We consider potential profiles U(x)±ax, with a reflecting boundary at x = 0
and an absorbing boundary at x → +∞. We assume that the potential pro-
file U(x)+ax corresponds to a metastable state, and U(x)−ax corresponds
to an unstable state. The average escape time from metastable state within
the interval (L1, L2) is defined as follows

τ (x0) =

+∞
∫

0

dt

L2
∫

L1

W (x, t |x0, 0) dx . (25)

To obtain the escape time we generalize the method, proposed in [31], for
fluctuating potentials. As it is shown in that work the escape time (25) can
be expressed in terms of the function Z1(x, x0)

τ(x0) =

L2
∫

L1

Z1 (x, x0) dx ,

where Z1(x, x0) is the linear coefficient of the expansion of the function
sY (x, x0, s) in a power series in s, and Y (x, x0, s) is the Laplace transform
of the conditional probability density W (x, t |x0, 0). By Laplace transform-
ing the auxiliary function Q(x, t) in R(x, x0, s), and expanding the function
sR(x, x0, s) in similar power series, we obtain from Eq. (24) and the condi-
tions of zeroth probabilistic flow at reflecting boundary x = 0

[

aQ − U ′ (x) W − qW ′
]

x=0
= 0 ,

[

aW − U ′ (x)Q − qQ′
]

x=0
= 0 ,

the following coupled integro-differential equations for the functions Z1(x, x0)
and R1(x, x0)

qZ ′

1 + U ′ (x) Z1 − aR1 = −1 (x − x0) ,

qR′

1 + U ′ (x) R1 − aZ1 = 2ν

x
∫

0

R1(y, x0)dy . (26)

Here R1(x, x0) is the linear coefficient of the expansion of the function
sR(x, x0, s) and 1(x) is the step function. We consider now the same piece-
wise linear potential profile (3) with h = 0 and b → +∞. The initial position
of the Brownian particles is x0 = 0. Solving the set of Eqs. (26), with the
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continuity conditions at the point x = L, we obtain the final expression for
the lifetime of metastable state (L1 = 0, L2 = L)

τ(0) = c1

(

sinh γL

γL
+

2νq

a2

)

+ c2 (cosh γL − 1) − νL2

q2γ2
, (27)

where c1, c2 have complicated expressions in terms of the system parameters,
and γ is given by Eq. (16). The exact formula (27) was derived without
any assumptions on the thermal noise intensity q, and the mean rate of
switchings ν. From Eq. (27) we obtain explicit expressions of the asymptotic
behaviours of the average escape time as a function of the noise intensity q
and the system parameters. Specifically for q → ∞ we find

τ(0) =
L

k
+

L2

2q

(

1 +
a2

νkL

)

+ o
(

q−1
)

. (28)

Thus, the average escape time decreases with q and tends to a constant value
L/k at q → ∞. For very high noise intensity the Brownian particle “does
not see” the fluctuations of the potential, and moves as in a fixed potential
profile: U(x) = −kx. In the opposite limiting case of very slow diffusion
(q → 0), using truncated expansions and algebraic manipulations we obtain

τ(0) = τd +
q

a2

[

a (2k − a)

k2 − a2
− 3 +

2νL

a

(

ka

k2 − a2
− 3

)

− 2ν2L2

a2

]

+ o (q) ,

(29)
where

τd =
νL2

a2
+

1

2ν
+

2L

a
.

In the absence of thermal diffusion (q = 0), at the limiting cases ν → 0 and
ν → ∞, the average escape time becomes infinite: τd → ∞. For ν → 0, the
metastable state becomes stable and therefore is long-lived. For ν → ∞ the
switchings are so fast that Brownian particles remain practically in the initial
point x0 = 0. The lifetime is minimum when the mean rate of switchings is
equal to a/(L

√
2). To obtain NES effect in the system investigated, the term

in quadratic brackets in Eq. (29) must be positive. Introducing the same
dimensionless parameters β and ω (see Eq. (19)) we can write the condition
for the NES phenomenon in the form of inequality

ω <
β

2

[√

1

(1 − β2)2
− 2β + 3

1 − β2
+ 5 +

β

1 − β2
− 3

]

, β >

√
7 − 1

2
. (30)

The NES effect occurs mainly at the values of β near 1, i.e. at very small
steepness k − a = k(1 − β) of the reverse potential barrier beyond the
metastable state, as in the case of MFPT (see Fig. 5).
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Fig. 5. The shaded areas are the region of the plane (ω,β), where the NES effect

takes place. The parameters are: L = 1, b = 1.2, k = 1.
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Fig. 6. The shaded area is the parameter region on the plane (β, ω), where the

NES effect can be observed. The parameters are: L = 1, k = 1. Inset: the average

escape time versus the noise intensity for β = 0.97 and ω = 0.1.

Only Brownian particles that are put back into the potential well by a
very small thermal noise intensity produce NES phenomenon. In Fig. 5 we
plot in the inset the normalized average lifetime as a function of the noise
intensity for ω = 0.1 and β = 0.97.
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5. Conclusion

In this paper we have presented a short review of noise enhanced stability
(NES) phenomenon. After shortly reviewing several physical systems, where
the nonmonotonic behaviour or resonance-like phenomenon of the average
escape time as a function of the noise intensity was observed, we have pre-
sented the theoretical approaches that we used to explain the NES effect, for
systems with periodically driven or fluctuating metastable state. The vari-
ations of the potential are due to: (i) a periodical force, (ii) a Markovian
dichotomous noise. For periodical driving force we obtained the conditions
and the parameter region where the NES effect can be observed. Using the
backward Fokker–Planck equation, and the Laplace-transform method we
obtained the exact expressions of the MFPT and NLRT for randomly fluc-
tuating metastable state in piece-wise linear potential profile with reflecting
boundary at the origin. These expressions are valid for arbitrary noise in-
tensity and for arbitrary fluctuation rate of the potential. The analysis at
small thermal noise intensity allowed us to obtain analytically the region
of NES phenomenon occurrence in case (ii). In contrast with the case of
periodically driven metastable state, in the presence of a random dichoto-
mous noise the NES effect can be observed only at very flattened potential
profile beyond the potential well, i.e. in the absence of the reverse potential
barrier for particles beyond the metastable state. Only in such a situation,
Brownian particles, which are at large distances from the origin, can turn
back into potential well by low noise intensity, producing an enhancement
of stability of the metastable state of the system.

All the nonmonotonic behaviours, observed in different physical systems
and related with the NES effect, allows us to conclude that this phenomenon
provides a quite unexpected way to enhance the stability of metastable
states.
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INFM, by the Russian Foundation for Basic Research (project 02-02-17517),
by the Federal Program “Scientific Schools of Russia” (project 1729.2003.2),
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